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Abstract. It is shown that relativity predicts a variable G. The proof starts by
considering a dimensionless particle in an empty universe. Then two particles,
three particles, and an infinite set of particles are studied. This allows to cal-
culate space-time structure for any realistic energy distribution. The proof uses
the interchange of limits theorem, and ad hoc sequences of energy distributions.
With only one particle, the result is a singularity everywhere if the universe
is empty outside of the particle. Those singularities disappear completely with
three particles. Then this calculation is done for any realistic energy distribution.
An equation of G is given naturally in the process. This equation is a correct
approximation in most of the realistic energy distributions. The fundamental
principles building Einstein equation are still valid, but now the constant an-
thropocentric solar system value is shown to be weaker in strong matter density
environments, and greater in low matter density environments. It means that the
surrounding effect arises, it was introduced by previous works [1,2] And this ef-
fect was shown to solve the gravitational mysteries of today in astrophysics and
in cosmology. Under a unifying relevant assumption, a solution is also given to
the Yang-Mills millenium problem.

1 Introduction

The purpose of the present document is to show that relativity predicts a variable
G. It is also to describe a solution to the Millenium Problem [3, 4].

This study follows from previous works. In particular in [2], it was already
shown that the relativistic speed of the quarks implies that G is a variable. Here
it is shown that it’s a theoretical prediction of relativity, independent of the speed
of the quarks or any other experimental information about energy distributions.

The proof will start by considering a dimensionless particle in an empty
universe. Then space-time structure can be calculated for several particles up to
any infinite set of particles. The interchange of limits theorem will be used.

There are many ways to motivate this study. The first one is to searh for a
direct link between energy and first metric derivative. Another one is to solve
the slight caveats of General Relativity (GR) [2]. Another one is to work on the
behaviour of the concept of normal frames, which is a usual key concept in GR.
But one of its property has been dismissed in the literature. This work will reveal
that Special Relativity (SR) is more than an algebraic rule of GR, it relates to a
space-time structure deformation by energy. Another one is to notice that the
constancy of G is an anthropocentric assumption which is ruled out by today’s
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experimental data. Another one is to search for the theoretical justification of
Newton’s law.

It will be proven that relativity predicts a variable equivalent G. This varia-
tion will be driven by the surrounding effect [1] which, in its weaker version, is
the following. Gravitational force increases in low matter density environments,
and decreases in high matter density environments. Then an equation of G will
be given naturally in the process. Finally, the Yang-Mills millenium problem
will be addressed.

2 Mathematic reminder: interchange of limits theorems

Norms are equivalent in finite dimension, hence this is true for the four dimen-
sional space-time of General Relativity (GR). By other means, the determination
of space-time structure is a function of energy distribution. And this function is
a continuous function. Indeed, if any amount of energy at any space-time loca-
tion is decreased to 0. then the effect of this amount of energy on space-time
structure decreases also to 0. This continuity around the 0 value is the result
of conservation of energy principle. The restriction to the 0 value is possible
because any space-time structure can be seen as flat euclidean almost locally by
chosing an ad hoc system of frames.

One formulation of the interchange of limits theorem is the following. If any
fn sequence of energy distributions over space-time tends uniformly to some l
limit energy distribution, if S is the function giving space-time structure from an
energy distribution, then there is Splq � Splimpfnqq � limpSpfnqq.

The continuity of the determination of space-time structure as a function of
energy distribution has another interesting consequence. It is possible to imagine
thought experiments in which energy is increased ar decreased progressively.
And this can be done without violation of the conservation of energy principle.

3 A privileged frame in relativity

3.1 Definition and properties

In relativity there exists a privileged frame. Moreover, the boost which is as-
sociated with the motion of matter in this frame, describes the evolution of this
privileged frame. This can be reminded with a thought experiment, avoiding
then any complicated and tedious calculation. It is done in appendix 1. The
conclusion is that it exists a privileged frame in any space-time event (using the
extension of identification which is presented in appendix 1). And for any parti-
cle located in a given x event, this privileged frame exists in x and is transformed
by the particle, using the boost which is associated with the four-momentum of
the particle. Roughly speaking for the understanding, let’s write that this boost
is calculated in the ”old privileged frame”, that is, the one ”just before the par-
ticle”, and that it transforms this old privileged frame into the new one, that is,
the one ”just after the particle”. Another definition is that the old one describes

2



Relativity predicts a variable G

space-time locally without the existence of the particle, and the new one does it
just after the existence of the particle. Moreover, the identification of the new
privileged frame from the old one can be done progressively, using the continuity
of the function giving space-time structure from energy distribution.

