
Fukaya Categories, Reidemeister Moves, and the

Novikov Ring

Ryan J. Buchanan

March 23, 2024

Abstract

We construct a Novikov-type ring and generalize Dirac’s δ function
into a functor. By applying the generalized δ-functor, we are able to
reconstruct the Fukaya category B0.

Preamble

Notation 0.1. By “category,” we mean A∞-category, unless the category is
otherwise specified.

Let C be a chain complex:

... → Hn(X) → ... → Hn+k(Y ∼ X) → ...

and select a suitably large category C such that there is a canonical embedding
(X/ ∼) ↪→ C .

Example 0.1. The natural numbers, N, are a large category with a canonical
embedding N/ ∼, where ∼ is the relationship n = n′ + k for every n, k ∈ N

Example 0.2. Suppose X is the space [0, 1] and the equivalence relationship is

x ∼ y ⇐⇒ |x− y| < ε

for a fixed, small ε. Then, the quotient X/ ∼ has only one element, which
corresponds to the category of points.

Example 0.3. If the equivalence relationship is the equality

x ∼ y ⇐⇒ x = y

then X/ ∼ is isomorphic to X itself, and the corresponding category is the
category of locally constant functors.

We can arbitrarily form sufficiently small (i.e., honestly small subcategories
of C (call them C |k) such that Hn(X) is initial and Hn+k terminal.

1



Definition 0.1. A subcategory of C is said to be “honestly small” if it admits
only finite limits and colimits.

Proposition 0.1. Every (sufficiently) large category is closed under permutation
of every honestly small category.

Proof. Let G be a Lie groupoid. Then, we can form the map

C |k (C |k)nGs×tG

which is invariant under a change of the natural number n.

Theorem 0.1. Let C = (C , ω) be a Fukaya category and C|k an honestly
small subcategory of C. Every permutation of C|k obtained by deformations of
holomorphic discs with boundary conditions is closed under the inclusion functor

C|k ↪→ C

Proof. Consider the inclusion functor

i : C|k −→ C

By definition of a subcategory, i embeds the objects and morphisms of C|k into
C.

Let P be a permutation of C|k induced by a deformation of holomorphic
discs with boundary condition.

Since C|k is honestly small, it has finitely many objects and morphisms.
Denote the objects by X1, ..., Xn and the morphisms by ϕ1, ..., ϕn. Define the
automorphism functor F : C|k → C|k as follows: For each object Xi in C|k,
assign the object P (Xi) ∈ C|k under P . For each morphism ϕj : Xa → Xb in
C|k, assign it the morphism

P (ϕj) : P (Xa) → P (Xb)

in the permuted subcategory.

C|k C

P (C|k) P (C)

i

F F

i

We have shown that the above diagram commutes, which is enough.

Warning 0.1. This proof relies on the assumption that deformations of holomorphic
discs can be captured by automorphism functors within the context of the specific
Fukaya category being considered.
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That is to say, choosing an honestly small category from a suitably large
one is tantamount to choosing a suitable basis for the topology in which C |k
is instantiated. Our proposition allows us to take arbitrary cup products of
objects in the restricted category, and map them into a suitably nice cover.

Hn(X) ∨ ... ∨Hn+k(X) =
⋃
n,k

X = X|k

As is seen, there is a lot of flexibility with regards to the construction of the
cover. The question then behooves us: what exactly do we mean by a “suitably
nice cover?” For a bare topological space, all we ask for is that the usual axioms
of topology (i.e., distributivity of intersections and unions, etc.) are obeyed, and
so long as they are, we are free to claim that the space represents the category
C |k is represented by the space X|k.

However, this data is often insufficient for practical purposes. For instance,
we may want to construct Čech nerves, Lefschetz pencils, etc. For this reason,
we must define the notion of “suitability” of a cover on a case-by-case basis. We
do so here for Fukaya categories.

