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Abstract 
The proposed Particle Swarm Optimization 

(PSO) variant uses a search space with a non-
overlapping distinct search space for each particle in 
the population in the exploration of the optimum 
solution. What is normally done for a reduction in 
swarm size and achieving a much quicker response in 
PSO is to manually set the swarm size and other 
auxiliary constants through trial and error. An 
algorithm is proposed which assigns each particle to a 
unique non-overlapping finite search space and 
aggregates all particles position to form the solution at 
every functional evaluation. This assignment of the 
particles to a finite distinct search space is suitable for 
quick convergence with less iteration and less particle 
size comparatively. The theoretical basis is provided 
for the proposed algorithm and empirical studies are 
conducted to compare the proposed algorithm with 
other selected optimization algorithms on reference 
benchmark test functions.  

 
Keywords: Particle swarm optimization, search space, 
multi-search space, augmentation and global solution. 

1. Introduction  

Ever since its introduction in 1995 by (Kennedy and 
Eberhart, 1995), PSO has emerged as one of the most 
popular metaheuristic optimization algorithms. From 
(Poli et al., 2007) PSO was influenced by Heppner 
Grenander’s work (Heppner et al., 1990) and involved 
analogues of bird flocks searching for corn and these 
soon developed into a pioneering optimization method, 
Particle Swarm Optimization (PSO). The proposed 
algorithm can be considered a variant of PSO. The real 
world human society presents numerous problems and 
challenges on the day to day application of science and 
technology. Modeling these problems as functional 
optimization problems is a great way of solving them 
at a much lower cost economically and 

computationally. Conventional metaheuristic 
optimizers are generally incapable of attaining highly 
accurate results under lesser iterations. The proposed 
optimization technique presents a more elegant 
approach in finding optimal solutions with an upgrade 
and redesign in some aspects of the canonical PSO 
algorithm.  

The first introduction of the Particle Swarm Algorithm 
came from Kennedy and Eberhart (1995), in that paper, 
it outlined the relationships between particle swarm 
optimization, artificial life and genetic algorithms. The 
algorithm was inspired by natural swarm behaviors 
such as those exhibited by bird flocks. Another variant 
of the algorithm also came from Kennedy and Eberhart 
(1997), which was in the form of Binary Particle 
Swarm, as the earliest of its kind which operates on 
binary string velocity and position instead of real 
numbers. In this PSO variant, the velocity is utilized as 
a probability threshold to determine whether a given 
number in the binary string of the current position 
should be toggled to a zero or a one, if the sigmoid of 
the given number is greater than or less than a random 
number respectively. Agrafiotis and Cedeño (2002) 
proposed a roulette wheel based probabilistic mapping 
approach for normalizing particle location per its 
floating-point value. It is a feature selection algorithm 
for correlating topological activity and property based 
on the particle swarm property.  Zhou et al. (2021) 
proposed pioneering work based on the diversity 
evaluation on particle swarms. It was illustrated that 
fewer particles ensure quick attainability to optimal 
solution whilst more of the particles improve 
exploration capacity. The diversity is attained by hash 
table technique and novel encoding of subspaces of 
search space. Zhu et al. (2022) proposed a dynamic 
multi-search PSO variant which is composed of 
particles divided into sub-swarms with a center-
learning update strategy. The center-learning strategy 
is such that all the other particles will learn from the 
optimal particle in their swarm; an alternative learning 



factor is given to determine the particle learning 
strategy. In this research it can be deduced that there is 
a high certainty in obtaining the optimal solution. 
The proposed PSO variant provides a pioneering way 
to estimate the optimal solution such that the value for 
the optimal solution is the combination of the 
individual location of each particle from the swarm. 
One major advantage is the high precision and quick 
convergence to the optimal solution of convex 
functions.   

