
THE PARTICLE SWARM MULTI-SEARCH SPACE AUGMENTATION
OPTIMIZATION

Derrick Donkor

Abstract
The proposed Particle Swarm Optimization

(PSO) variant uses a search space with a non-
overlapping distinct search space for each particle in
the population in the exploration of the optimum
solution. What is normally done for a reduction in
swarm size and achieving a much quicker response in
PSO is to manually set the swarm size and other
auxiliary constants through trial and error. An
algorithm is proposed which assigns each particle to a
unique non-overlapping finite search space and
aggregates all particles position to form the solution at
every functional evaluation. This assignment of the
particles to a finite distinct search space is suitable for
quick convergence with less iteration and less particle
size comparatively. The theoretical basis is provided
for the proposed algorithm and empirical studies are
conducted to compare the proposed algorithm with
other selected optimization algorithms on reference
benchmark test functions.

Keywords: Particle swarm optimization, search space,
multi-search space, augmentation and global solution.

1. Introduction

Ever since its introduction in 1995 by (Kennedy and
Eberhart, 1995), PSO has emerged as one of the most
popular metaheuristic optimization algorithms. From
(Poli et al., 2007) PSO was influenced by Heppner
Grenander’s work (Heppner et al., 1990) and involved
analogues of bird flocks searching for corn and these
soon developed into a pioneering optimization method,
Particle Swarm Optimization (PSO). The proposed
algorithm can be considered a variant of PSO. The real
world human society presents numerous problems and
challenges on the day to day application of science and
technology. Modeling these problems as functional
optimization problems is a great way of solving them
at a much lower cost economically and

computationally. Conventional metaheuristic
optimizers are generally incapable of attaining highly
accurate results under lesser iterations. The proposed
optimization technique presents a more elegant
approach in finding optimal solutions with an upgrade
and redesign in some aspects of the canonical PSO
algorithm.

The first introduction of the Particle Swarm Algorithm
came from Kennedy and Eberhart (1995), in that paper,
it outlined the relationships between particle swarm
optimization, artificial life and genetic algorithms. The
algorithm was inspired by natural swarm behaviors
such as those exhibited by bird flocks. Another variant
of the algorithm also came from Kennedy and Eberhart
(1997), which was in the form of Binary Particle
Swarm, as the earliest of its kind which operates on
binary string velocity and position instead of real
numbers. In this PSO variant, the velocity is utilized as
a probability threshold to determine whether a given
number in the binary string of the current position
should be toggled to a zero or a one, if the sigmoid of
the given number is greater than or less than a random
number respectively. Agrafiotis and Cedeño (2002)
proposed a roulette wheel based probabilistic mapping
approach for normalizing particle location per its
floating-point value. It is a feature selection algorithm
for correlating topological activity and property based
on the particle swarm property. Zhou et al. (2021)
proposed pioneering work based on the diversity
evaluation on particle swarms. It was illustrated that
fewer particles ensure quick attainability to optimal
solution whilst more of the particles improve
exploration capacity. The diversity is attained by hash
table technique and novel encoding of subspaces of
search space. Zhu et al. (2022) proposed a dynamic
multi-search PSO variant which is composed of
particles divided into sub-swarms with a center-
learning update strategy. The center-learning strategy
is such that all the other particles will learn from the
optimal particle in their swarm; an alternative learning

factor is given to determine the particle learning
strategy. In this research it can be deduced that there is
a high certainty in obtaining the optimal solution.
The proposed PSO variant provides a pioneering way
to estimate the optimal solution such that the value for
the optimal solution is the combination of the
individual location of each particle from the swarm.
One major advantage is the high precision and quick
convergence to the optimal solution of convex
functions.

The contributions of the proposed paper are as follows;

1. To present an optimization algorithm which
performs functional optimization under lesser
iterations, a much smaller particle population and
results in a better optimal solution compared to other
benchmark functions presented in Section 3.2.

2. The proposed algorithm involves particles getting
assigned the decimal place values of the initial
solution.

 The paper is organized as follows; Section 2 gives
the review of the preliminary concepts, section 3
contains the related works, the proposed algorithm is
presented in Section 4, numerical experiment is
performed in Section 5 and conclusions in Section 6.