Let CFin = F be a finite partioning of a category (really, ∞-category), and
construct the morphism

f(F) : ker(F0) → im(Fn+k)

which ranges over a categorically small chain complex.
In this paper, we will not explicitly define Fukaya categories, namely because

this is a notoriously difficult task. The focus of the present paper will be
to construct a link between Fukaya categories, and the Novikov ring, using a
topological version dependent type-theory. To do this, we will build a category
which mimics the Novikov ring via a Dirac δ-type functor.
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1 Sums

An n-sum is a sum
Σn(k)

where k is a field (or possibly a ring). The parts of each k are said to be coupled
together if n = 2. Actually, in a superalgebra, we have

k± = k+ ⋆ k−

where ker(k+) = Σ1 and ker(k−) = Σ2 \ Σ1.
These are repetitively applied characters, and are defined so that

im(k±) = (k±)†

and so f : ker(k±) → im(k±) has an inverse which is its own identity. We are
allowed to say this (in fact we must) if we work with a groupoid of the form

G s ×t G → G×G

and we can in that case just replace s by f and t by g = f−1

Each (k±)† decomposes into a partition of unity. In a category C , this looks
like a decomposition of the condensed fiber from initial to terminal object into
nk-ary paths.

Notation 1.1. When we are in the habit of working with n-sums, we oftentimes
drop the n and just say “sum.” However, other mathematicians may be more
explicit.

Definition 1.1. When n = 2, the sum is known as a binor.

1.1 Dependent Sums

If a sum has as a character a functor f , then we say that sum is dependent
upon the smallest such Σ that contains f. To recognize one of these, we must
be able to list the components of Σinf |f∈Σ, at least up to an arbitrary f , but
other than that, we can actually discard all of the other information about the
list. For later convenience, we will refer set

Σinf |f∈Σ)=Σ̇

Proposition 1.1. For every Σ̇, there is a constructible dependent sum.1

1The usage of the word “constructible” here is rather trivial. In practice, it is not always
feasible to deduce whether the independent part of a sum is “noise” or not. Even more
lackadaisically, there is reason to argue that all of a dependent sum’s independent data is
noisy.
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This is obtained by adding noise.

Proof. We only must prove that we can extend Σ̇, all we have to do is construct
an arbitrary extension:

Σe = Σ̇
⋃

(e ∼ ∅)

then we can show that Σe depends on Σ̇ because Σe \ Σ̇ is homeomorphic to the
empty set.

This is actually an easy proof, because we start here with the smallest object
containing the desired functor anyway. However, proving extendibility for larger
classes is difficult, if not impossible to do without induction.

Dependent sums allow us to attach extra data to points using a classifier
with a pre-specified arity.

Example 1.1. Let M be an exotic manifold with submanifolds of mixed types.
Then, we can partion M into two set: ML and M¬L = M \ ML, into
Lagrangian or non-Lagrangian outputs. Then, every point within each neighborhood
of M has this additional data attached to it.

Such classifications with additional data are useful in various contexts, including
Fukaya categories where Lagrangians play a crucial role.

1.1.1 Urysohn’s Lemma

Mechanically speaking, dependency of a functor (or a function) f is actually
a great explicit property to be able to manipulate, because it means that, as
long as we can construct a topology T for a proof relying on some properties of
G×G, then we can actually work smoothly with that topology.

This can be shown using Urysohn’s lemma. We can exploit nested sums to
achieve this goal, because they allow us to construct a sequence of increasingly
finer partitions. By Urysohn’s Lemma, on a compact space, such a sequence
converges to a continuous function. In our case, this continuous function defines
the smooth fibers we desire.

Let Σ2 = Σe∪(Σe\Σ̇) Then, for every α ∈ (Σe\Σ̇), there is a map α → [0, 1],
and the infima are the independent parts of the sum. Urysohn tells us that for
every two extremely disconnected points in a set, the set can be divided into
n-many decompositions; since we have been working with a coupling model, n
has been set to 2.

This smoothness allows us decompose each decomposition into a further n
decomposition. Thus, we have nk-many total decompositions. Technically, we
have just imposed a filter on the smooth space with which we are working, but
the filter becomes perfectly smooth as the height of its net approaches infinity.
So we have actually found a way of transforming a discrete filter into a smooth
space.