Also a rescaling of time and space unit occurs after the boost. This will be
shown further. But in the present document, it will be written abusively that the
local deformation is described by a boost. Indeed, only the context will allow to
deduce if a rescaling occurs also, or not. There is more information about that
in appendix 3.

This concept of privileged frame is central in GR. It is refered in the literature
as the ”normal frame”. It has been associated here with the rule governing its
evolution with respect to matter and with motion of matter. The link between
local space-time deformation and matter is given by this concept and this rule.
This link is local but implies only the first degree of derivation of the metric. It
should be possible to induce from that the second degree of derivation, and then
compare the result with Einstein equation. Whatever the result is, a new view of
space-time deformation by energy arises.

3.2 Example

A simple example is a P particle in motion along a straight line in a static uni-
verse filled with a constant matter density, resulting in a flat Minkowskian uni-
verse. The old R0 system system of privileged frames is represented by the same
and constant R0 frame, a frame for which universe is at rest. This is called the
”frame of fixed stars” in old literature. The R1

0 system new system of frames is
the real existing one. It results from the existence of P .

This can be refined by assuming a progressive appearance of P in space and
time. Then a continuous set of privileged frames is constructed progressively,
from R0 system to R1

0 system.
For a gravitational wave (GW), the same definition applies: the ”old privi-

leged frame” is the one which would be the privileged one if the GW was not
existing, the ”new priviled frame” takes this GW existence into account.

4 Fundamental assumption

From now on in the present document, it will be assumed the following assump-
tion.

Assumption (I): a GW propagates at the speed of light.
The relevance of this assumtion (I) is well described in the literature [5].

5 Space-time structure around a uniformly moving relativistic par-
ticle

Now the aim is to describe the local space-time deformation of a GW generated
by a particle moving at the speed of light. The usual following assumption will
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be assumed. The P particle is moving at the speed of light along a D straight
line in a empty universe structured by a flat Minkowskian space-time.

The local space-time deformation of the GW will be studied at the location
where the GW deformation is the greatest. Being only local, the deformation
is transforming the time and space axis into new ones. That is, the old privi-
leged frame is transformed into the new one. Therefore this local deformation is
described by a linear transform.

Whatever the R inertial frame is chosen, this trajectory will always be a
straight line and the speed of the particle will always be the speed of light. More-
over, the property of physics are the same whatever is the chosen inertial frame.
Therefore the space-time structure generated by this particle will always be the
same whatever the inertial frame is chosen. It means that in R at any given time
the locations in which the deformation is the greatest is always the same space
cone centered on D.

More precisely, let’s study in R the GW generated by P in the EC event
which is a given C space location pertaining to D, and a given tC time. This
GW propagates at the c{?2 speed along the CM line where M is the space
point of the EM event reached by the GW at tM ¡ tC . Let’s construct in R the
space point H which is the perpendicular projection of M on D. Let’s write EH

the event when P is located in H . Then c{?2 is the speed from C to M , but c
is the speed from C to H and from H to M . Nevertheless the GW propagation
is only along the CM line. The GW propagation c{?2 speed is the speed of
the enveloppe of the GW along its trajectory. This propagation speed is normal
to the enveloppe. From EC and during the same tM � tC time duration, the
GW has been also propagated, at the c speed from EC to EN . EN is the event
spatially located in the N point such as CN is perpendicular to D (and such that
N is in the same space plan as D and M ). The time of EN is tN � tM , the
same time as EM . This is the easier way to understand this GW propagation:
perpendicularily to D the GW propagation is done at the speed of light.

The enveloppe is a cone centered on D. This cone is ”isosceles”. In other
words, if M is any point on this cone, if H is the perpendicular projection of M
on D, if C is the vertex of the cone, then there is MH � HC.

Now let’s study the deformation generated by the GW. First of all, in C this
deformation is a boost associated with the speed of light in the same direction as
P . This is proven in appendix 4.