2. Preliminary Concepts

There has been a long list of evolutionary algorithms
based on PSO. This paper seeks to model each
particle’s location as a part of the optimal solution.
Majority of the research done focuses more on inertia
constant setting, acceleration constant setting, velocity
initialization, position initialization and update rule
modification, particle swarm topology setting, PSO
hybridization and PSO composition. This paper goes a
step further to redesign a new mechanism for particle
association. In the subsequent subsections, relevant
concepts are explained and the general concept of PSO
outlined. Also, a brief overview of the proposed
algorithm is presented.

2.1. Overview of PSO

The PSO technique as a typical heuristics algorithm
needs direct manipulation of at least one of its
elementary features: the population size, position,
acceleration and the topology of the particles.
PSO uses a number of particles which are placed in
some problem search space, with an objective function
evaluated for an optimal solution. The particles are
updated with their historic performance with little

random perturbations and then set in a given rate of
motion which depends on whether or not it is close
enough to an optimal solution. The position update
takes place after all particles have been checked for an
optimal solution. The three parameters of each particle
in the swarm, given by the current position, previous
best position and the velocity are updated in each step.
The current position is basically a point in the problem
space and if it is evaluated to be more optimal than any
position attained by a particle so far on the objective
function then it is set as the best position, replacing the
previous best position. Also, the velocity component is
considered as the step distance to be moved to by the
particle.

2.2. Overview of PSMSAO

The proposed algorithm is a variant of PSO but unlike
PSO where all the particles compete to find an
optimum solution; this algorithm combines the
particles in a more harmonious way, such that each
particle forms part of the optimal solution. The
fundamental difference between PSMSAO and PSO is
how particles coordinate to find the optimal solution.
The problem search space of PSO is made up of
particles are all in one swarm space. On the other hand,
PSMSAO has each particles confined to a unique
swarm space, where each particle's optimal location in
respective swarms corresponds to a particular decimal
place value of the overall optimal solution. For
instance; if an optimal solution is found to be 𝑎. 𝑏𝑐,
such that a, b and c are strictly single digit integer
values, eg. 2.45, then with three particles, the first
would have a value of 𝑎, the second a value of 𝑏 and
the third a value of 𝑐. From the example above there
are 3 particles with 1-dimensional swarm space, and
each particle generally contributes to the formation of
the optimal solution.

3. The proposed Algorithm (PSMSAO)

The optimizer proposed has its performance evaluated
by functional optimization approaches, specifically
with benchmark test functions from CEC2022.
Detailed algorithmic and block diagram description is
presented in Sections 3.4.1 and 3.4.2 respectively.
Some benchmark functions were used for the
comparison between this proposed concept and other
optimization techniques. Graphs on the metric
measurement are presented to illustrate its
performance. Multiple tests are conducted and the
results given in Section 5, on the behavior of PSMSAO
and other techniques under a couple of dimensions.

3.1. Mathematical Formulation of the Proposed

Algorithm

Given that 𝑣 is the velocity of particle 𝑖 at iteration
𝑚.
𝜑 , 𝜑 are the acceleration constants.
𝜀 is the inertia constant, 𝛿 is the random number at
iteration 𝑚.
𝑝, 𝑔 ∧ 𝑥 are local best, global best and position
respectively.
The velocity update rule and the position update rule is
given respectively by (1) and (2).

𝑣 = 𝜀𝑣 + 𝜑 𝛿 (𝑝 − 𝑥) + 𝜑 𝛿 (𝑔 − 𝑥) (1)

𝑥 = 𝑥 + 𝑣 (2)

The Particles’ position is constrained to a unique
decimal place value in the attained optimal value. At
each iteration, each particles’ position changes to affect
its own part of the optimal value which is the decimal
place value of the overall optimal value. PSO has a
single solution set which is a finite continuous set
unlike PSMSAO whose solution set is theoretically a
finite discrete, non-overlapping set. Considering one
dimensional root estimation on three arbitrary particles,
the particles can have a search space given by;

𝑆 = {-Z,…, -2,-1,0, 1, 2,3,4,5,6,7,8,9, …, Z} (3)

For a considerably large number Z, another

𝑆 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (4)

and the third particle

𝑆 = {0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09} (5)

The first particle would be a set of integers and the ith
particle apart from the first would inductively have
 𝑆 = {𝟎 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟏 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟐 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟑 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟒 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟓 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟔 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟕 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟖 ×

𝟏

𝟏𝟎𝒊 𝟏
, 𝟗 ×

𝟏

𝟏𝟎𝒊 𝟏
 } (6)

where 𝑖 ≤ 𝑁 for root estimation on N particles.
Practically increasing N reduces the approximation
error, hence N should be as small as possible but not to
cause an approximation error of more than or equal to
0.05. Since each particle is dedicated to one and only
one decimal place value, the periodic aggregation
which is basically the augmentation process of the
particles positions in verifying the optimal solution at
each functional evaluation ensures information sharing
between the particles. Generalizing the one-
dimensional roots estimation on three particles to N-

dimensions on M-particles. The set of particles given
by 𝑆 is defined as;

𝑆 = {𝑆 , 𝑆 , 𝑆 , … , 𝑆 } (7)

Where

𝑆 = {𝑆 , 𝑆 , 𝑆 , … , 𝑆 } (8)

𝑆 = {𝑆 , 𝑆 , 𝑆 , … , 𝑆 } (9)

⋮

𝑆 = {𝑆 , 𝑆 , 𝑆 , … , 𝑆 } (10)

The nature of each element can be obtained from 3;
The composition of evaluated root ‘𝑟’ is as followed
below. Given that 𝑍 is the central value between the
maximum and minimum value of 𝑆
𝑎 ∈ {2, 3,4, . . , 𝑚} (11)

𝑘 ∈ {1,2,3, … ,2𝑍} (12)

𝑗 ∈ {1,2,3,4, … ,10} (13)

‘j’ can be an unordered non-consecutive iterable
element under the summation operation, where the
value of j can be repeated. Which means the iteration
under summation can start from a random position in
the set go through other random positions then finally
end up at a random position on the set, instead of
strictly following the the positions in succession.
Then roots ‘r’ is given by;

𝑟 = 𝑆 + ∑ 𝑆, (14)

𝑆 means 𝑗𝑡ℎ value in 𝑎𝑡ℎ solution space

𝑆 means 𝑘𝑡ℎ value in first solution space

𝑋 = 𝑆 (15)

𝑋 = 𝑆 (16)

𝑟 = 𝑆 + ∑ 𝑋 (17)

𝑟 = 𝑋 + ∑ 𝑋 (18)

𝑋 ∈ 𝑅 (19)

𝑖 ∈ {0,1,2,3, … ,9} (20)

‘𝑖’ has similar property as ‘𝑗’.

∑ 𝑋 = ∑ (21)

Where 𝑋 is the augmented position of optimal solution
on the solution space 𝑆

4.2. Conceptual View of PSO and PSMSAO

4.2.1 Simple Representation of PSMSAO optimal
solution Discovery Mechanism

Figure 1(a). The representation of PSO optimal
solution search activity

Figure 1(b). The representation of PSMSAO optimal
solution search activity

Figure 1(a) is a swarm space, which is a coordinate
plane with a real axis 𝑅 × 𝑅 on both axis likewise
Figure 1(b) is a swarm space and also a coordinate
plane with a discrete axis 𝐷 × 𝐷 on both axis.
The optimal solution is (2.63, 1.31) in both Figure 1(a)
and 1(b); there are three particles in both figure 1(a)
and 1(b). For each iteration, a single resource is
utilized in estimating the optimal solution for PSO but
for the proposed algorithm, all the resources are
synergized, by maintaining one particle as the whole
number part of the overall roots and fitting the
remaining particles as the remaining successive
decimal place values for the overall roots, in estimating
the optimal solution. For instance, as the optimal
solution is (2.63, 1.31), the first particle takes (2, 1),
the second particle takes (0.6, 0.3) and the third
particle then takes (0.03, 0.01). In figure 1(a), the dot
in red indicates the optimal solution whereas figure
1(b) deduces the optimal solution if and only if the
vectors of all the dots are combined. The block
diagram indicates the operational steps required to
compute the optimal solution using PSMSAO.

Figure 2. The operation involved in PSMSAO

4.2.2 The Proposed Algorithm (Primitive form)

Algorithm PSMSAO(𝐷𝑖𝑚)
Given;

Input ∶=Objective function F and number of iteration
iter
Output ∶=best global position gbest
The local best is given by pbest

M =

… , 3 ,2 ,1 ,0 , −1 , − 2 , −3 , …
. . . , 0.3, 0.2, 0.1, 0, −0.1, −0.2, −0.3, . . .