In a more rigorous way, we can say
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Proposition 1.2. For every binor, B

lim
→

k ∈ B = ∞

This is saying, in more plain language, that if we add a lot of noise to B,
then it will eventually contain infinite information. Thus, the following

Proposition 1.3. For every binor, B

lim
i→∞

δi(k) = ∞

which means that every binor is infinitely differentiable.

However, not every binor is integrable. For instance, take

B∞

we are not guarunteed a map B∞ −→ 1, so when we have one it is a luxury,
and we can write

{
∫

∆ = 1 | ∆ = [δi] =

∫
δ[i]}

2 Dirac’s δ functor

We will construct now the functor δDir, otherwise known asDirac’s delta functor.
These are maps

δDir(S) =

{
s → 0 if | s ∈ A

s → ∞ if | s ∈ {S \A}

for every element s ∈ S of an arbitrary set with subsets A and ¬A.
The purpose of this functor is to map a specific subset of a set onto a unitary

object, typically a Hermitian one as well. So, δDir(S) encodes information about
how to embed each character s using a 1-cell in S or an overcategory. If S is a
locally ringed space (see [1]), then transform any cell complex (for instance the
chain complex in the preamble), and create an affine space using this data. The
Dirac functor tells us if we are going to get a nullhomotopy if we move from one
point in this space to another.

By [4], we have that every x ∈ X on which the functor acts is sent to its
zeroth homology sheaf.

Axiom 2.1. Let A and B be two apartments of a Euclidean building. Then,
if there is some point ∗ in A with parameters {a, b}, then a point ∗′ ∈ B is
diffeomorphic if, and only if,

{a, b}(B) = {a, b}(A)
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This means that if there is an earthquake E : A → A, there is a diffeomorphic
earthquake Ẽ : B → B if an only if the maps on parameters are the same for
A and B. For any two diffeomorphic earthquakes in a building, the Dirac δ
functor at the representative point of each apartment will have an identical
output. Thus,

Proposition 2.1.
E → Ẽ ̸= 0 → ∞

and

E → Ẽ ̸= ∞ → 0

In other words, no expansion or contraction occurs when replacing an earthquake
for a diffeomorphic one.

Proposition 2.2. Two points α and β of an apartment A are isotopic if and
only if they are related by an earthquake E

Proposition 2.3. A space equipped with the Dirac functor is stratified.

We make no special claim as to the type of the stratification, but essentially
δDir takes one property of our choosing, and separates objects into rooms
depending on whether they possess said property. The easiest such stratification
in this cases is

StratDir(S) = s → {A,S \A} ∀s ∈ S

and is actually a binor, classifying each s based upon whether or not they inhabit
the apartment A.

2.1 Fukaya categories

Let Pen(S ) be a pencil of Lefschetz hyperplanes attached to a space S with
the Dirac stratification. Let ω be a symplectic form on S .

Definition 2.1. A point ∗ ∈ Pen(S ) is said to be ω-convergent if

lim
n→∞

fn(∗) = ω

and the associated chain of functors is said to be an ω-convergent chain.

We have just constructed a category (call it Bω) whose functors are all
embedded into an ω-convergent chain.

Proposition 2.4.
Bω = Hol(B•)

The symplectic form controls most of the holonomy data for a Fukaya category.
More precisely, the holonomy of B• is dependent on ω. Loosely speaking, this
means that δDir is implicated in the process of modeling planar motion.

colim
•

δDir(B•)
∼
↠ Bω

Restated,
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Proposition 2.5. A monotonic chain consisting of a uniformly nested series
of dependent sums asymptotically approximates a Fukaya category.

Proof. Take the limit
lim
i→∞

δi(S)

where each i → i+ 1 is injective. Then, there is a surjection:

π : i+ 1
⊃
↠ i

which extends inductively to

π∞ : sup([i])
⊃
↠ i ∀i

As we progress by raising i successively, we extend the domain of the inverse
functor:

lim
n→∞

π−1
n = π−∞ ∼ 0

so we obtain the desired quasi-ismorphism, 0 ∼ •, and our category is the Fukaya
category B0 as constructed by Paul Seidel.

