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Abstract

Some theorems on the construction of links (defined herein) from Reeb
chords are established and proved. We relate these concepts to physics
by constructing an arbitrary spacetime from a background knot using
Reidemeister moves.

The dream of string-theorists would seem not to be to unify the fundamental
forces, but to envision a brave new physics. In this new physics, objects possess
the intrinsically topological property that they are glued at their ends to some
higher dimensional object. Further, we are allowed to generalize the properties
of the relationships these objects possess by inductively extending the number
of dimensions, until we become bored or reach a convenient number of such.

We call these objects branes. However, unbeknownst to the physicists, the
mathematicians have had their own toy for quite some time: Reeb chords.
Simply put, a Reeb chord is a string that is forced to end on another string. The
“strings” that these chords end on are actually a special type of submanifold,
called a Legendrian submanifold.

We shall begin our tale with the very definition of a Legendrian (sub)manifold.
Our story is woven out of these, and they will be our bread and butter:

Definition 0.1. The standard contact structure on R3 is the two-plane field
ξ0 = ker(α0), where α0 = dz − ydx with respect to the standard co-ordinates
(x, y, z). A 1-dimensional submanifold Λ ⊂ R3 is Legendrian if it is everywhere
tangent to ξ0.
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1 Prologue

Write Mox,f,ε,δ(F ) for the Morse group of F . ε and δ are here sufficiently small
(accessible) cardinals, f is a functor and x ∈ X is some value, where X is a
pre-specified domain.

Notation 1.1. We will write Rijk for any permutation of Reidemeister moves
acting on a link.

Definition 1.1. A cotangent vector (x, ξ) ∈ T ∗M is called characteristic with
respect to F if, for some stratified Morse f with dfx = ξ, the Morse group
Mox,f (F ) is non-zero.

Lemma 1.1 (Shende-Treumann-Zaslow). Suppose f : M → R is a smooth
function such that, for all x ∈ f−1([a, b]), the cotangent vector (x, dfx) /∈ SS(F ),
where SS(F ) is a conic Lagrangian. Suppose additionally that f is proper on
the support of F . Then the restriction map

Γ(f−1(−∞, b);F ) → Γ(f−1(−∞, a);F )

is a quasi-ismorphism.

Proof. See [2, Corollary 5.4.19].

Proposition 1.1. Legendrian knots may be modelled on St × R, where St is
Tate’s circle.

Proof. See [1, sec. 3.1.3]. We simply make the substitution

S1 −→ St

Form the following category

S1 St

D1

∼=

i
i′

where {i, i′} = γ(St)∨γ(S1), where γ is the closure operator and ∨ is the typical
logical ‘or’. Since the above diagram commutes, we obtain an embedding into
the unit disc. Here, we use the formula D1 = St × A1 = A1 × S1 to give us the
isomorphism i ∼= i′, which is a commutative multiplication by the affine line.

Using the terminology of [1], the Tate circle consists of a single arc and a
single region.

Definition 1.2 (Arcs and regions). An arc is a 1-dimensional stratum of a
maximal smooth subspace of Φ = π(Λ) = ϕ(U). A region is a two-dimensional
stratum. The component π(Λ) is referred to as the front projection of a Legendrian
knot.
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1.1 Spacetime Backgrounds

Let S be a spacetime and let S∗ be its background. Our choice of S∗ corresponds
to a system of pre-defined links and crossings. Let us first specify that there is
an equivalence

fibn(X)
∼
↠ Λ

or, in other words, Legendrian manifolds are restricted n-links. We will use this
knowledge later to construct n > 1-links out of chiral Reeb chords.

Definition 1.3. A link (or n-link) is an n-dimensional fiber which contacts two
objects at opposing ends at at least a single point.

Definition 1.4. The endpoints of a link are called contact points. A contact
point has a contact structure, C(∗, A), where A is the ambient space and ∗ ∈ ℓ̄
is a point in the closure of a link.

Remark 1.1. 1-links that begin and end on Lagrangian submanifolds are called
Reeb chords; see, e.g. [4]. Write [γ] for the set of all Reeb chords.

Definition 1.5. Fix a line λ0 at height zero and fix a polygon P beneath it.
Once the height of the polygon is increased such that some height(x ∈ P ) is
greater than height(λ0), the intersection P ∩ λ0 = C is the set of crossings of
links.