. . . ,0.03,0.02,0.01,0, −0.01, −0.02, −0.03, . . .
⋮

,

where 𝑚𝑖𝑗 = , 𝑘 ∈ ℤ , P x D, there can be many

M with different ranges such as 𝑀 , 𝑀 , . . , 𝑀

Pbest=

𝑚 ,𝑚 , . .
𝑚 ,𝑚 , . .
𝑚 ,𝑚 , . .

⋮

, P x D

P is the level of precision and D is the element in range
of the boundary
P = dim
Start
For all i of 𝑀 , 𝑀 , 𝑀 ,.. 𝑀
 for each element ‘a’ in range D in M:
 for each element ‘b’ in range D in 𝑀 :
 for each element ‘c’ in range D in 𝑀 :
 ⋮
 for each element ‘q’ in range D in 𝑀 :
 if f(a, b, c,…,q) < f(pbest [i])
 pbest [i] = [a, b, c,..,q]
gbest = 𝐩𝐛𝐞𝐬𝐭 [𝟏] + ∑ 𝐩𝐛𝐞𝐬𝐭 [𝐚]
End

From Fig. 2, the flowchart considers the flow of
operation from start to end. The initialization
parameters denoted as velocity 𝑣 and position 𝑠 vectors
prior to the search space settings. The third operational
block in Fig. 2 is the assigning of the particles into
distinct vector spaces. Then the random motion of the
particles by a stochastic approach ensures the update of
the positions’ vectors of each particle towards the
optimal solution, such that each position’s vector of the
whole population behaves as a decimal place value of
the optimal solution within the search spaces. The
solution is attained by making the current sum the
global solution if and only if it is less than the global
solution, of a minimization problem, if not then it goes
back to perform stochastic perturbation on 𝑣 and 𝑠 then
continues the verification of the solution as optimal or
not. If the solution is verified as the optimal, then the
process ends. The algorithm above is a primitive form
with no stochastic operations giving the algorithm a
guaranteed convergence in real time (this can easily be
verified by implemetation).

5. Numerical Experiments

In the experiments, the proposed PSMSAO, PSO,
Artificial Bee Colony (ABC), Bat algorithm, Genetic
Algorithm (GA) and Simulated Annealing (SA)
algorithms are tested with the CEC2022 test functions.

5.1 Experimental Setup

Table 1
The parameter settings for the various algorithms
Algorithm Parameters and values

PSO number of particles: 25,

 maximum iteration: 250,

 c1 = 1.2, c2 = 1.225

ABC Number of particles: 30,

maximum iteration: 250,

employed bees percentage: 0.5

Bat Number of particles: 40,

maximum iteration: 250,

fixed loudness and rate: 0.7

GA Alpha: 0.75, beta: 0.25,

mutation rate: 0.1,

crossing-over rate: 0.9,

number of particles: 50,

maximum iteration: 250

SA P1: 0.7, Pn: 0.001,

number of accepted solutions:

0.0,

 maximum iteration: 250

PSMSAO C1: 0.12, c2: 1.2,

maximum iteration: 100,

number of particles: 3

The maximum iteration and number of particles of
PSMSAO are intentionally left lower than the rest of
the other algorithms. The machine specifications are
4.00GB RAM, 2.66GHz Intel duo core CPU and
platform is windows 10, 64-bit operating system.

Both algorithms are run on 900 iterations for Table
4 and 5. The mean, variance and least error possible
(LEP) are obtained from 100 samples with 10 function
evaluations for each algorithm. From the data
presented in table 5, PSMSAO gives the least error
recordable.

The performance per means and standard
deviations are outlined in Tables 3 and 4, the data
illustrates that PSMSAO is more accurate in attaining
the optimal solution per the experiment.

5.2 Application to Real-World Problems

The Tension-Compression String Problem (TCS)
Mathematical model of TCS:
Consider 𝑋 = [𝑥 , 𝑥 , 𝑥] = [𝑑, 𝐷, 𝑃]
Minimize 𝐹(𝑥) = (𝑥 + 2)𝑥 𝑥
Subject to

𝑔 (𝑥) = 1 −
𝑥 𝑥

71785𝑥
 ≤ 0

𝑔 (𝑥) =
4𝑥 − 𝑥 𝑥

12566(𝑥 𝑥)
+

1

5108𝑥
− 1 ≤ 0

𝑔 (𝑥) = 1 −
140.45𝑥

𝑥 𝑥
 ≤ 0

𝑔 (𝑥) =
𝑥 + 𝑥

1.5
− 1 ≤ 0

With

0.05 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2 ≤ 1.3 and 2 ≤
 𝑥3 ≤ 15.

