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Abstract

Background: Mach's Principle posits that the inertia of a body is in�uenced by

the sum total of matter in the universe. This paper explores the relationship be-

tween gravitational potential energy and rest mass within the framework of Mach's

Principle, utilizing a thought experiment involving the elevation of mass on Earth.

Methods: The study employs a theoretical approach, beginning with a thought

experiment that demonstrates the change in an object's rest mass due to alterations

in gravitational potential energy. Subsequently, a mathematical model is developed

to express rest mass as a function of distance from a massive central body, incorpo-

rating adjustments for observed astronomical phenomena such as the precession of

Mercury's orbit.

Conclusion: The �ndings a�rm the principle that an object's rest mass is in�uen-

ced by the gravitational potential of all other masses in the universe, aligning with

Mach's Principle. The study underscores the need for revisiting the de�nitions of

fundamental units of measurement such as the second and the meter, in light of

gravitational dependency. The implications for astronomical theories, including gra-

vitational redshift and the assessment of quasar emissions, are discussed, suggesting

a potential reevaluation of existing models.

Let's conduct a thought experiment in the Earth's reference frame. We have
an immobile one-kilogram weight at ground level. Its total energy is its rest mass
equal to 1 [kg], which corresponds to 89 875 517 873 681 764 [J]. (We assume that
the weight is cooled to absolute zero, meaning it has no kinetic energy due to
temperature). This mass consists of the rest masses of all atoms, i.e., protons,
neutrons, and electrons. Let's take this weight and carry it to the tenth �oor of
some building, i.e., 30 [m] above ground level. We will do work against gravity
amounting to about 294 [J]. Therefore, on the tenth �oor, the total energy of
the weight will be 89 875 517 873 682 058 [J] (an increase of 294 [J]). This weight
on the tenth �oor is still at rest, so its rest mass has increased, and since the
number of atoms remains the same, the rest mass of protons, neutrons, and
electrons has increased.
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The conclusion from this experiment is as follows: the change in the po-
tential energy (Ep) of an object changes its rest mass mr, thus the rest mass
is potential energy. Therefore, we can express Einstein's equation E = mc2

as an identity: Ep ≡ mr. Meanwhile, c2 in Einstein's equation is merely a co-
e�cient for converting one unit of energy to another unit of energy (kilograms
to joules), similar to coe�cients used for converting calories to joules, electron
volts to joules, etc. Of course, in generating the rest mass of subatomic particles,
all force �elds of potential interactions are involved. More precisely, this topic
has been discussed in the book "The New Applications of Special Theory of
Relativity" [2].

The best example of rest mass being potential energy is nuclear reactions
with the release of heat, where a portion of the rest mass (potential energy)
of atomic nuclei is converted into heat (kinetic energy). Moreover, all chemical
reactions that release heat occur at the expense of the rest mass of the substrates.
However, in this case (unlike nuclear reactions), the loss of mass is so small that
it is practically di�cult to measure. This loss of mass can only be calculated
using the formula E = mc2. Similarly, it applies to the heat of fusion and the
heat of solidi�cation. These heats are also released at the expense of the rest
mass (potential energy). Additionally, the binding energy of, for example, an
electron in a hydrogen atom results from the loss of rest mass of the electron
and proton. (The rest mass of a hydrogen atom is smaller by the value of the
binding energy than the sum of the rest masses of a free electron and a free
proton).

In the thought experiment described above, we concluded that lifting the
weight to a height of 30 [m] results in an increase in its rest mass. Let's try
to �nd the mathematical relationship of the rest mass of the test body mr as
a function of its distance r from the massive central body, denoted by Mr. We
assume that the mass Mr is several orders of magnitude larger than mr and
that these are the only two objects that exist. We will utilize the law of universal
gravitation, which is generally known and looks as follows:

F = G
m1 m2

r2
(1)

The same can be expressed slightly di�erently:

F = Gm1m2 fG(r) (2)

where fG(r) is a function of distance r, expressed in meters, of two attracting
masses:

fG(r) =
1

r2
(3)
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Already in the 19th century, based on astronomical observations of the pla-
nets in the Solar System, physicists realized that function (3) is just an approxi-
mation of the original function Nature employs, because in the case of Mercury,
certain minimal deviations of its orbit from the orbit predicted by Newton's
law were observed. Assuming that within the range of Mercury's orbit, a mo-
re precise approximation of the function fG(r) is, for example, the expression
r−2.00000016, the precession of Mercury's orbit can be explained without resor-
ting to the general theory of relativity. Therefore, it should be assumed that the
function fG(r) is dimensionless and the gravitational constant has dimensions
[ m
kg s2

] [2].