Remark 2.1. Cataldo and Migliorini [5] may have discovered this trick sooner.
However, they did not recognize Fukaya categories. Their approach involves
pairing flags F over the n-dimensional projective space, and mapping them to
iteratively nested subsets of a subspace Y ⊂ Pn

They defined the flags to be in good position when each Λp−1 meets Λp

transversally, where Λp is a flag on a Riemannian manifold with codimension
p. Specifically, Λ0 is the Novikov ring.2 For our purposes, we restate the above
by saying that, for a Fukaya category B•, the codimension of a Lefschetz pencil
in good position is exactly p.

The Fukaya category we have just constructed is effectively the category of
“sufficiently large” chain complexes. Thus, there is an isomorphism

Bω ≃ {C | C is sufficiently large}

3 Reidemeister Moves

The three Reidemester moves, are:

1. R1: twist

2. R2: overlap

3. R3: flip

2See [6]
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For a more digestible (visual) representation, see [4].
Let Fq be a flag of codimension q, and let

Fq ≃ Pen(Bq)

Then,

Proposition 3.1. The Reidemeister moves of Fq can be written

θPen(Bq)

where $θ : Pen(Bq) → Pen(Bq) is an endomorphism of a Lefschetz pencil, and
q is the codimension of the typical fiber

fib : (• ∼ 0) −→ z

for any z ∈ GS

This is actually not so important. What matters more to us, instead, is that
θq ∈ [θ] for all q. This means that, as we transform our ring-like categories
into Fukaya categories, moves on flags of codimension < q equate to injections
(qi−k) ↪→ qi.

Proposition 3.2. The Reidemeister moves of any honestly small category, C |k
are contained in the overcategory C .

Proof. For every C |k, we have a map

resC ,k : C −→ C |k

We can construct a homeomorphic map

resC |qi ,k : Cqi −→ Cqi |qi−k

Since the kernel of a Reidemeister move is the image of the above map, we can
construct an inverse map (resC |qi ),k)

−1 which is the inclusion of a flag acted
upon by any of the listed Reidemeister moves into the ambient space.

Example 3.1. Consider a Reidemeister move R3(A) for A an apartment.
Suppose that a point in the domain of A (modelled by a rectangle) is reflected
outside of A. Then, there is an injection

A ↪→ A ∪AC

where AC is the complement of A.
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A Fukaya categories

The recommended reference on Fukaya categories is [7]. There, we are given
some great examples of different algebraic objects, i.e., of Lagrangian submanifolds,
along with some very useful visualizations.

We will work with the sphere spectrum of a point, so that any action of a
Fukaya category is an S-graded action of a group G. Therefore, we have an
isomorphism

G× S ≃ ġ ∈ FukWr

where FukWr is a wrapped Fukaya category. By the double boundary theorem,
we have ˙̇g = ∅, so our 2-form is in fact closed, and is indeed a symplectic form.
The left G-action lifts the monodromy points of our manifold to the Lefschetz-
Picard group G̃.

Proposition A.1. Let (A,ω) be a Fukaya category and X,Y be objects in A.
If f : X → Y is a morphism in A and β is a binor in the Fukaya category, then
there exists a unique morphism f ◦ β : X → Y in A such that:

1. For any other morphism g : X → Y satisfying g◦β = f , we have g = f ◦β.
(Uniqueness)

2. The composition operation satisfies the following associativity property:
For any other morphisms h : W → X and α a binor,

(f ◦ β) ◦ (α ◦ h) = (f ◦ (β ◦ α)) ◦ h

Proof. We have

e ◦ (f ◦ Σ2 : Σ1 → Σ2) = (e ◦ f) ◦ Σ2 : Σ1 → Σ2

with e · k = Idk for some desired operation. Further,

F (Σn) = ((Σ1 × Σ2)× Σ3)× ...× Σn → Σn

which shows associativity and uniqueness of f ◦ β.
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Proposition A.2. The category B≥0 of small Fukaya categories whose associated
Dirac operators are always real forms a pre-Abelian category.

