The extension of the Riemann's zeta function

M. Sghiar
msghiar21@gmail.com
Presented to :

Université de Bourgogne Dijon, Faculté des sciences Mirande, Département de mathématiques. Laboratoire de physique mathématique, 9 av alain savary 21078 , Dijon cedex, France

Abstract

: Prime numbers [See 1-7] are used especially in information technology, such as public-key cryptography, and recall that the distribution of prime numbers is closely related to the non-trivial zeros of the zeta function therefore related to the Riemann hypothesis.

Here I introduce the function (S) : $(X, z) \longmapsto \prod_{p \in \mathcal{P}} \frac{1}{1-X / p^{z}}$ which is a generalization of the function ζ of Riemann that I will use to prove the Riemann hypothesis.

Keywords : Prime Number,Holomorphic function, the Riemann hypothesis.

In memory of the great professor, the physicist and mathematician, Moshé Flato.

INTRODUCTION AND THE PROOF OF THE RIEMANN HYPOTHESIS

Prime numbers [See 1-7] are used especially in information technology, such as public-key cryptography which relies on factoring large numbers into their prime factors. And in abstract algebra, prime elements and prime ideals give a generalization of prime numbers.

In mathematics, the search for exact formulas giving all the prime numbers, certain families of prime numbers or the n -th prime number has generally proved to be vain, which has led to contenting oneself with approximate formulas [7].

Recall that Mills' Theorem [7] : "There exists a real number A, Mills' constant, such that, for any integer $\mathrm{n}>0$, the integer part of $A^{3^{n}}$ is a prime number" was demonstrated in 1947 by mathematician William H. Mills [7], assuming the Riemann hypothesis [7] is true.

Here I introduce the function (S) : $(X, z) \longmapsto \prod_{p \in \mathcal{P}} \frac{1}{1-X / p^{z}}$ which is a generalization of the function ζ of Riemann that I will use to prove the Riemann hypothesis.

Theorem 1 The real part of every nontrivial zero of the Riemann zeta function is $1 / 2$.

The link between the function ζ and the prime numbers had already been established by Leonhard Euler with the formula [5], valid for $\operatorname{Re}(s)>1$:

$$
\zeta(s)=\prod_{p \in \mathcal{P}} \frac{1}{1-p^{-s}}=\frac{1}{\left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{5^{s}}\right) \cdots}
$$

where the infinite product is extended to the set \mathcal{P} of prime numbers. This formula is sometimes called the Eulerian product.

And since the Dirichlet eta function can be defined by $\eta(s)=\left(1-2^{1-s}\right) \zeta(s)$ where : $\eta(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}$
We have in particular :

$$
\zeta(z)=\frac{1}{1-2^{1-z}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{z}}
$$

for $0<\operatorname{Re}(z)<1$,
Let : $s=x+i y$, with $0<\operatorname{Re}(s)<1$
$\zeta(s) \zeta(\bar{s})=\prod_{p \in \mathcal{P}} \frac{1}{1-p^{-s}} \frac{1}{1-p^{-\bar{s}}}=\prod_{p \in \mathcal{P}} \frac{1}{\left(1-e^{-x \ln (p)} \cos (y \ln (p))\right)^{2}+\left(e^{-x \ln (p)} \sin (y \ln (p))\right)^{2}}$
But: $\prod_{p \in \mathcal{P}} \frac{1}{\left(1-e^{-x \ln (p)} \cos (y \ln (p))\right)^{2}+\left(e^{-x \ln (p)} \sin (y \ln (p))\right)^{2}} \geq \prod_{p \in \mathcal{P}} \frac{1}{\left(1+e^{-x \ln (p)}\right)^{2}+\left(e^{-x \ln (p)}\right)^{2}}$ If $\zeta(s)=0$, then $\prod_{p \in \mathcal{P}} \frac{1}{\left(1+e^{-x \ln (p)}\right)^{2}+\left(e^{-x \ln (p)}\right)^{2}}=0$ and since the non-trivial zeros of ζ are symmetric with respect to the line $X=\frac{1}{2}$ because the zeta function satisfies the functional equation $[7]: \zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-$ s) $\zeta(1-s)$
then $x=\frac{1}{2}+\alpha$, and if $s^{\prime}=\frac{1}{2}-\alpha+i y$, then $\zeta\left(s^{\prime}\right)=0$
But the function $\frac{1}{\left(1+e^{-t \operatorname{tln}(p)}\right)^{2}+\left(e^{-t \ln (p)}\right)^{2}}$ is increasing in $[0,1]$, so $\prod_{p \in \mathcal{P}} \frac{1}{\left(1+e^{-t \operatorname{tln}(p))^{2}+\left(e^{-t \ln (p)}\right)^{2}}\right.}=$ $0 \forall t \in\left[\frac{1}{2}-\alpha, \frac{1}{2}+\alpha\right]$.
As $\prod_{p \in \mathcal{P}} \frac{1}{\left(1+e^{-z \ln (p)}\right)^{2}+\left(e^{-z \ln (p)}\right)^{2}}$ is holomorphic : because :
$\prod_{p \in \mathcal{P}} \frac{1}{\left(1+e^{-z \ln (p)}\right)^{2}+\left(e^{-z \ln (p)}\right)^{2}}=\prod_{p \in \mathcal{P}} \frac{1}{1-A / p^{z}} \frac{1}{1-B / p^{z}}$ with $A=i-1$ and $B=$ $-i-1$, and both $\prod_{p \in \mathcal{P}} \frac{1}{1-A / p^{z}}$ and $\prod_{p \in \mathcal{P}} \frac{1}{1-B / p^{z}}$ are holomorphic in $\{z \in$ $\left.\mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$ as we have :