When the rest masses mr and Mr are expressed in joules and fG(r) is
treated as a dimensionless function with the argument given in meters, and
instead of the constant G, we use:

kG =
1

c4
G = 8.26245×10−45

[
1

Nm2

]
(4)

we can express formula (2) as:

F = kGMrmrfG (r) (5)

Note: The above value of the constant kG and its unit result from co-

nverting the dimensions of the constant G
[

m3

kg s2

]
from kilograms to joules

(1[kg] = c2[Nm]) and seconds to meters (1[s] = c[m]), and from the necessi-
ty of removing the numerator [m2], since we assumed that the function fG(r)
is dimensionless.

Let's express how the potential energy, i.e., the rest mass mr, changes with
distance r:

dEp = dmr = Fdr = kGmrMrfG(r)dr (6)

after transformation:
1

mr

dmr = kGMrfG(r)dr (7)

that is: ∫∫∫
1

mr

dmr = kGMr

∫∫∫
fG(r)dr + C (8)

C - integration constant. After integrating the left side:

ln (mr) = kGMr

∫∫∫
fG(r)dr + C (9)

So the formula for rest mass is as follows:

mr = ekGMr

∫
fG(r)dr+C (10)
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mr = eCekGMr

∫
fG(r)dr (11)

Let's denote eC = mn (where C is uppercase, not to be confused with
lowercase c), where mn will be referred to as the nominal gravitational charge
or nominal rest mass. This is the rest mass of an object in the absence of
a gravitational �eld (at in�nity), or in other words, the potential energy of
the object arising from all other potential �elds if the gravitational �eld were
excluded. Ultimately, we obtain the formula for the rest mass (potential energy)
of an object with a nominal rest mass mn in the gravitational �eld of an object
with a rest mass Mr:

mr = mne
kGMr

∫
fG(r)dr (12)

Now, we should determine the conditions that the function fG(r) must
satisfy. The �rst condition arises from the fact that we want the entire po-
tential energy (rest mass) to convert into kinetic energy during annihilation.
This is the situation when a particle encounters its antiparticle. Therefore, for
r → 0, the rest mass from equation (12) should be zero. This implies that
for r→ 0, the integral

∫∫∫
fG(r)dr should tend to minus in�nity, because then

ms = mne
−∞ = 0.

The second requirement is that at in�nity, the rest mass from equation (12)
should be equal to the nominal mass, so for r → ∞, the integral

∫∫∫
fG(r)dr

should tend to zero, because then ms = mne
0 = mn.

We see that among many functions that satisfy these conditions, the Newto-
nian function also ful�lls them:

∫∫∫
1
r2
dr = −1

r
. The above conditions are satis�ed

by the entire class of functions:

fG(r) =
1

rn
(13)

where n is a real number greater than 1. Also, functions of the type:

fG(r) = r−n(r) (14)

ful�ll these conditions, assuming that the real function n(r)>1 for the entire
domain of de�nition.

Now, let's introduce the concept of gravitational �eld potential. The expres-
sion:

ΦG(r) = ekGMr

∫
fG(r)dr (15)

we will call it the gravitational �eld potential of an object with rest mass Mr.
As we can see, the gravitational potential is a dimensionless quantity conta-
ined in the closed interval 〈0 ,1〉. Currently, it is accepted that the gravita-
tional potential is measured in J

kg
. Considering the concept presented at the
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beginning of the discussion, that the joule and the kilogram are units of the
same physical quantity - energy, it follows that the ratio of these units is a di-
mensionless quantity, similar to a map scale. Converting kilograms to joules,
1 [kg] = 89 875 517 873 681 764 [J ], we obtain J

kg
= 1

89 875 517 873 681 764
.