Proof. Define direct sum in B≥0 as follows:

A⊕B = ([a] ∈ A)× ([b] ∈ B) s.t. {a, b} ∈ B≥0

Note that we can compose morphisms by (f ⊕ g)(s) = f(s)⊕ g(s).

B≥0 B

A B≥0

res1

res0

f(A)

g(B)

As we can see, g(B)◦res1 = f(A)◦res0. We also have g(B)◦f(A) = f(A)◦g(B).
This shows that addition of objects is associative and commutative, and carries
up to functoriality. This also makes B≥0 into a zero-object, since it is both the
push-out and pullback.

Further, since this object includes the Novikov ring, which is unital, every
object a has identity ida = e ◦ a = a ◦ e. Thus, we have

ker({A,B}) = e ◦ B≥0 = idB≥0
= im({A,B})

B Spectra

Let C be a category. Using Urysohn’s lemma, we construct a topological
category (called the spectral category):

Ψ(C ) = lim
n

C n \ C n−1

Then, for any chain: ... → n−1 → n → ..., we can extend the chain by inserting
a morphism in between n − 1 and n, and write: n − 1 → ... → n. However,
we can only do this so long as representing the morphisms as a path leaves the
endpoints fixed.

Let f = (f0, f1, ..., fn) : X
f0−→ X1

f1−→ X2 → ...
fn−1−−−→ Xn

fn−→ Y where Xi

are objects in C for all 0 ≤ i ≤ n ∈ N. Composition of morphisms is defined by
concatenation of sequences: f = (f0, ..., fn) : X → Y , g = (g0, ..., gm) : Y → Z
and their composition is g◦f = (g0, ..., gm)◦(f0, ..., fn) = (f0, ..., fn, g0, ..., gm) =
X → Z
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B.1 Knotted Spectra

We can use the machinery of spectral categories to model Reidemeister moves.
For instance, take the diagram

... cn−1 cn cn+1 ...

... c∗n−1 c∗n c∗n+1 ...

consisting of objects c ∈ C and c∗ ∈ Ψ(C ). We obtain the following triangulations:

... cn−1 cn cn+1 ...

... c∗n−1 c∗n c∗n+1 ...

and
... cn−1 cn cn+1 ...

... c∗n−1 c∗n c∗n+1 ...

We can overlay these triangulations to obtain a “knot:”

... cn−1 cn cn+1 ...

... c∗n−1 c∗n c∗n+1 ...

Write c+n for cn and c−n for c∗n. Then, we have:

∀c±n suc(c±n ) = c±n+1

Notice, however, that our c−n components were all selected from the spectral
category, which was constructed using Urysohn’s lemma. Thus, the maps
c−n → c±n are always smooth. However, since we are taking our n values in
the natural numbers, we have already discretized our space of functors. Thus,
the Reidemeister moveR1(Ψ(C )) is a rough analogy of a discrete action network
overlayed atop a smooth spacetime.

The Reidemeister moveR2(Ψ(C )) represents an unsplitting of the triangulation
into a linear sequence, and R3(Ψ(C )) would involve the construction of a new
dual chain of the same parity as the starting chain. In a 2-chain setup, this
would look like a simple qubit swap. Topologically, it is actually a reflection of
a mapping cone into its dual space.

B.2 Other applications

Underneath the hood, the machinery of spectral categories is actually quite
simple. You take a string (or more generally, a brane) with fixed dimensions
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and endpoints, and deform it continuously while preserving all its properties.
This is more than just an esoteric mathematical construct. I envisage this line
of thinking could lead insight into population dynamics (or other dynamical
systems) as well as identity philosophy. For instance, take the following system:

S = Ψ(C ) ∪ δi(x)

where x is a controlled quantity, i ∈ I an index, and δ a sufficiently small
member of the indexed set.

This equation relates the overall state of the system with its continuous
deformations of parts, as well as controllable states. We are thus impelled to
think of the implications for control at the personal level: how do small, but
subtle, changes in our environment influence our decision-making at the higher
level?
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