Along the D line, exactly the same boost propagates itself, at the speed of
light. This is proven in appendix 6. Here, since the P trajectory is the same D
line, of course this can’t be noticed. But it will be noticed as soon as P will
deviate from this D trajectory.

Outside of D, on a given M space point, the local GW deformation is proba-
bly described by the following linear transform. It might be a bM boost oriented
in the direction of the normal to the cone in M , associated with the c{?2 speed
and propagated at the c{?2 speed. This is not proven in the present document.
Hopefully, it is not required for the study. More details are available in appendix
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7 and 8.
Outside of the cone, space-time structure is determined by the following

equation (the Ricci tensor is null). This is because, as it will be seen further,
Einstein equation can still be assumed valid in vacuum.

Rν
µpgµνq � 0 (1)

Rν
µpq is the function giving the Ricci tensor from the metric, and gµν is the

metric.

6 Space-time structure around a relativistic particle moving along
a circle

Now let’s assume that the previous P particle is forced to move along a circle.
Then the previous cone transforms into a more complicated geometric figure.
But infinitely far from the circle, therefore asymptotically, the enveloppe of the
GW propagation at constant time is a sequence of spheres centered in O, the
center of the circle. Asymptotically those spheres inflate themselves around O
at the speed of light. The rays of these spheres are separated by the same d
constant value which is the circle circonference. Now the deformation which
is propagated asymptotically is a boost associated with the speed of light and
which propagates along the ray of those spheres. This results from the previous
study. Indeed, asymptotically, the GW propagates along the direction which is
perpendicular to the particle’s trajectory, which is also the line starting by the
location of the particle. And from the previous study this is done at the c speed.

If the ray of the circle decreases progressively and tends to the 0 value, it
means that the circle tends to its limit which is a dimensionless particle located
in O. Then the previous cone transforms itself into the previous sequence of
spheres, but also d tends to 0. The final result is a sequence of spheres which are
infinitely close to each other, all centered on O.

The interchange of limits theorem can be applied to this Dirac distribution of
matter, namely here, the dimensionless particle located in O. It can be applied
because the circle-like trajectories of microscopic particles are energy distribu-
tions which tend to this Dirac distribution. If any doubt exists because the micro-
scopic particle is in a rotating motion around O, then it is possible to add another
microscopic particle sharing the same energy and moving along the same circle-
like trajectory in the opposite direction. This would cancel the whole rotating
motion without changing the final result which will be given further. Finally this
distribution tends to the Dirac distribution centered in O, when d tends to 0.

Therefore let’s apply the interchange of limit theorem. The space-time struc-
ture generated by a 3D Dirac distribution centered in O is the limit of the pre-
viously described sequence of spheres, limit when d tends to 0. Those limit
deformations are described in any M space point by a boost associated with a
speed of light which is oriented along OM . Let’s write R, an inertial frame at-
tached to P (in which P is at rest). M belongs to a sphere centered in O which
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contains all the deformations arriving at the same time in R. Moreover those
spheres are now infinitely closed to each other. It means that each space-time
event of the universe is modified by this singular boost. This is the space-time
structure generated by the 3D Dirac distribution.

Hence the result is radically different from what is told by today’s litera-
ture. Let’s remind that with today’s literature the space-time deformation here
is exactly the one which corresponds exactly to Newton’s law occuring in solar
system. But what has been proven here is that this deformation is a singularity
everywhere.

This huge difference will explain why G is not a constant but a variable.

7 Partial resolution of the issue of Mach’s principle

This resulting space-time structure might be argued to be wrong because it is not
realistic. But the correct argument is the opposite. This description appears to be
more correct than the one which is given in the literature because the distribution
was supposed irrealistic in the first place. Indeed, a Dirac distribution of matter
is already by itself, irrealistic since it assumes an empty universe outside of the
center of the Dirac distribution. For that reason, only an irrealistic result would
be searched for.