Table 14. Statistical results of optimization algorithms

for the tension/compression spring design problem

 psmsao goa sabo pso
mean 0.01 0.01206 0.012665 2.21E+13
best 0.01 0.01206 0.012665 0.017729
worst 0.01 0.01206 0.012665 3.93E+14
std 1.1E-18 7.63E-18 1.3E-18 9.75E+13
median 0.01 0.01206 0.012665 0.017729

The Quadrotor Drone Optimization Problem

Figure 3. The quadrotor performance before optimization

Figure 4. PSMSAO optimization of quadrotor
performance

5.2 Discussion

The improved performance of PSMSAO over PSO
is based on the facts that, the search space of PSMSAO
is much smaller than PSO, since PSMSAO particles
operate over discrete finite search unlike PSO with
continuous discrete, and a much fewer particle number
in PSMSAO are required for estimating optimal
solution. In addition, PSMSAO particles are required
to focus on only a portion of the solution such that their
combined effect would result in the optimal solution;
hence there is a level of synergy between the particle
populations.

6 Conclusion

This paper provides a more computationally efficient
way of finding the optimal solution of functional
optimization problems as depicted in Section 5, in so
doing the proposed algorithm constrains the particles to
operate in a discrete search space and utilizes a
relatively smaller particle size in its operation, Table 1
depicts the particle size for all the algorithms used in
the experimentation. The proposed algorithm is able to
find the optimal solution in the shortest possible time
with minimal resources or particles and computational
space. The proposed algorithm may be considered a
PSO variant with strategies which have proven to
optimize the search operation in estimating the optimal
solution without much computational efforts. The
synergic nature of the particle's operation under the
proposed algorithm is paramount in estimating the
expected optimal solution in most cases of the
experimentation, as each particle is required to perform
a single operation only, which is estimating the
decimal place values that makes up the solution for the
optimal solution. The knowledge of the chaotic nature
and motion of the particles all at once in the search
space shows that each particle does some work
vehemently in estimating the optimal solution whereby
most particle operations are redundant. Therefore,
there is the necessity of each particle to operate in
synergy in estimating the global optimal solution
where each particle is in prior use and none results in
redundancy.

As a future work, the proposed algorithm can be
extended for hybridization with other metaheuristic
algorithms for adequate fine tuning.

Table 3
Performance Evaluation on CEC2022 for 10 dimensions

F ABC PSO GA SA PSMSA
O

BA

Rosenbrock

Best 14429612957.012 3.40150 18.09908 129681.0 0.0 0.00331

mean+std 100317677191.50473+87056926033.4411 55.34598119 +
29.30277

37.8428 +18.09908 129681.0+0.0 0.0+0.0 82.499 + 315.239

Worst 590895620189.9498 157.6641 177.7700317 129681.0 0.0 2576.08

escaffer6

Best 0.000320 0.016180 1.013127 0.16434298 0.0 0.038866

mean+std 0.5726 + 0.5363 0.518916 + 0.51278 1.18480 + 0.4312 0.574600
+0.20824

0.0+0.0 0.279538+
0.163387

Worst 2.280437 2.28944 2.6188 1.09739 0.0 0.86440417

happycat_func

Best 1817.312 0.032025 0.128315 3.427736 0.0 1.20250

mean+std 3651.45420 + 913.77 0.135736 + 0.068072 0.64175 + 0.312256 5.672281 0.0+0.0 5.7605 + 2.15180

+2.03703

Worst 6986.352 0.37883 1.425461 7.99963 0.0 11.4448

 hgbat_func

Best 40810.78 0.08088 0.028355 47.14061 0.0 4.32123

mean+std 71203.133 + 17432.35 0.236786 + 0.078848 1.7821569 +
2.062914

70.8690 +30.3075 0.0+0.0 35.62147 + 16.1711

Worst 135501.8 0.387021 6.976929 159.4193 0.0 83.79283

schaffer_F7_fun
c

Best 846780.5 0.125702 0.322020 6.04975 0.0 2.13110

mean+std 29298165.795 + 56040125.377 0.370711 + 0.166273 0.8683535+0.22388
9

8.46897+0.74434
2

0.0+0.0 5.985149 + 1.53733

Worst 432570682.989 0.84476 1.473090 9.44290 0.0 9.78343

 Levy_func

Best 0.000216 0.005386 0.200403 0.06768 1.499e-
32

7.883053e-09

mean+std 0.119 + 0.4002 0.12171 + 0.06738 0.503877+0.12744 0.205865+0.0824 1.499e-
32+0.0