Note: Even in Newton's time, it was agreed that the gravitational �eld
potential at in�nity is represented by the number zero. As a result of this
agreement, the gravitational �eld potential outside of in�nity is represented
by negative numbers. Mass, energy, potential, temperature, etc. are scalar
quantities, so from the perspective of mathematics and physics, they cannot
take negative values. Of course, it's possible to agree that some nonzero level
of a scalar quantity is represented by the number zero, then automatically
lower levels will be conventionally represented by negative numbers, but it's
important to remember that this is just a convention. An example is the ac-
cepted convention regarding the zero point of the Celsius temperature scale.
Placing the gravitational potential in the interval 〈0 ,1〉 is a return to nor-
malcy (without arbitrary zero levels), where the maximum potential value is
at in�nity and zero potential for zero distance.

In the general case, we can specify that in a gravitational �eld, the rest
mass of an object (potential energy) is expressed by the formula:

mr = mnΦG (16)

Where ΦG is the resultant gravitational potential arising from all other
massive bodies present within the �eld of view of an object with rest mass mr.
Thus, we can express the formula for the rest mass of any object in the Universe
as:

mr = mne
kG

∑N
i=1 Mir

∫
fG(ri)dr (17)

Where N is the number of all massive objects located within the light cone
of a given object (the entire observable Universe). Mir is the rest mass of the
i-th object, and ri is the distance from the i-th object (measured in the reference
frame of that distant object).

The same can be expressed di�erently:

mr = mn

N∏∏∏
i=1

ΦiG (18)

Where ΦiG is the gravitational potential arising from the i-th object. For-
mula (17) or (18) is nothing but the Mach's principle expressed in
a mathematical form[1]. Notice that if in formula (17) one of the integrals

5



∫∫∫
fG(ri)dr under the summation in the exponent tends to −∞, the rest mass

disappears (annihilates). Therefore, when two point-like objects, for example,
an electron and a positron, with the same set of charges but opposite signs, are
at the same point, their rest masses annihilate, and all their potential energy is
converted into the kinetic energy of photons.

Now let's consider the mechanism of gravitational force formation. We as-
sumed that the source of rest mass is the potential �elds of all interactions, so
in order for gravitational force to be created, the distribution of rest masses in
space must somehow modify these potential �elds. Moving an atom to a point
of higher gravitational potential increases its rest mass (potential energy), so
its energy levels should undergo the same increase, meaning the ratio of the
energy levels of the same atom placed in locations with di�erent gravitational
potentials is the same as the ratio of those potentials, and thus is equal to the
ratio of their rest masses. We are not surprised by the in�uence of electric and
magnetic �elds on the energy levels of atoms, su�ce it to mention the Zeeman
and Stark e�ects. Why should the gravitational �eld be an exception?

When we lift an "atomic clock," energy levels spread out, which is why
"clocks" on GPS satellites orbiting "tick" slightly faster than the same "clock"
on the Earth's surface. Why is "atomic clock" in quotation marks? Because it is
not a precise timekeeping device (clock) as its frequency depends on gravitational
potential, and the gravitational potential at a given location constantly changes,
due to factors such as the constantly changing distance from the Sun and Moon,
as well as due to Earth's tectonic and tidal movements. Therefore, "atomic
clocks" are very well suited for measuring the ratio of gravitational potentials
at two di�erent locations. This ratio is equal to the ratio of frequencies of two
identical "atomic clocks." Meanwhile, the proper time of an object depends
solely on the course of its worldline.

If we assume that within the Solar System, Newton's function 1
r2

is a very
good approximation of the original function fG(r), then the formula for the
ratio of gravitational potentials for two di�erent distances r1 and r2 from the
center of the Earth looks as follows:

ΦG2

ΦG1

= e
kGMZ

(
1
r1
− 1

r2

)
(19)

where MZ denotes the rest mass of the Earth.