Moreover, this GR prediction is in perfect compatibility with Mach’s princi-
ple [6]. Let’s remind briefly the Mach’s principle problem in GR. For example
the issue appears in the case of a static spherically symmetric universe. A parti-
cle is located in the center of this spherical symmetry. If ρ is the matter density
filling the universe, then one can distinguish two assumptions. The first one is
ρ ¡ 0, the second is ρ � 0. Close to the particle, ρ appears insignificant in both
cases. Therefore, there, the spacetime deformations will be approximately the
same for the two assumptions. But in the first assumption it is possible to find an
inertial frame, R, at rest with the particle, which is not in rotation with respect to
the universe. In R, there are no fictitious forces such as centrifugal forces. But
in the second assumption it is not possible to find such a frame. Supposing that
R is at rest with respect to the object is not enough. It is not possible to know if
R remains inertial or not. One cannot say if in R it will appear fictitious forces
or not.

The new GR prediction solves this problem. Now space-time structure be-
comes singular everywhere for the second case. An answer is given: in each
frame at rest with the particle, no fictitious force might ever appear, since those
singularities would dissolve them completely. Therefore, with this new, cor-
rectly irrealistic prediction, GR becomes more Machian.

8 Two particles

Now let’s add another particle, apart from the first one. So there are two parti-
cles, at different locations, and out of them the universe is still empty. Everything
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is still supposed to be static, that is, the two particles are at rest in some given
inertial frame.

Outside of the particles, space-time structure is first determined by conser-
vation of GR Lagrangian in vacuum. It is simpler to say that the Ricci tensor is
null in vacuum. This is a second degree of derivation differential equation. An
integration constant is still required at the end of the calculation. Under today’s
version of GR, G solar system constant value and the mass of each particle are
used for this. Now the determination of this integration constant remains to be
proven. Hints and clues for this determination are given in appendix 2. Although
this determination would be an improvement, nevertheless it is not mandatory
for the study of the present document.

Also, asymptotically the space-time deformation is singular. Indeed, this
asymptotic deformation is the same as the previous asymptotic deformation of
the distribution with only one particle. And of course each particle still generates
locally a space-time singularity. If the masses of the particles are not equal then
a tough calculation is required. Let’s suppose that they are equal. Then, the
calculation is simpler since there is the perpendicular symmetry with respect to
the perpendicular plane between the particles. This shows a picture which is still
hugely different from what is written in today’s literature.

9 Three or more than three particles

Adding a third particle to the scene will disolve those singularities which are
located on the straight line containing the particles. As usual it is supposed that
the third particle is at rest with respect to the other particles.

With three or more particles, space-time structure is still fully determined by
equation (1). And under the assumption of the rest mass of the particles being
the same, symmetry considerations might help to calculate simply space-time
structure. For the determination of the integration constant, the same arguments
apply as in the paragraph 8. They are presented in appendix 11.

10 Space-time structure for any distribution of energy

The studied distribution of energy is a realistic one: an infinite set of dimension-
less particles. Indeed modeling reality this way is often a good approximation in
astrophysics, from planets to cosmology scales, and in particle physics, because
of the sparse nature of matter. Of course a more general distribution of energy
might be studied. Notably a uniformly continuous distribution of energy would
possibly still allow the use of the interchange of limits theorem. But this is out
of the scope of the present document.

Hence let’s apply the interchange of limits theorem, to this set of Dirac dis-
tributions of matter, namely here, the dimensionless particles of the universe.
Let’s remind that for each Pi particle, where i is the particle’s number, i from 0
to infinity, there is a Si

n sequence of energy distributions. For each i and n, Si
n is
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a distribution made of a circle-like trajectory of a virtual relativistic microscopic
particle in an empty universe, this circle being centered on Pi. For each i, i from
0 to infinity, the circle’s ray tends to 0 and Si

n tends to the Dirac distribution of
the Pi particle, when n tends to infinity.

lim
nÑ�8

�
Si
n

� � miδi (2)

In equation (2), δi is the Dirac space distribution centered on the Pi particle,
and mi is the mass of Pi. This simple convergence for each Pi can be trans-
formed into a uniform convergence for the whole set of Pi. It suffices for that to
choose, for each n, whatever i is, the same Si

n circle’s ray. For example the value
of 1{n can be chosen for the circle’s rays of Si

n�1, in the system of privileged
frames of space-time structure generated by Si

n.
The final picture is the following. Space-time structure is the result of all the

microscopic GWs. Those microscopic GWs are those generated by the virtual
microscopic relativistic particles representing the real Pi particles in the above
study. From now on in the present document, those GWs generated by those
microscopic virtual particles will be called ”virtual gravitational waves” (VGW).
Considering only the limit distributions (n Ñ 8), the set of the Si

n is equal to
the set of the miδi. Then, each space-time event receives a VGW from each real
particle in the universe. This gives a clue for calculating space-time structure in
a different way.