2.23017 +1.77730

Worst 3.01443 0.320002 0.83240 0.41699 1.499e-
32

7.18168

zakharov_func

Best 0.006769 0.139314 1.00989 1.791229 0.0 2.873e-08

mean+std 109.02 + 391.588 1.1214 + 0.643012 5.007707+1.9607 11.80224+16.696
7

0.0+0.0 2.42415 +6.18105

Worst 3863.682 3.23885 9.64616 93.90911 0.0 36.5299

Table 4
Performance Evaluation on CEC2022 for 20 dimensions

F ABC PSO GA SA PSMSA
O

BA

Rosenbrock

Best 271933793191.38635 51.11174 183.8586 273771.0 0.0 435222.803061

mean+s
td

1184734626822.5166 +
812505768036.5149

359.0471 + 162.7657 688.8477 +
191.2155

273771.0 + 0.0 0.0+0.0 1433457.34 +
442175.519

Worst 5398239946650.859 1210.286 1374.73 273771.0 0.0 2392841.97

 escaffer6

Best 0.013707 0.797922 2.02625 0.944125 0.0 0.58206

mean+s
td

1.19300 + 1.130699 2.42790266 +
1.01187

2.143022 +
0.401905

2.239909+
0.51930

0.0+0.0 1.57746 +0.48161

Worst 4.922269 5.12206 3.962735 3.488284 0.0 2.67039

 Best 5548.406 0.044796 0.440203 4.013609 0.0 7.795812

happycat_func mean+s
td

8285.886 + 1526.809 0.188261 + 0.08037 1.516705 + 0.41577 5.93270 +
2.060727

0.0+0.0 13.1588 +1.97682

Worst 12364.87 0.460192 2.441011 8.661791 0.0 17.4190

 hgbat_func

Best 210870.5 0.049961 6.848806 101.7324 0.0 224.6894

mean+s
td

367508.2823 +
80826.9860

0.161226+0.0524 17.4034 + 3.981831 123.1707+20.8
884

0.0+0.0 384.54698 + 63.9213

Worst 641120.4848 0.295616 28.94430 314.3386 0.0 539.9542

schaffer_F7_func

Best 32417713421.0963 0.260751 0.92506 3.002141 0.0 7.31186

mean+s
td

21222833547629.203+
45891968128604.16

0.531294 + 0.115987 1.56423 + 0.240677 9.274485+1.34
065

0.0+0.0 10.7616 +1.01684

Worst 28304859116681.1 0.875588 2.123187 9.925722 0.0 12.59636

 Levy_func

Best 0.004243 0.152296 1.07533 0.406523 1.49975
9e-32

5.12202

mean+s
td

2.005690 + 5.59039 0.435998 + 0.122276 1.935079 + 0.41493 0.680487+0.14
348

1.49975
9e-
32+0.0

16.14791 + 7.148505

Worst 46.50500 0.875453 3.439286 1.136120 1.49975
9e-32

41.65232

zakharov_func

Best 0.011631 1.339727 11.26493 6.357626 0.0 15.29668

mean+s
td

197.3305 + 202.8956 5.68379 + 2.384073 21.06020+4.98271 574.4499+
1134.604

0.0+0.0 373.2710 + 268.6219

Worst 875.0923 14.72379 38.53057 7942.358 0.0 1217.1415285

7. References

Agrafiotis, D. K., & Cedeño, W. (2002). Feature selection for

structure-activity correlation using binary particle
swarms. In Journal of Medicinal Chemistry. (pp. 1098–
1107). PubMed.

Arumugam M. S., & Rao M. V. C. (2006).On The
Performance of the Particle Swarm Optimization
Algorithm with various Inertia Weight variants for
Computing Optimal Control of a Class of Hybrid
Systems, In Discrete Dynamics in Nature and Society,
Hindawi Publishing Company, DOI
10.1155/DDNS/2006/79295. Vol. 2006. (pp. 1 – 17).

Chen, W. N., Zhang, J., Chung, H. S. H, Zhong, W. L., Wu,
W. G., & Shi, Y. H. (2010). A Novel Set-Based Particle
Swarm Optimization Method for Discrete Optimization
Problems, In IEEE Transactions on Evolutionary
Computation, Vol. 14. No. 2. (pp. 4460 - 4493).