The ratio of frequencies of two identical stationary "atomic clocks" loca-
ted at distances r2 and r1 from the center of the Earth is the same as given
by formula (19).
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(Note! The expression
(

1
r1
− 1

r2

)
in the exponent in formula (19) has

the dimension of meters, not the inverse of meters, because it is the result of
integrating the dimensionless function fG(r) = 1

r2
over distance).

According to the General Theory of Relativity (GTR), the ratio of clock
frequencies in such positions is determined by the so-called Schwarzschild
metric[3]:

f2

f1

=

√
r1

(
r2c

2 − 2GMZ

)
r2 (r1c2 − 2GMZ)

(20)

where f1 and f2 denote the frequencies of clocks located at distances r1 and
r2 from the center of the Earth. These two formulas do not take into acco-
unt the presence of other celestial bodies (e.g., the Sun, the Moon), although
considering multiple moving celestial bodies in formula (19) poses no di�-
culties (see Mach's formula (17)). On the other hand, the General Theory of
Relativity (GTR) does not provide analytical solutions for such situations.

Let's compare formulas (19) and (20) for two stationary "atomic clocks,"
one located on the surface of the Earth at a distance r1 = 6 371 000 [m] from
the center of the Earth, and the other at a distance r2 = 26 554 000 [m],
which corresponds to the orbits of GPS satellites.

For formula (20), we assume :

the mass of the Earth MZ = 5.97219×1024 [kg]

the gravitational constant G = 6.674083×10−11
[

m3

kg s2

]
the speed of light c = 299 792 458

[
m
s

]
However, for formula (19):

MZ = c2×5.97219×1024 [Nm]

kG = G
c4

[
1

Nm2

]
From formula (19):

ΦG2

ΦG1

= 1.000 000 000 529 092 953 674

From formula (20): f2

f1
= 1.000 000 000 529 092 954 130

These two numbers di�er only at the nineteenth signi�cant digit, so using
the simpler and more universal formula (19) practically yields the same re-
sults as formula (20). However, in situations where we deal with more extre-
me conditions, such as near a black hole, the results obtained from formulas
(19) and (20) di�er to a greater extent. The numbers given above have been
experimentally con�rmed (albeit with less precision).
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From the above considerations, it follows that the currently accepted de�-
nition of a second, established based on the frequency of the hyper�ne transition
in cesium 133 atoms in their unaltered ground state, is imprecise, as the frequ-
ency of this transition depends on the gravitational potential resulting from the
location on Earth and the positions of nearby celestial bodies (the Sun and the
Moon). The same reservations apply to the de�nition of a meter, as it is based
on the speed of light in a vacuum, and this speed is expressed in [m/s].

The change in energy levels of atoms depending on the gravitational po-
tential is responsible for the so-called gravitational redshift[4], so estimating the
velocities of distant astronomical objects based on this shift may be subject to
an unknown degree of error. For example, the emission (or absorption) spectra
of quasars may originate from gases that lie very close to supermassive black
holes, and here the contribution of gravitational potential to the redshift value
can be very signi�cant.

Adopting the postulate that the predominant part of the redshift of quasars
is due to the so-called gravitational redshift would explain a lot. For example,
it could solve the puzzle of the strange coincidence of four objects: the galaxy
NGC 7603, the galaxy PGC 71041, and two quasars. All these objects appear
as if they were involved in some single collision, but they di�er signi�cantly in
their redshifts.

It would also be necessary to verify the opinion about the gigantic energies
supposedly emitted by quasars, as well as the large distances from which they
are visible. According to current views, it is estimated that the brightest quasars
emit energy in the form of photons equivalent to the mass of the Sun per year,
often accompanied by a large amount of mass ejected through jets. Additional-
ly, one must account for the mass absorbed by the quasar itself and include the
energy emitted in the form of neutrinos. Therefore, it is di�cult to imagine how
such a huge amount of mass reaches the quasar, while simultaneously overco-
ming very high radiation pressure. The notion that quasars existed only in the
early stages of the Universe's evolution, because they are not observed in our
immediate vicinity, may turn out to be incorrect.
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