The contributions of the proposed paper are as follows; 

1. To present an optimization algorithm which 
performs functional optimization under lesser 
iterations, a much smaller particle population and 
results in a better optimal solution compared to other 
benchmark functions presented in Section 3.2. 

2. The proposed algorithm involves particles getting 
assigned the decimal place values of the initial 
solution.  

 The paper is organized as follows; Section 2 gives 
the review of the preliminary concepts, section 3 
contains the related works, the proposed algorithm is 
presented in Section 4, numerical experiment is 
performed in Section 5 and conclusions in Section 6. 

2. Preliminary Concepts 

There has been a long list of evolutionary algorithms 
based on PSO. This paper seeks to model each 
particle’s location as a part of the optimal solution. 
Majority of the research done focuses more on inertia 
constant setting, acceleration constant setting, velocity 
initialization, position initialization and update rule 
modification, particle swarm topology setting, PSO 
hybridization and PSO composition. This paper goes a 
step further to redesign a new mechanism for particle 
association. In the subsequent subsections, relevant 
concepts are explained and the general concept of PSO 
outlined. Also, a brief overview of the proposed 
algorithm is presented. 

2.1. Overview of PSO 

The PSO technique as a typical heuristics algorithm 
needs direct manipulation of at least one of its 
elementary features: the population size, position, 
acceleration and the topology of the particles.  
PSO uses a number of particles which are placed in 
some problem search space, with an objective function 
evaluated for an optimal solution. The particles are 
updated with their historic performance with little 

random perturbations and then set in a given rate of 
motion which depends on whether or not it is close 
enough to an optimal solution. The position update 
takes place after all particles have been checked for an 
optimal solution. The three parameters of each particle 
in the swarm, given by the current position, previous 
best position and the velocity are updated in each step. 
The current position is basically a point in the problem 
space and if it is evaluated to be more optimal than any 
position attained by a particle so far on the objective 
function then it is set as the best position, replacing the 
previous best position. Also, the velocity component is 
considered as the step distance to be moved to by the 
particle. 

2.2. Overview of PSMSAO 

The proposed algorithm is a variant of PSO but unlike 
PSO where all the particles compete to find an 
optimum solution; this algorithm combines the 
particles in a more harmonious way, such that each 
particle forms part of the optimal solution. The 
fundamental difference between PSMSAO and PSO is 
how particles coordinate to find the optimal solution. 
The problem search space of PSO is made up of 
particles are all in one swarm space. On the other hand, 
PSMSAO has each particles confined to a unique 
swarm space, where each particle's optimal location in 
respective swarms corresponds to a particular decimal 
place value of the overall optimal solution. For 
instance; if an optimal solution is found to be 𝑎. 𝑏𝑐, 
such that a, b and c are strictly single digit integer 
values, eg. 2.45, then with three particles, the first 
would have a value of 𝑎, the second a value of 𝑏 and 
the third a value of 𝑐. From the example above there 
are 3 particles with 1-dimensional swarm space, and 
each particle generally contributes to the formation of 
the optimal solution. 

3. The proposed Algorithm (PSMSAO) 

The optimizer proposed has its performance evaluated 
by functional optimization approaches, specifically 
with benchmark test functions from CEC2022. 
Detailed algorithmic and block diagram description is 
presented in Sections 3.4.1 and 3.4.2 respectively. 
Some benchmark functions were used for the 
comparison between this proposed concept and other 
optimization techniques. Graphs on the metric 
measurement are presented to illustrate its 
performance. Multiple tests are conducted and the 
results given in Section 5, on the behavior of PSMSAO 
and other techniques under a couple of dimensions. 
 



3.1. Mathematical Formulation of the Proposed 

Algorithm 

Given that 𝑣  is the velocity of particle 𝑖 at iteration 
𝑚. 
𝜑 , 𝜑  are the acceleration constants. 
𝜀 is the inertia constant, 𝛿  is the random number at 
iteration 𝑚. 
𝑝, 𝑔 ∧ 𝑥 are local best, global best and position 
respectively. 
The velocity update rule and the position update rule is 
given respectively by (1) and (2). 

