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Abstract. In this notice, we introduce the problem of minimal dividing odd
subsets for the even numbers and we show that the density of such subsets
of n elements is asymptotically normal (that is at least decreasing as 1

n
). We

argue that understanding the problem of minimal dividing odd subset might
lead to new approaches to solving NP-hard problems.

1. Introduction

The object of study of this paper are the minimal dividing odd subsets for the
even numbers, i.e. the subsets E of 2N + 1 = {1, 3, 5, ...} such that the binary
composition E +E = {a+ b | a, b ∈ E} contains 2J1,mK = {2, 4, ..., 2m} with m as
large as possible. For example, under the Goldbach conjecture [Feliksiak(2021)] ,
it is clear that {1, p2, ..., pn} is an odd dividing subset for the even numbers but of
course, it is not minimal.

More precisely, we define

(1) m(E) = max{m | 2J1,mK ⊂ E + E},
and for any n ∈ N+ 1,

(2) En = argmax
E⊂2N+1,Card(E)=n

m(E).

Then by definition, En contains all the subsets E of at most n elements such that
E +E contains J1,mK with m as large as possible. In the sequel, we are interested
in m(En) = max

E∈En

m(E) = min
E∈En

m(E) and more precisely in d(n) = n
m(En)

. In fact,

d(n) is the density of odd numbers necessary to retrieve the even numbers up to
2m(En). That is why d is an interesting function to study.

2. Main result

Theorem 2.1. Let n ∈ N+ 1, we have

(3) d(n) ≤ n

2n(p(n) + 1)− 2p(n)(2p(n) + 1)− 1
,

where p(n) =

{
n
4 if 4 | n⌊
n−1
4

⌋
otherwise

.

From this result, we deduce immediately the following corollary.
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Corollary 2.2. We have d(n) = O( 1n ) when n→ +∞.

In other words, the density of minimal dividing odd subsets for the even numbers
is asymptotically normal. To prove this result, we need the following lemmas :

Lemma 2.3. Let p ∈ N and n ∈ N+ 2p+ 1. Define (uk(p, n))1≤k≤n by induction
as follows
(4)

uk(p, n) =

{
uk−1(p, n) + 2 if k ∈ J2, p+ 1K ∪ Jn− p+ 1, nK
uk−1(p, n) + 2(p+ 1) otherwise

, u1(p, n) = 1.

We have 2J1, un(p, n)K = En,p + En,p where En,p = {uk(p, n) | k ∈ J1, nK}.

Lemma 2.4. We have En,p + En,p ⊂ En+1,p + En+1,p.

Proof. Lemma 2.4. Clearly, we have un−p(p, n + 1) = un−p(p, n) (since n only
matters for the terms uk(p, n) with k ≥ n − p + 1). More generally, the following
relation holds

(5) ∀i ≤ n− p, ui(p, n+ 1) = ui(p, n).

Thus we have

(6) ∀r, q ∈ J1, n− pK, uq(p, n) + ur(p, n) = uq(p, n+ 1) + ur(p, n+ 1),

and

(7) ∀k ∈ J1, p+ 1K, un−p+k(p, n+ 1) = un(p, n) + 2k.

Let k ∈ J1, pK and h ∈ J1, nK. According to (6), it suffices to prove the following
result

∃a, b ∈ J1, n+ 1K, un−p+k(p, n) + uh(p, n) = ua(p, n+ 1) + ub(p, n+ 1).

If p+ 2 ≤ h ≤ n− p : We obtain with (5),

un−p+k(p, n)+uh(p, n) = (un(p, n)+2(k+1))+(uh(p, n)−2(p+1)) = un−p+k(p, n+1)+uh−1(p, n+1).

If n− p+ 1 ≤ h ≤ n : If n− p+ 1 ≤ h+ k ≤ n+ 1, we have

un−p+k(p, n) + uh(p, n) = (un(p, n) + 2(h+ k − (n− p))) + (uh(p, n)− 2(h− (n− p+ 1))− 2(p+ 1))

= uh+k(p, n+ 1) + un−m−1(p, n+ 1).

Otherwise, if n+ 2 ≤ h+ k ≤ n+ p, we obtain

un−p+k(p, n) + uh(p, n) = (un(p, n) + 2(h+ k − (n+ 1))) + (uh(p, n)− 2(h− (n− p+ 1)))

= uh+k−(p+1)(p, n+ 1) + un−m(p, n+ 1).

If 1 ≤ h ≤ p+ 1 : If 1 ≤ h+ k ≤ p+ 1, we have

un−p+k(p, n) + uh(p, n) = (un(p, n)− 2p) + (uh(p, n) + 2k)

= un−p(p, n+ 1) + uk+h(p, n+ 1).

Otherwise, if p+ 2 ≤ h+ k ≤ 2p+ 1, we obtain

un−p+k(p, n) + uh(p, n) = (un(p, n) + 2(k + h− (p+ 1))) + (uh(p, n)− 2(h− 1))

= un−2p+k+h−1(p, n+ 1) + u1(p, n+ 1).