11 Calculating space-time structure with virtual gravitational waves

11.1 Four-momentum equation

The same distribution of energy is still assumed. In any x space-time event,
the four-momentums of all the GWs propagating in x add themselves. The fun-
damental reason for this is conservation of energy principle. This is shown in
appendix 9.

The resulting equation has been described in [2] and is the following.

Dµpxq � Σ8n�01wpx, ynqfpx, ynqCµpynq (3)

Equation (3) shows the calculation of the resulting four-momentum in x.
For n from 0 to infinity, each yn event represents a space-time location in which
the Pn particle is possibly propagating a GW in x. Considering only the limit
distributions (nÑ8), each Pn particle of the universe propagates a VGW in x.
The 1wpx, ynq is equal to 1 if x and yn events are connected by a null geodesic
and if x is located after yn along this geodesic. It means that the GW generated in
yn is received in x. Considering only the limit distributions, 1wpx, ynq is allways
equal to 1 and can be supressed from the equations. fpx, ynq is a scalar positive
function. It is assumed to be equal to 1 if yn is equal to x. It expresses the
attenuation of the GW energy which is emitted from yn. Cµpynq is a four-vector
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which contains the information of the energy of the GW in yn. Later on, it will
be shown that C0pynq is not the effective energy of the GW, but is proportional to
its square root. Nevertheless, in order to avoid a heavy reading, the words ”four-
momentum” and ”energy” will be used for Cµpynq or C0pynq. The context will
allow to understand if those are effective energy or contributions to equation (3).
And this ”contribution” word will mean the 1wpx, ynqfpx, ynqCµpynq terms
which are in the sum of the rhs of equation (3).

There are important remarks about equation (3).
A first remark is that this equation is only valid asymptotically, that is, for

great distances between x and each yn, with respect to the Pn energies. Indeed,
fpx, ynqCµpynq is ensured to be a null four-momentum only asymptotically. For
example, it has been shown in paragraph 5 that the GW generated by a Pn rel-
ativistic particle moving along a straight line in a flat Minkowskian space-time
structure would propagate at the c{?2 speed and would be described by a boost
associated with this speed. It means also that for high speed Pn particles this
propagation speed would differ sufficiently from c, and the four-momentum de-
scribing locally the deformation would be associated with this speed and would
not be a null four-momentum. But in realistic distributions only slow relative
motions of particles can be assumed. And considering only the limit distribution
and VGWs, the local space-time deformations are propagated at the c speed and
are described by boosts associated with this speed, therefore fpx, ynqCµpynq
are null four-momentums.

A second remark is the question of wether an infinite number can result from
equation (3) or not. For example if an infinite universe is filled with a constant
and uniform distribution of particles, then the result is infinite if the f attenua-
tion function decreases less than 1{r3. This problem is similar to the Olbers’s
paradox problem [7]. But a more practical solution can be found here. There
is no need to understand the universe expansion and horizon. When translating
this equation (3) into a gravitational model such as surrounding [1], a solution
is found. Indeed, in surrounding, the fitting of the model with experimental data
forces this sum of equation (3) to be translated into a finite value. A practical
approach here is simply to ignore the possibility of divergence of this equation,
and to fix this issue later on, when working on gravitational models.

11.2 From the four-momentum to the boost

Let’s follow the natural calculations. The distribution of energy of paragraph
10 is still assumed. The four-momentum of equation (3) can be generated by a
single particle located in x, by the GW of a single particle propagating in x, or
by many GWs encountering in x. Let’s write this resulting four-momentum of
equation (3).

Dµpxq � γ
E

c

�
1,

v

c
, 0, 0

	
(4)

E and v are respectively the energy at rest of the four-momentum and its
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speed in a frame. It has been used γ � 1{a1� v2{c2. This equation (4) has
been written in a R0pO; ct, x, y, zq frame, at rest with the universe, and such that
v is along the Ox line. It is possible to find such a frame. Then, from Dµpxq is
calculated the local space-time deformation which is generated. This is done [2]
by using the boost described by the following equation.