𝑣 = 𝜀𝑣 + 𝜑 𝛿 (𝑝 − 𝑥) + 𝜑 𝛿 (𝑔 − 𝑥) (1) 

𝑥 = 𝑥 + 𝑣      (2) 

The Particles’ position is constrained to a unique 
decimal place value in the attained optimal value. At 
each iteration, each particles’ position changes to affect 
its own part of the optimal value which is the decimal 
place value of the overall optimal value. PSO has a 
single solution set which is a finite continuous set 
unlike PSMSAO whose solution set is theoretically a 
finite discrete, non-overlapping set. Considering one 
dimensional root estimation on three arbitrary particles, 
the particles can have a search space given by;  
 
𝑆 = {-Z,…, -2,-1,0, 1, 2,3,4,5,6,7,8,9, …, Z}           (3) 

For a considerably large number Z, another  

𝑆 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}    (4)  

and the third particle  

𝑆 = {0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.08, 0.09}                (5)  

The first particle would be a set of integers and the ith 
particle apart from the first would inductively have 
 𝑆 =  {𝟎 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟏 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟐 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟑 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟒 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟓 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟔 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟕 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟖 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟗 ×

𝟏

𝟏𝟎𝒊 𝟏
 }                   (6) 

where 𝑖 ≤ 𝑁 for root estimation on N particles. 
Practically increasing N reduces the approximation 
error, hence N should be as small as possible but not to 
cause an approximation error of more than or equal to 
0.05. Since each particle is dedicated to one and only 
one decimal place value, the periodic aggregation 
which is basically the augmentation process of the 
particles positions in verifying the optimal solution at 
each functional evaluation ensures information sharing 
between the particles. Generalizing the one-
dimensional roots estimation on three particles to N-

dimensions on M-particles. The set of particles given 
by 𝑆 is defined as; 
 
𝑆 =  {𝑆 ,  𝑆 ,  𝑆 , … ,  𝑆 }     (7) 

Where 

𝑆 =  {𝑆 ,  𝑆 ,  𝑆 , … ,  𝑆 }   (8) 

𝑆 =  {𝑆 ,  𝑆 ,  𝑆 , … ,  𝑆 }   (9) 

⋮ 

𝑆 =  {𝑆 ,  𝑆 ,  𝑆 , … ,  𝑆 }   (10) 

The nature of each element can be obtained from 3; 
The composition of evaluated root ‘𝑟’ is as followed 
below. Given that 𝑍 is the central value between the 
maximum and minimum value of 𝑆  
𝑎 ∈ {2, 3,4, . . , 𝑚}   (11) 

𝑘 ∈ {1,2,3, … ,2𝑍}    (12) 

𝑗 ∈ {1,2,3,4, … ,10}    (13) 

‘j’ can be an unordered non-consecutive iterable 
element under the summation operation, where the 
value of j can be repeated. Which means the iteration 
under summation can start from a random position in 
the set go through other random positions then finally 
end up at a random position on the set, instead of 
strictly following the the positions in succession. 
Then roots ‘r’ is given by; 

𝑟 =  𝑆  + ∑ 𝑆,             (14) 

𝑆  means 𝑗𝑡ℎ value in 𝑎𝑡ℎ solution space   

𝑆  means 𝑘𝑡ℎ value in first solution space   

𝑋 = 𝑆              (15) 

𝑋 = 𝑆              (16) 

𝑟 =  𝑆  + ∑ 𝑋              (17) 

𝑟 =  𝑋  + ∑ 𝑋              (18) 

𝑋 ∈ 𝑅               (19) 

𝑖 ∈ {0,1,2,3, … ,9}             (20) 

‘𝑖’ has similar property as ‘𝑗’. 

