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Abstract: The Lonely Runner conjecture finds its mathematical description in winding the runner’s

linear paths into the complete cycle, c-cycle, on the unit track circle. All runners, to finish the

competition, must complete the c-cycle simultaneously. Any collection Rn of the n integer speeds

runners and maximum speed vn = n is a subset of the enveloping collection Rn = {1, 2, 3, · · · n} of

the n, n > n, runners with the maximum speed n.

The time period 1t = 1/n of the fastest runner, f-runner n, defines the set of n right half open time

f-segments of the measure 1t, which cover the c-cycle time domain of the measure 1. The winding

mapping of the linear paths X(t) associates with the c-cycle Graph G, the union of the n individual

graphs g = (t,X(t)), reduced to the domain of the c-cycle. The time domain segmentation partitions

the Graph G into n Subgraphs Gi, each one on the one of the n f-segments. The final Subgraph

bundle sinks into the point (1, 1).

At the end of the first f-segment, all the runners arranged into f-constellation at the n fixed, sta-

tionary points on the unit circle in the sequence of the increasing speeds. However, at the final

f-segment, the runners, on the way to the starting point, are arranged at the decreasing speed order

at the same stationary points. The speed order inversion inverts the slope order of the graphs on the

final Subgraph bundle. Finally, the infimum graph gn−1 of the Subgraph bundle of the n − 1 run-

ner’s mutual separation graphs, the graph of the largest slope connects the points (0, n− 1)1l and

(1, 1)1l. Consequently, the Lonely Runner conjecture is true on the set Rn, and must be true on

any of its subset Rn,
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Introduction

The problem, originally stated in 1967 by German mathematician Jorg M. Wills as a problem
of the number theory, is today an unsolved problem, known in its popular version as the Lonely
Runner conjecture.

Problem: Consider n runners on a circular track of unit length. At t = 0 all runners start from
the same point with the distinct integer speeds. A runner is lonely at a timet if it is far for at
least 1/n of any other runner. The Lonely Runner conjecture states that each runner must be
lonely at some time.

The Lonely Runner project is in the study phase. The conjecture is true for n < 7, and for some
specific number of the runners and the choice of the integer speeds, see [1]. The existing proofs
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are the distinct inventive searches of the researches to find an approach wich leads to solution of
the problem

Description

The runners are designated by integers identical to their integer constant velocities vi = i and
placed in the set Rn = {1n, 2n, 3n, · · · , vn = n} of the size n. Clearly, n < n. The set Rn is the part
of the continuously populated enveloping set Rn = {1, 2, 3, · · · , n} of the size n and maximum
speed n. Further, the relevant is the enveloping set and the fastest, f-runner n.

All the runners Rn start from the initial point O on the circular track of a unit length. The
competition lasts until all runners complete the single cycle, called the c-cycle. The further
competition is the repetition of the c-cycle. Clearly, the c-cycle duration is the time T1 = 1/v1 =
1 which the slowest runner needs to complete its cycle. A runner i completes its cycle for a time
equal to its period Ti = 1/i. The collection of all periods is the set T = {1, 1/2, 1/3, · · · , 1/n. The
number of the cycles, i-cycles i runner completes during a single c-cycle is the frequency νi =
T1/Ti = 1/Ti = i, and the set of the frequencies of all runners is N = {1, 2, 3, · · ·n}. We call the
period T1 = 1 of the slowest runner natural period, which turns out to be also the c-cycle period,
and the smallest period, the period of the f-runner we choose to be the f-time unit 1t = 1/n. The f-
length unit is the nth part 1l = 1/n, of the unit circle track. Notice that 1l = v11t, so that the time
domain of the c-cycle contains n f-length units and the cycle domain D = n·1t = 1 = n·1l. Further
T1 · i = 1 · i = n · 1ti = i(n · 1t) = i · 1, so that all runners complete the c-cykle simultaneously.

The runner’s frequencies ν(i) do partition the c-cycle domain into segments, and all segments of
a runner i are the right half-open intervals σai = {t : (a − 1)Ti ≤ t < aTi, } a = 1, 2, 3, · · · , νi. The
collection Σi of all segments of a runner i covers continuously and disconnectedly the c-cycle
domain. We will use the most fine cover Σn = {σan : a = 1, 2, 3, · · · , n}, runners f-constellations by
the segments of the fastest runner, f-cover.