□
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Proof. Lemma 2.3. We proceed by induction over n. The initial case n = 2p+ 1 is
obvious since we have uk(p, 2p+ 1) = uk−1(p, 2p+ 1) + 2 for all k ≤ 2p+ 1 so that
for all q ≤ 2p, we have

4q = (2q − 1) + (2q + 1) = uq(p, 2p+ 1) + uq+1(p, 2p+ 1),

4q + 2 = 2(2q + 1) = 2uq+1(p, 2p+ 1).

Thus 2J1, u2p+1(p, 2p+ 1)K = 2J1, 4p+ 1K = E2p+1,p + E2p+1,p.

Now, assume that 2J1, un(p, n)K = En,p + En,p. Then using Lemma 2.4, we obtain
2J1, un(p, n)K ⊂ En+1,p + En+1,p. Moreover, using (7), one obtains the following
property

∀j, k ∈ J1, p+ 1K, un−p+j(p, n+ 1) + un−p+k(p, n+ 1) = (un(p, n) + 2j) + (un(p, n) + 2k)

= 2(un(p, n) + j + k),

and un+1(p, n+ 1) = un(p, n) + 2(p+ 1).

Hence 2J1, un+1(p, n+ 1)K \ {2un(p, n) + 2} ⊂ En+1,p + En+1,p. Finally, since

2un(p, n)+2 = (un(p, n)−2p)+(un(p, n)+2(p+1)) = un−p(p, n+1)+un+1(p, n+1),

we actually have 2J1, un+1(p, n+1)K ⊂ En+1,p+En+1,p. Since the elements of En+1,p

are odd, the elements of En+1,p + En+1,p are even and max(En+1,p + En+1,p) =
2max(En+1,p) = 2un+1(p, n+ 1). The result follows. □

Proof. Theorem 2.1. We clearly have n ≥ 2p(n)+1 so using Lemma 2.3, we obtain
m(En,p(n)) ≤ m(En) according to the definition (2) of En. Thus

d(n) ≤ n

m(En,p(n))
=

n

2n(p(n) + 1)− 2p(n)(2p(n) + 1)− 1
.

□

Proof. Corollary 2.2. We have

2n(p(n)+1)− 2p(n)(2p(n)+1)− 1 = 2(p(n)+1)(n− 2p(n))+2p(n)− 1 ∼
n→+∞

n2

4
.

Thus using (3), we obtain

lim sup
n→+∞

nd(n) ≤ 4.

In particular, we have d(n) = O( 1n ). □

3. An exhaustive search algorithm

To find d(n), we can compute En by using Fn+1\Fn = {2(m(Fn)+1)−k | k ∈ Fn}
for all candidate Fn. The resulting algorithm is a time-efficient exhaustive search.
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Algorithm 1 Exhaustive search of En

En ← {{1}}
C ← {{1}}
S ← {1}
N ← {∅}
for t = 1 to n do

C̃, S̃, Ñ ← ∅, ∅, ∅
for i = 1 to Card(C) do

for j = 1 to Card(Ci) do
if 2Si + 2− (Ci)j > (Ci)Card(Ci) then

C̃ ← C̃ ∪ {Ci ∪ {2Si + 2− (Ci)j}}
N̂ ← {(Ci)k + 2Si + 2 − (Ci)j | k ∈ Jj + 1,Card(Ci)K} ∪ {2(2Si +

2− (Ci)j)}
for k = 1 to 1 + Si − (Ci)j do

J ← 2(Si + 1 + k)
if J /∈ Ni then

if J ∈ N̂ then
N̂ ← N̂ \ J

else
S̃ ← S̃ ∪ {−1 + ⌊J/2⌋}
Ñ ← Ni ∪ N̂
break

end if
end if
if k = 1 + Si − (Ci)j then

S̃ ← S̃ ∪ {⌊J/2⌋}
Ñ ← Ni ∪ N̂

end if
end for

end if
end for

end for
C, S,N ← C̃, S̃, Ñ
En ← {Ci | i ∈ argmax(S)}

end for

The complexity of such algorithm is O(n!) because Card(C) = O(n!) at the last
step of the first for loop. This suggest that the minimal dividing subset problem is
actually NP-hard.

4. Experiments

Using Fn+1 \ Fn = {2(m(Fn) + 1) − k | k ∈ Fn} for all Fn+1 ∈ En+1, Fn ∈ En,
it is easy to implement an efficient exhaustive search to get m(En) and d(n). With
this implementation in Python, we obtained the following figure.
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Figure 1. Comparison of d(n), n
2np(n)−2p(n)(2p(n)+1)−1 and 4

n for
n = 1, ..., 12.

We can observe that our inequality dictates almost perfectly the behavior of d(n)
for small n. Since the complexity of searching such En is at least exponential, we
cannot go much further than n = 12 in practice.

5. Conclusion

We have introduced the concept of dividing odd subset for the even numbers
and we studied its properties. In particular, we have shown that the density d(n)
of minimal such is asymptotically normal by deriving an inequality that seems
to accurately describe the behavior of d(n). This problem seems to be NP-hard
depending on n since the complexity of the natural exhaustive search algorithm
derived in section 3 is worse than exponential. This could be an interesting avenue
toward solving more efficiently NP-hard problems [Michael Garey(1979)].
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