∑ 𝑋 = ∑              (21) 

Where 𝑋 is the augmented position of optimal solution 
on the solution space 𝑆 
 
4.2. Conceptual View of PSO and PSMSAO  
 
4.2.1 Simple Representation of PSMSAO optimal 
solution Discovery Mechanism 
 



 
Figure 1(a). The representation of PSO optimal 
solution search activity  

 
Figure 1(b). The representation of PSMSAO optimal 
solution search activity 
 
Figure 1(a) is a swarm space, which is a coordinate 
plane with a real axis 𝑅 × 𝑅 on both axis likewise 
Figure 1(b) is a swarm space and also a coordinate 
plane with a discrete axis 𝐷 × 𝐷 on both axis.  
The optimal solution is (2.63, 1.31) in both Figure 1(a) 
and 1(b); there are three particles in both figure 1(a) 
and 1(b). For each iteration, a single resource is 
utilized in estimating the optimal solution for PSO but 
for the proposed algorithm, all the resources are 
synergized, by maintaining one particle as the whole 
number part of the overall roots and fitting the 
remaining particles as the remaining successive 
decimal place values for the overall roots, in estimating 
the optimal solution. For instance, as the optimal 
solution is (2.63, 1.31), the first particle takes (2, 1), 
the second particle takes (0.6, 0.3) and the third 
particle then takes (0.03, 0.01). In figure 1(a), the dot 
in red indicates the optimal solution whereas figure 
1(b) deduces the optimal solution if and only if the 
vectors of all the dots are combined.  The block 
diagram indicates the operational steps required to 
compute the optimal solution using PSMSAO.  
 

 
Figure 2. The operation involved in PSMSAO  

4.2.2 The Proposed Algorithm (Primitive form) 

Algorithm PSMSAO(𝐷𝑖𝑚) 
Given; 

Input ∶=Objective function F and number of iteration 
iter 
Output ∶=best global position gbest 
The local best is given by pbest 

M =

… ,   3  ,2   ,1       ,0 , −1 ,      − 2 , −3 ,   …
. . . ,   0.3,   0.2,   0.1, 0, −0.1, −0.2, −0.3, . . .

. . . ,0.03,0.02,0.01,0, −0.01, −0.02, −0.03, . . .
⋮

, 

where 𝑚𝑖𝑗 = , 𝑘 ∈ ℤ , P x D, there can be many 

M with different ranges such as 𝑀 , 𝑀 , . . , 𝑀  

Pbest=

𝑚 ,𝑚 , . .
𝑚 ,𝑚 , . .
𝑚 ,𝑚 , . .

⋮

, P x D 

P is the level of precision and D is the element in range 
of the boundary 
P = dim 
Start 
For all i of 𝑀 , 𝑀 , 𝑀 ,.. 𝑀  
        for each element ‘a’ in range D in M: 
              for each element ‘b’ in range D in 𝑀 : 
                    for each element ‘c’ in range D in 𝑀 : 
                                        ⋮ 
                        for each element ‘q’ in range D in 𝑀 : 
                               if f(a, b, c,…,q) < f(pbest [i] ) 
                                    pbest [i] = [a, b, c,..,q] 
gbest = 𝐩𝐛𝐞𝐬𝐭 [𝟏]   + ∑ 𝐩𝐛𝐞𝐬𝐭 [𝐚]   
End 

 

From Fig. 2, the flowchart considers the flow of 
operation from start to end. The initialization 
parameters denoted as velocity 𝑣 and position 𝑠 vectors 
prior to the search space settings. The third operational 
block in Fig. 2 is the assigning of the particles into 
distinct vector spaces. Then the random motion of the 
particles by a stochastic approach ensures the update of 
the positions’ vectors of each particle towards the 
optimal solution, such that each position’s vector of the 
whole population behaves as a decimal place value of 
the optimal solution within the search spaces. The 
solution is attained by making the current sum the 
global solution if and only if it is less than the global 
solution, of a minimization problem, if not then it goes 
back to perform stochastic perturbation on 𝑣 and 𝑠 then 
continues the verification of the solution as optimal or 
not. If the solution is verified as the optimal, then the 
process ends. The algorithm above is a primitive form 
with no stochastic operations giving the algorithm a 
guaranteed convergence in real time (this can easily be 
verified by implemetation). 