The f-time unit translation operator 1̂t displaces a runner i to the point Pi at the distance
1l = 1̂t(i) = 1ti, and creates the pair (i,Pi) on the circular track. If |O, |0123 · · ·n〉 represents all
runners at the start point the operator

1̂t : (0,Rn〉 → |(1,P1), (P2), (3,P3), · · · , (n,Pn) ≡ (n,O)〉 = Π, (1)

distributes equidistantly runners in the increasing order of the speeds on the circular track
in the first f-runner cycle. The fixed points P = |P1,P2,P3, · · · ,Pn〉 on the circular track are
the stationary points and the any runner’s distribution sitting at the points is the f-runners
constellation or the f-cycle. Successive application of the displacement operator 1̂t on a runner i

1̂t(i)(i,Pi), 1̂
2

t(i) = (i,Pi+i) = (i,P2i), · · · (2)

moves the runner throughout the set of stationary points.

Corollary 1. The runner’s competition is the motion between the stationary points. The runners
distribute on the finishing segment σn is the order reversed to the one on the segment σ1. The
initial Π1 and final Π2 runner’s f-constellations are symmetric in their positions as well as in their
speeds.
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� The c-cycle completes when the slowest runner i = 1 reaches the initial point. It requires the n− times
repeated use of the displacement operator 1̂t, so that the competition is the motion between the station-
ary points.
At the competition start the runners |123 · · · n〉 distribute according to the increasing speed sequence
|1, 2, 3, · · · , n〉 to reach the f-cycle Π1 = (1,P1), (2,P2), (3,P3), · · · , (n,Pn)〉. The runners position se-
quence on the final segment σn must be the the position inverted sequence of the cycle Π1. For, if originally
i < j and the position j ≺ i at the end, the runners would not reach the initial position simultaneously,
a contradiction. Thus

1̂t :
∣∣(1,P1), (2,P2), (3,P3), · · · , (n,Pn)

〉
→

∣∣(n,Pn), · · · , (3,P3), (2,P2), (1,P1)
〉
,

and the initial and final f-constellations are the position and the speed symmetric. �

Motion Graphs

The competition of the Rn runners is the motion of n points, defined by the n linear func-
tions Xi(t) = it, t > 0. The linear graph γi = (t,Xi(t)) associates to a runner i, and the
bundle of all straight lines, linear trajectories, on the time axes t makes the linear Graph
Γ = {γi : i = 1.2, 3, · · · , n}, the Graph Γ on the Figure 1. However, the runners follow the
circular trajectory, and every linear graph γi is wound νi times on the circular track to complete
the c-cycle. Consequently, each linear graph γi ∈ Γ must undergo the winding transformation

$̂ : γi → gi = {xai mod Ti, a = 1, 2, 3, · · · , νi} (3)

to the unit circle, see Graph Gi on Figure 1. Further, the union ∪ni=1g of all n winding graphs on
the time domain D = {t : 0 ≤ t ≤ 1} of the c-cycle is the winding Graph G.

Each graph gi ∈ G rests on a segmental cover Σi = ∪νia=1σai of the c-cycle time domain D. The
graphs in Figure 1 rest on the segmental f-cover Σn = ∪na=1Σa. Such segmental cover of the time
domain necessarily partitions the winding Graph G into a sequence of n connected f-Sub-graphs
Ga, and their union G = ∪na=1Ga is the winding Graph itself.

The Corollary 2 points out the properties of the winding Graph G essential for the development
of the presentation. The proof of the Corollary 2 relies on the Figure 1.

Corollary 2. Subgraphs Γ1 and Γn in the winding Graph G are central symmetric, and the
individual graphs of the Γn are ordered from the infg Γn = gn to supg Γn = g1 in the their slope
descending order .

� 1. The order of the individual graphs in the linear bundle Γ is the slopes increasing sequence between
the infγ Γ = γ1 and supγ Γ = γn graphs. The winding Subgraph G1 on the f-segment Σ1 is the part of
the bundle Γ, so we will make the identification Γ ∼ G1 ≡ Γ1. Thus,the graphs of the Γ1 preserves the
slope order |123 · · · n〉 of Γ, and

inf
g

Γ1 = g1 ≺ γ2 ≺ γ3 · · · ≺ sup
g

Γn = gn.