We define a map
Φ −→ S = Rijk(S∗)

which equates the spacetime with a combination of Reidemeister moves on links
in the spacetime background. Recall from [1] and [3] the three primary types of
Reidemeister moves: crossing, flipping, and twisting. Visual illustrations of all
of these are given in [1], figures [2.3.1-3].

Example 1.1. The most trivial example of a spacetime background constructed
in this fashion is the empty background:

S ≠ ∅ S∗ = ∅

Rijk(S) ≃ Crx(f)

where Crx is a natural transformation

S∗ S

∅ ¬∅

f

x

Crx(f)
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1.2 Chord chirality

Fix a point γ0
0e ∈ γ0, and a map p : γ0 → Posets, with the strong ordering

x < y < z for all xyz ∈ γ0/ ∼. We will say that a vector v⃗ on a Reeb chord
is right-directed if it sends scalars x < y to y by x 7→ y, and left-directed if
it sends scalars y > x to x via y 7→ x. This is just saying that monotone
functors have a chirality. We say a point has positive parity (and write ∗+) if
x(∗) > x(γ0

0e), negative parity (and write ∗−) if and only if x(∗) < x(γ0
0e) where

x is the abscissa. Otherwise, we say the point has nullparity, in which case it is
the barycenter of a Reeb chord.

Write Lf([γ]) for the set of all right-directed actions on Reeb chords, and
f([γ])R for the set of all left-directed actions on Reeb chords. This is, effectively,
the set of actions from (respectively) the right parity points, and left parity
points. We have

f([γ])R ≃ Hom(∗+, ∗) and Lf([γ]) ≃ Hom(∗−, ∗)

which is an equality up to equivariant renormalization with respect to a nullparity
element. That is to say, for all ∗ in the equivalence class γ0

0/ ∼, this is a strong
equality.

Proposition 1.2. Let F be a Reeb chord, and Mo(F ) = Mox,f,ε,δ(F ) be its
Morse group. Select some v ∈ k for an Archimedean ground field K. Then

Hom(v, v′) ≃ Hom(Hom(f([γ])R, ∗), Hom(∗,L f([γ]))

and this can be shown by setting

Proof.
Hom(f([γ])R, v) = kx s.t. (k, x) < v

Hom(Lf([γ]), v) =
x

k
s.t. x > v & k < v

By triangle inequality, kx ≥ k+ x, so x
k ≤ x+ k. This follows automatically

if K is a local ring. In this case, K is also a polarized abelian variety. This means
the point kx = x

k where x = 1 is the point γ0
0 .

By setting ∗ = v = γ0
0 , we have proven this result, since v ∈ γ0

0/ ∼ by a
previous declaration.

Keep in mind, the left-directed and right-directed actions are actually actions
of the Morse group we are working with. So, we could equivalently say that
Mo(F )× K =L f([γ]) and K ×Mo(F ) = f([γ])R.

Proposition 1.3. The Morse group of a chiral link contains a polarizable
Abelian variety.
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This basically follows from the fact that for every |v| ∈ Pic0(F ), there exists
a reduced normal cone, Cone(v) ⊃ [v ± ε] such that

v v ± ε

Cone(v)

∼

i
i′

is a commutative diagram of homeomorphic inclusions. This is proven by letting
T ⊃ Cone(v) be a one-object overcategory of Cone(v), and writing

Cone(v) End(Cone(v))

End(Cone(v))

E2

E1

Exp

By prolonging the diagram, we have Cone(v)
En−−→ End(Cone(v))

En+2−−−→ Cone(v),
and our reduced normal cone becomes a distinguished triangle via after cancelling
the lift Exp : End(Cone(v)) = End(Cone(v)) via the map Exp → ∅, which
cancels as Id∅ ∈ Pic0(F ), and so it becomes redundant. We also set Exp =
[vx] → Cone(v) ∀x.

2 Main Results

The main results here allow us to construct spacetimes out of Lagrangian knots.

Theorem 2.1 (Main theorem). For every link, ℓ, there is an associated manifold
W such that

W =
⋃
β

Λβ
0

where Λ0 is a Reeb chord and β is the highest dimension of any link.

Proof. This is essentially a form of the gluing condition for D-branes. Given a
link ℓ, let Σℓ denote its suspension.