Hendtlass, T. (2005). WoSP: A Multi-Optima Particle Swarm
Algorithm, In 2005 IEEE Congress on Evolutionary
Computation (pp. 727 - 734). Ieee.

Heppner, H., & Grenander, U. (1990). A stochastic non-
linear model for coordinated bird flocks. In S. Krasner
(Ed.), The ubiquity of chaos (pp. 233–238). Washington:
AAAS.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm
Optimization. In Proceedings of ICNN'95 -
International Conference on Neural Networks (pp. 1942
– 1948). Ieee.

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary
version of the particle swarm algorithm. In Proceedings
of the conference on systems, man, and cybernetics. (pp.
4104–4109). Piscataway: Ieee.

Lalwani S., Kumar R., & Gupta N. (2013). A Preview on
Particle Swarm Optimization variants and their
Applications to Multiple Sequence Alignment, In
Journal of Applied Mathematics and Bioinformatics,
Vol. 3. No. 2. (pp. 87 – 124).

Liu,W.,Wang, Z., Yuan, Y., Zeng, N., Hone, K., & Liu, X.,
(2021) A Novel Sigmoid-Function-Based Adaptive
Weighted Particle Swarm Optimizer, In IEEE
Transactions on Cybernetics, Vol. 51, (pp. 1085 –
1093).

Montes de Oca M. A., Stutzle T. & Birattari M. (2009).
Frankenstein’s PSO: A Composite Particle Swarm
Optimization Algorithm. In IEEE Transactions on
Evolutionary Computation, Vol. 13. No. 5. (pp. 1120 -
1132). Ieee.

Parsopoulos, K. E., & Vrahatis, M. N. (2001). Particle swarm
optimizer in noisy and continuously changing
environments. In M. H. Hamza (Ed.), Artificial
intelligence and soft computing (pp. 289–294).
Anaheim: IASTED/ACTA.

Poli, R., Kennedy, J. & Blackwell, T. (2007), Particle Swarm
Optimization: An Overview, In Swarm Intell, Springer
Science, Business Media, (pp. 33 – 57).

Pugh, J., Martinoli, A., & Zhang, Y. (2005). Particle swarm
optimization for unsupervised robotic learning. In
Proceedings of IEEE swarm intelligence symposium
(SIS). (pp. 92–99). Piscataway: Ieee.

Shi, Y., Liu, H., Gao, L., & Zhang, G. (2011). Cellular
Particle Swarm Optimization, In Inform, Sci, doi:
10.1016/j.ins.2010.05.025. Vol. 181. No. 10. (pp. 4460
- 4493) DBLP.

Valle, Y. D., Venayagamoorthy, G. K., Mohagheghi, S.,
Hernandez, J. C. & Harley R. G. (2008), Particles

Swarm Optimization: Basic Concepts, Variants and
Applications in Power Systems, In IEEE Transactions
on Evolutionary Computation. Vol. 12. No. 2. (pp. 171
– 195). Ieee.

Wei, C., He, Z., Zhang, Y., & Pei, W. (2002). Swarm
directions embedded in fast evolutionary
programming. In Proceedings of the IEEE congress on
evolutionary computation (CEC) (pp. 1278–1283).
Honolulu, HI. Piscataway: IEEE.

Zhang, H, Yuan, M. & Liang, Y. and Liao, Q. (2018). A
novel particle swarm optimization based on prey–
predator relationship, In Applied Soft Computing, vol.
68, (pp. 202–218). DOI:10.1016/j.asoc.2018.04.008

Zhao, S. Z., Liang, J., Suganthan, P. N., & Tasgetiren, M. F.
(2008). Dynamics Multi-search Particle Swarm
Optimizer with Local Search for large Scale Global
Optimization, In IEEE Congress on Evolutionary
Computation, doi: 10.1109/CEC.2008.4631320. (pp.
3845 - 3852). DBLP.

Zhou, H., & Wei. X., (2021) Particle Swarm Optimization
Based on a Novel Evaluation of Diversity.In Intelligent
Manufacturing and Information Engineering. vol. 14.
(pp.202-218). MDPI.

Zhu, Z., Zhong, T., Wu, C., & Xue, B. (2022). Dynamic
Multi-search Particle Swarm Optimization with Center
Learning Strategy. In Applied Soft Computing (pp.
141–147).