5. Numerical Experiments 

In the experiments, the proposed PSMSAO, PSO, 
Artificial Bee Colony (ABC), Bat algorithm, Genetic 
Algorithm (GA) and Simulated Annealing (SA) 
algorithms are tested with the CEC2022 test functions. 

5.1 Experimental Setup 

Table 1  
The parameter settings for the various algorithms 
Algorithm Parameters and values 

PSO number of particles: 25, 

 maximum iteration: 250, 

 c1 = 1.2, c2 = 1.225  

ABC Number of particles: 30,  

maximum iteration: 250, 

employed bees percentage: 0.5  

Bat Number of particles: 40, 

maximum iteration: 250, 

fixed loudness and rate: 0.7 

GA Alpha: 0.75, beta: 0.25,  

mutation rate: 0.1,  

crossing-over rate: 0.9,  

number of particles: 50,  

maximum iteration: 250 

SA P1: 0.7, Pn: 0.001,  

number of accepted solutions: 

0.0, 

 maximum iteration: 250  

PSMSAO C1: 0.12, c2: 1.2,  

maximum iteration: 100,  

number of particles: 3  

 
The maximum iteration and number of particles of 
PSMSAO are intentionally left lower than the rest of 
the other algorithms.  The machine specifications are 
4.00GB RAM, 2.66GHz Intel duo core CPU and 
platform is windows 10, 64-bit operating system.  

Both algorithms are run on 900 iterations for Table 
4 and 5. The mean, variance and least error possible 
(LEP) are obtained from 100 samples with 10 function 
evaluations for each algorithm. From the data 
presented in table 5, PSMSAO gives the least error 
recordable. 

 
 

The performance per means and standard 
deviations are outlined in Tables 3 and 4, the data 
illustrates that PSMSAO is more accurate in attaining 
the optimal solution per the experiment. 

 
5.2 Application to Real-World Problems 

The Tension-Compression String Problem (TCS) 
Mathematical model of TCS: 
Consider 𝑋 = [𝑥 , 𝑥 , 𝑥 ] = [𝑑, 𝐷, 𝑃] 
Minimize 𝐹(𝑥) = (𝑥 + 2)𝑥 𝑥  
Subject to 

𝑔 (𝑥) = 1 −
𝑥 𝑥

71785𝑥
  ≤ 0 

𝑔 (𝑥) =
4𝑥 − 𝑥 𝑥

12566(𝑥 𝑥 )
+

1

5108𝑥
− 1 ≤ 0 

𝑔 (𝑥) = 1 −
140.45𝑥

𝑥 𝑥
 ≤ 0 

𝑔 (𝑥) =
𝑥 + 𝑥

1.5
− 1 ≤ 0 

 
With 

0.05 ≤  𝑥1 ≤  2, 0.25 ≤  𝑥2 ≤  1.3 and 2 ≤
 𝑥3 ≤  15. 

 
Table 14. Statistical results of optimization algorithms 

for the tension/compression spring design problem 
 

 psmsao goa sabo pso 
mean 0.01 0.01206 0.012665 2.21E+13 
best 0.01 0.01206 0.012665 0.017729 
worst 0.01 0.01206 0.012665 3.93E+14 
std 1.1E-18 7.63E-18 1.3E-18 9.75E+13 
median 0.01 0.01206 0.012665 0.017729 

The Quadrotor Drone Optimization Problem 

 

Figure 3. The quadrotor performance before optimization 



 

Figure 4. PSMSAO optimization of quadrotor 
performance 

 
5.2 Discussion 

The improved performance of PSMSAO over PSO 
is based on the facts that, the search space of PSMSAO 
is much smaller than PSO, since PSMSAO particles 
operate over discrete finite search unlike PSO with 
continuous discrete, and a much fewer particle number 
in PSMSAO are required for estimating optimal 
solution. In addition, PSMSAO particles are required 
to focus on only a portion of the solution such that their 
combined effect would result in the optimal solution; 
hence there is a level of synergy between the particle 
populations. 