The frequencies of the c-cycle and the cycle of the runner i = 1 are identical, so that the graph
g1 = (t,X1(t)) is the diagonal of the graph G, and connects its points (0, 0) and (1, 1) on the Figure
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1. Consequently, all individual graphs in the Γ1 are above or identical to the diagonal graph g1.

2. The f-graph gn = (t,Xn(t)) is the linear function on the segment σ1, starts at zero at the beginning
of the segment rises to one to suffer the break to zero at the end of the segment, starts again from zero
at the beginning of the next segment, rises to reach one and so on, until it covers all domain D. Since
the f-segment is the smallest among the segments, the graph γn is the first one to undergo the diagonal
inversion and the recreation at the beginning of the f-segment σ2. Diagonal inversions are followed by the
inversion of slope order of the individual graphs at the Graph G on Figure 1, and the first single graph
inversion is |n; 123 · · · n− 1〉.

Figure 1: Lonely Runner Winding Graphs

Further, as time progresses throughout the f-segments, more and more graphs from the ascending order
invert to the descending order n, (n− 1), (n− 2) · · · , which is, more and more graphs which once all had
been over diagonal recreate below the diagonal. Notice that each graph gi intersect the graph diagonal
g1 at a point Sia = g1 ∩ gi dependent on the segment σa.
At this point, we must recall that the runner’s motion is the transition between the stationary points
P, and that all runners must end at the same moment at the starting point. It means that between
the initial and last segments the graphs are mixed by the slope order, and finally reach the inverted
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f-constellation distribution Πn = |(n,Pn), · · · , (3,P3), (2,P2), (1,P1)〉 at the last segment σn.

3. After the runners achieve the inverted f-constellation, all individual graphs are in the linear bundle
Γn at the point (1, 1), all placed below the diagonal in the slope-reversed arrangement on all segment
σn. All intersection points S are on the diagonal graph g1, approaching the accumulation point (1, 1). The
infimum graph is infg Γn = gn. Accordingly, the Subgraphs Γ1 and Γn are the center symmetric and

inf
g

Γn = gn, sup
g

Γn = g1. (4)

Corollary 3. The winding graph infimum on the final f-segment is the graph γn of the fastest
runner, and all other graphs are in descending slope order placed above the graph γn. The graphs
of any other collection Rn : Rn ⊂ Rn of the runners are the part of the Subgraph Γn, respect the
existing slope order and have the same infimum graph.

Conclusion

The linear function D̂i : Γ → Γ −Xi(t) defines the distance of a runner i from all other runners.
When the test runner pas trough the i = 1, 2, 3, · · · , n− 1 set the difference graph functions take
the positive, negative, and zero values in the set Γ±(n−1). Thus, the individual graph distances
run through the enveloping Graph (−Γ(n−1), +Γ(n−1)) of the size 2n. The zero graph represents
the distance of the test runner from itself, while all other graphs represent its distances from the
other runners. However, the signs of distances are irrelevant, so it is proper to take the absolute
values graphs differences. With all n test runners, it makes n−1 positive difference graphs which
are exactly the first n− 1 graphs from the Graph Γ. Thus Γ±(n−1) ∼ Γ(n−1) ⊂ Γ, valid on all time
domain D = [0, n1t] = [0, 1]. Consequently, each graph gj : j = 1, 2, 3, · · · , n − 1 separation of any
test runner from others ends at the point (1, 1) in Figure 1.

Figure 2: Lonely Runner Separations

Corollary 4. The Lonely Runner conjecture holds for any number of the runners.

� The infimum graph gn−1 = γn−1 of the Subgraph Gn−1 = Γn−1 connects the (n − 1, 0)1t and
(n, n)1t points on the f-segment σn, and
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∀h > 0 ∃ε > 0 ∴ ∀t > 1− ε ⇒ γn−1(t) > h, (5)

⇒ ∀i = 1, 2, 3, · · · , n, γi(t) > γn(t) > h ∈ (0, 1). (6)

For an arbitrary h ∈ (0, 1) there is a moment t′ such that for a time t : t′ < t ≤ n1ct = 1 all graphs from

the linear bundle Γn−1 at the point (1, 1) are above the graph γ = h(t) = const. However, all the graphs

of the mutual separation of the runners from the set Rn are among the graphs of the Γn−1 runners, and

according to Corollary 3, the two sets of runners have the same infimum graph. Thus, the Lonely Runner

conjecture holds for any number n of the runners. �
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