$$
\prod_{p \in \mathcal{P}} \frac{1}{1-A / p^{z}}=\prod_{p \in \mathcal{P}}\left(1+f_{p}(z)\right)
$$

with $f_{p}(z)=\frac{1}{\left(p^{z} / A\right)-1}$

$$
\left|f_{p}(z)\right| \leq \frac{1}{\left|p^{z} / A\right|-1}=\frac{1}{\left(p^{\Re(z)} / \sqrt{2}\right)-1} \leq k \frac{1}{p^{\frac{1}{2}}}
$$

where k is a positive real constant.
So :

$$
\left|\sum_{p \in \mathcal{P}, p=N}^{\infty} f_{p}(z)\right| \leq k\left|\sum_{n=N}^{\infty} \frac{1}{n^{\frac{1}{2}}}\right|=k\left|\zeta_{N}\left(\frac{1}{2}\right)\right|
$$

But(see Lemma 1 [5]) : $\zeta_{N}\left(\frac{1}{2}\right)=o_{N}(1)$
We deduce that the series $\sum_{p}\left|f_{p}\right|$ converges normally on any compact of $\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$ and consequently $\prod_{p \in \mathcal{P}} \frac{1}{1-A / p^{z}}$ is holomorphic in $\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$. In the same way $\prod_{p \in \mathcal{P}} \frac{1}{1-B / p^{z}}$ is holomorphic in $\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$
If $\alpha \neq 0$, then the holomorphic function $\prod_{p \in \mathcal{P}} \frac{1}{\left(1+e^{-z \ln (\mathcal{P})}\right)^{2}+\left(e^{-z \ln (\mathcal{P}))^{2}}\right.}$ will be null (because null on $\left.] \frac{1}{2}, \frac{1}{2}+\alpha\right]$), and it follows that $\prod_{p \in \mathcal{P}} \frac{1}{1-A / p^{z}}$ or $\prod_{p \in \mathcal{P}} \frac{1}{1-B / p^{z}}$ is null in $\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$. Let's show that this is impossible :
If $\prod_{p \in \mathcal{P}} \frac{1}{1-A / p^{z}}=\prod_{p \in \mathcal{P}}\left(1+f_{p}(z)\right)=0$ with $f_{p}(z)=\frac{1}{\left(p^{z} / A\right)-1} \forall z \in\{z \in$ $\left.\mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$. So for the same reason as above, the application :
(S) : $X \longmapsto \prod_{p \in \mathcal{P}} \frac{1}{1-X / p^{z}}$ is holomorphic in the open quasi-disc $\mathcal{D}=\{X \in$ $\mathbb{C}, 0<|X|<\sqrt{2}\}$ with $z \in\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \geq \frac{1}{2}\right\}$ (here z is fixed)
Let's extend the function (S) by setting :
For $z \in\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \supsetneqq \frac{1}{2}\right\}$ and $\forall s \in \mathbb{R}$, with $s \leq 0$, such as $\Re(s+z) \geq 0$ (S) $\left(C / q^{s}\right)=\prod_{p \in \mathcal{P}} \frac{1}{1-C /\left(q^{s} p^{z}\right)}$ (where q is a prime number, and C is such that $|C|=\sqrt{2}$)

In particular we have :
(S) $\left(A / q^{s}\right)=\prod_{p \in \mathcal{P}} \frac{1}{1-A /\left(q^{s} p^{z}\right)}$ (where q is a prime number)

But for $z \in\left\{z \in \mathbb{R} \backslash\{1\}, z \nexists \frac{1}{2}\right\}$ we have :

$$
\prod_{p \in \mathcal{P}}\left|\frac{1}{1-A /\left(q^{s} p^{z}\right)}\right| \leq \prod_{p \in \mathcal{P}}\left|\frac{1}{1-A /\left(p^{z}\right)}\right|
$$

It follows that:

$$
\text { (S) }\left(A / q^{s}\right)=0
$$

So :

$$
\text { (S) }(X)=0, \forall X \in \mathcal{D}
$$

And consequently :

$$
\text { (S) }(1)(z)=\zeta(z)=0
$$

$\forall z \in\left\{z \in \mathbb{C} \backslash\{1\}, \Re(z) \nexists \frac{1}{2}\right\}$
which is absurd, so $\alpha=0$, hence the Riemann hypothesis.

References :

[1] N. M. KATZ and P. SARNAK , Random Matrices, Frobenius Eigenvalues, and Monodromy. Colloq.Publ. 45, Amer. Math. Soc., Providence, 1999.
[2] N. M. KATZ and P. SARNAK ,zeroes of zeta functions and symmetry, Bulletin (New Series) of the american mathematical society, Volume 36, Number 1, January 1999, Pages 1-26.
[3] M. Sghiar, The Special Functions and the Proof of the Riemann's Hypothesis. IOSR Journal of Mathematics(IOSR-JM), 2020, 16, Issue 3, Serie II, pp.10-12.
[4] M Sghiar. Des applications génératrices des nombres premiers et cinq preuves de l-hypothèse de Riemann. Pioneer Journal of Algebra Number Theory and its Applications, 2015, 10 (1-2), pp.1-31. http ://www.pspchv.com/content PJNTA-vol-10-issues-1-2.
[5] M. Sghiar. The Mertens function and the proofof the Riemann's hypothesis, International Journalof Engineering and Advanced Technology (IJEAT),ISNN :22498958, Volume- 7 Issue-2, December 2017. (Improved in https ://hal.science/hal01667383)
[6] William H. Mills, A prime representing finction, Bull. Amer. Math. Soc., 1947, p. 604 et 1196
[7] Wikipedia, https://en.wikipedia.org/wiki/Riemann_zeta_function\# Other_results