 
6 Conclusion 

This paper provides a more computationally efficient 
way of finding the optimal solution of functional 
optimization problems as depicted in Section 5, in so 
doing the proposed algorithm constrains the particles to 
operate in a discrete search space and utilizes a 
relatively smaller particle size in its operation, Table 1 
depicts the particle size for all the algorithms used in 
the experimentation. The proposed algorithm is able to 
find the optimal solution in the shortest possible time 
with minimal resources or particles and computational 
space. The proposed algorithm may be considered a 
PSO variant with strategies which have proven to 
optimize the search operation in estimating the optimal 
solution without much computational efforts. The 
synergic nature of the particle's operation under the 
proposed algorithm is paramount in estimating the 
expected optimal solution in most cases of the 
experimentation, as each particle is required to perform 
a single operation only, which is estimating the 
decimal place values that makes up the solution for the 
optimal solution. The knowledge of the chaotic nature 
and motion of the particles all at once in the search 
space shows that each particle does some work 
vehemently in estimating the optimal solution whereby 
most particle operations are redundant. Therefore, 
there is the necessity of each particle to operate in 
synergy in estimating the global optimal solution 
where each particle is in prior use and none results in 
redundancy. 

As a future work, the proposed algorithm can be 
extended for hybridization with other metaheuristic 
algorithms for adequate fine tuning. 

 
 

Table 3  
Performance Evaluation on CEC2022 for 10 dimensions  

F  ABC    PSO               GA SA PSMSA
O 

BA 

 

Rosenbrock 

Best 14429612957.012 3.40150 18.09908 129681.0 0.0 0.00331 

mean+std 100317677191.50473+87056926033.4411 55.34598119 + 
29.30277 

37.8428 +18.09908 129681.0+0.0 0.0+0.0 82.499 + 315.239 

Worst 590895620189.9498 157.6641 177.7700317 129681.0 0.0 2576.08 

 

escaffer6 

Best 0.000320 0.016180 1.013127 0.16434298 0.0 0.038866 

mean+std 0.5726 + 0.5363 0.518916 + 0.51278 1.18480 + 0.4312   0.574600 
+0.20824 

0.0+0.0 0.279538+ 
0.163387 

Worst 2.280437 2.28944 2.6188 1.09739 0.0 0.86440417 

 

happycat_func 

Best 1817.312 0.032025 0.128315 3.427736 0.0 1.20250 

mean+std 3651.45420 + 913.77  0.135736 + 0.068072 0.64175 + 0.312256 5.672281 0.0+0.0 5.7605 + 2.15180 



+2.03703 

Worst 6986.352 0.37883 1.425461 7.99963 0.0 11.4448 

 

   hgbat_func 

Best 40810.78 0.08088 0.028355 47.14061 0.0 4.32123 

mean+std 71203.133 + 17432.35 0.236786 + 0.078848 1.7821569 + 
2.062914 

70.8690 +30.3075  0.0+0.0 35.62147 + 16.1711 

Worst 135501.8 0.387021 6.976929 159.4193 0.0 83.79283 

 

schaffer_F7_fun
c 

Best 846780.5 0.125702 0.322020 6.04975 0.0 2.13110 

mean+std 29298165.795 + 56040125.377 0.370711 + 0.166273 0.8683535+0.22388
9 

8.46897+0.74434
2  

0.0+0.0 5.985149 + 1.53733 

Worst 432570682.989 0.84476 1.473090 9.44290 0.0 9.78343 

 