Let ⋃
β

Λβ
0 = Σ

⋃
β

Λβ−1
0

Then, we can take the cross product

Λβ−1
0 × St

= fibn−1 × Λ0

with the Tate circle to construct arbitrary contactomorphisms ζ → η between
contact forms on Reeb chords.

Further,
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Theorem 2.2 (Construction). Every Lagrangian knot on an orientable manifold
consists of chiral Reeb chords.

Proof. Let P ∈ Posets be a pre-ordered set under the preorder ℘. Then, one
has

℘(Λ0) ∋ v

for some v with nullparity. We have

v′ =


v+ if v′ > v

v− if v′ < v

v if f(v′) = f(v)

so that f(v′) ∈ Hom(v, v′) and f−1(v) ≃ f(v′). This shows that we have a
unique identity for each v ∈ ℘(Λ0). We then lift v to P via the map i′ = i ◦ ℘.

℘(Λ0) P

v

℘
i′

i

where v ∈ Pic0(F ) for a Reeb chord F ≃ ℘(Λ0). We then gain the pair of
functors

F
n

⇆
m

℘(Λ0)

and by applying Reidemiester moves via

Rijk(F )

we have shown that we can construct knots from Reeb chords.

Proposition 2.1. W is an Eilenberg-Maclane space.

Proof. Since min(β) = 0, we have that a single contact form α is the smallest
possible link in a given manifold, which specifically has a point as its only good
cover. We have W = K(β, ℓ) so that the βth homology group of the space yields
the desired link, which is unique.

2.1 Constructing Links

Let T ∗
x (X) ∈ W be a cotangent space in aWeinstein manifold, with characteristic

vectors.

Definition 2.1. A θ-link is a link ℓθ : A → A∨ between a topological space and
its formal dual.

Proposition 2.2. θ-links are contactomorphisms.
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Proof. Since ℓθ is a geometric object to begin with, we have |ℓθ| = θ, where θ
is a contactomorphism whose number of points with contact structure is:

#C(A) = #(C(ℓ̄, A ∈ A ∪A∨) ≥ 1

If A is self-dual, then #C(A) is equal to the one object set {ξ}, which contains
only a two-sided ideal.

Definition 2.2. The class [ℓθ] is henceforth known as the formal class of
contact-dual vector spaces, and [θ] the class of dual contactomorphisms.

We fix a parameter, called the “naive Legendrian” of a space S. The naive
Legendrian is given by

LNaive(S) : #ℓ ∪ χ

where χ is the crossing number of links in the ambient space. Technically
speaking, this number is given by∫

K
Λ0 ∪ C(ℓ, ℓ′)

where each positively polarized action on each Reeb chord is given δ weight,
and each negatively polarized action is given δ − 2ε weight.

Example 2.1. Let D1 be the one-dimensional disc embedded in an ambient
space A. Let there be two links: one from ∂D1 → A \D1, and the second from
∂−D1 to ∂+D1.

The first link is a 2-ε-small chain, while the second has a length of
∫ (dy)2

ε+δ
where y is the height of the link’s right parity elements with respect to the hieght
of v where y is set to v∗. We have

#C(S) =
len(ℓ)

δ

which is equal to 2 for the first link, assuming ε = δ, and is
∫ (dy)2

4δ2 for the
second, which is equal to ∫

dy =
d((∂−D1), (∂+D1))

dt

Since we know D1 (as a background) has a single link and region, we only
need to count the number of crossings between int(D1) and its boundary link.
This is zero when travelling along the fiber from ∂−D1 to ∂+D1, but one when
exiting D1 into A. So, the naive Legendrian is:

LNaive(S ⊃ D1) = (1 + a) ∪ 1 = {3, 1}

because we have added the two links a to the single Reeb chord of D1.

7



3 References

[1] V. Shende, D. Treumann, E. Zaslow, Legendrian knots and constructible
sheaves, (2016)
[2] M. Kashiwara, P. Schapira, Sheaves on Manifolds, (1994)
[3] R.J. Buchanan, Fukaya Categories, Reidemeister Moves, and the Novikov
Ring (2024)
[4] T. Ekholm, K. Honda, T. Kalman, Legendrian knots and exact
Legendrian cobordisms (2012)
[5] K. Cieliebak, Y. Eliashberg, From Stein to Weinstein and Back, (2012)

8


	Prologue
	Spacetime Backgrounds
	Chord chirality

	Main Results
	Constructing Links

	References