      Levy_func 

Best 0.000216 0.005386 0.200403 0.06768 1.499e-
32 

7.883053e-09 

mean+std 0.119 + 0.4002 0.12171 + 0.06738 0.503877+0.12744 0.205865+0.0824 1.499e-
32+0.0 

2.23017 +1.77730  

Worst 3.01443 0.320002 0.83240 0.41699 1.499e-
32 

7.18168 

 

zakharov_func 

Best 0.006769 0.139314 1.00989 1.791229 0.0 2.873e-08 

mean+std 109.02 + 391.588 1.1214 + 0.643012 5.007707+1.9607 11.80224+16.696
7 

0.0+0.0 2.42415 +6.18105  

Worst 3863.682 3.23885 9.64616 93.90911 0.0 36.5299 

 

 

 

 

Table 4  
Performance Evaluation on CEC2022 for 20 dimensions  

F  ABC    PSO               GA SA PSMSA
O 

BA 

 

Rosenbrock 

Best 271933793191.38635 51.11174 183.8586 273771.0 0.0 435222.803061 

mean+s
td 

1184734626822.5166 + 
812505768036.5149 

359.0471 + 162.7657 688.8477 + 
191.2155 

273771.0 + 0.0 0.0+0.0 1433457.34 + 
442175.519 

Worst 5398239946650.859 1210.286 1374.73 273771.0 0.0 2392841.97 

 

            escaffer6 

Best 0.013707 0.797922 2.02625 0.944125 0.0 0.58206 

mean+s
td 

1.19300 + 1.130699 2.42790266 + 
1.01187 

2.143022 + 
0.401905 

2.239909+ 
0.51930 

0.0+0.0 1.57746 +0.48161  

Worst 4.922269 5.12206 3.962735 3.488284 0.0 2.67039 

 Best 5548.406 0.044796 0.440203 4.013609 0.0 7.795812 



happycat_func mean+s
td 

8285.886 + 1526.809 0.188261 + 0.08037 1.516705 + 0.41577 5.93270 + 
2.060727 

0.0+0.0 13.1588 +1.97682  

Worst 12364.87 0.460192 2.441011 8.661791 0.0 17.4190 

 

   hgbat_func 

Best 210870.5 0.049961 6.848806 101.7324 0.0 224.6894 

mean+s
td 

367508.2823 + 
80826.9860 

0.161226+0.0524 17.4034 + 3.981831 123.1707+20.8
884 

0.0+0.0 384.54698 + 63.9213 

Worst 641120.4848 0.295616 28.94430 314.3386 0.0 539.9542 

 

schaffer_F7_func 

Best 32417713421.0963 0.260751 0.92506 3.002141 0.0 7.31186 

mean+s
td 

21222833547629.203+ 
45891968128604.16 

0.531294 + 0.115987 1.56423 + 0.240677 9.274485+1.34
065 

0.0+0.0 10.7616 +1.01684  

Worst 28304859116681.1 0.875588 2.123187 9.925722 0.0 12.59636 

 

      Levy_func 

Best 0.004243 0.152296 1.07533 0.406523 1.49975
9e-32 

5.12202 

mean+s
td 

2.005690 + 5.59039 0.435998 + 0.122276 1.935079 + 0.41493 0.680487+0.14
348 

1.49975
9e-
32+0.0 

16.14791 + 7.148505 

Worst 46.50500 0.875453 3.439286 1.136120 1.49975
9e-32 

41.65232 

 

zakharov_func 

Best 0.011631 1.339727 11.26493 6.357626 0.0 15.29668 

mean+s
td 

197.3305 + 202.8956 5.68379 + 2.384073 21.06020+4.98271 574.4499+ 
1134.604 

0.0+0.0 373.2710 + 268.6219 

Worst 875.0923 14.72379 38.53057 7942.358 0.0 1217.1415285 
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