Bµ
ν pxq � γ

�
���

1 � v
c 0 0

� v
c 1 0 0
0 0 1 0
0 0 0 1

�
�� (5)

This boost is directly deduced from the four-momentum of equation (4).

11.3 From the boost to the metric

Now it is possible to derive the space-time metric from Bµ
ν pxq.

The distribution of energy of the paragraph 10 is still assumed, but now the
universe is filled with a constant matter density. It means that the grid of particles
has cells which are small enough for allowing such an approximation.

Let’s assume that a P particle is added to the scene, located in O at t �
0, at rest in R0. R0 can be assumed to be the privileged frame in x, before
adding P to the scene. Let’s call R1

0 the privileged frame after adding P to
the scene. Therefore, R0 is the ”old privileged frame”, and R1

0 is the ”new
privileged frame”. Let’s write x1 the first event when R0 has been transformed
into R1

0, along the time of R0. R1
0 is obtained by transforming R0, in x, using

the Bµ
ν pxq boost.

From R0 to R1
0 it can also be generated a successive continuous sequence of

privileged frames, starting with R0 and ending with R1
0. For that it suffices to add

slowly the P particle energy from 0 to its real value. (Let’s remind that avoiding
the conservation of energy principle is allowed in a thought experiment).

Then, it is required to rescale the lengths of the ”boosted” time and space
axis. The boosted time and space axis are the time and space axis which have
been modified by the boost, in their states after the boost. The rescaling is done
in such a way that the resulting time line described successively by those suc-
cessive infinitesimal steps is a geodesic. Equivalently this constraint is that the
privileged frame must be inertial. This is detailed by the following equations,
relating X 1ν the coordinates after the boost, to Xµ the coordinates in R0, and
then relating X”ρ the final rescaled coordinates in R1

0 to X 1ν .

X 1νpx1q � Bν
µpxqXµpxq (6)

X”ρpx1q � Sρ
ν px1qX 1νpxq (7)

gαβpxq � Bρ
αpxqSµ

ρ px1qgµνpx1qSν
κpx1qBκ

βpxq (8)
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Sµ
ρ px1q is a symetric transform which has the ability of being diagonalized

in R1
0. Its value is determined by the constraint above (the time line of the set of

successive privileged frames must be a geodesic). Equations (6) (7) and (8) show
how gµνpx1q the new metric is deduced from gαβpxq the old one, due to the ac-
tion of Bν

µpxq, which results from the Dµpxq added energy. Of course equation
(8) can be inverted, using the inverse mixed tensors pB�1qβκpxq and pS�1qρµpx1q
of, respectively, Bν

µpxq and Sµ
ρ px1q. It results the following equation.

gµνpx1q � pS�1qρµpx1qpB�1qαρ pxqgαβpxqpB�1qβκpxqpS�1qκν px1q (9)

Equations (6) (7) and (8) have been obtained by studying the spherically
symmetric static case. In the Schwarzschild metric, a P1 free falling particle,
having a negligeable mass, being at rest when located infinitely far from the
center of the symmetry, follows a time line which is transformed by those equa-
tions [8]. This is proven in appendix 10. Those equations are still valid in the
most general case. Indeed, their construction follows the rule of the privileged
frame being modified by the boost associated with local matter motion, and this
privileged frame is inertial. A more rigorous demonstration might be given. But
in the scope of the present document, only the particular spherically symmetric
static case is required.

It is already known that gµνpxq is a diagonal matrix in the R0 frame and
that gµνpx1q is a diagonal matrix in the R1

0 frame. Since the direction of the
boost is along the x space axis, only time and x space dimensions are modified
by the metric evolution. If the pS�1qρνpx1q rescaling is written with an α time
rescaling and with a β space rescaling, then, using equation (9) and αβ � 1
usual convention, the resulting metric shows g00px1q � α2 and g11px1q � �α�2.
This allows to check and understand the involved mechanism of equations (6)
(7) and (8).

As a conclusion, space-time structure is calculated first by calculating a one
and only four-momentum in x which contains the information about the local
deformation in x. From it the final local space-time deformation is determined.
This determination is deducing the speed associated with this momentum, and
then the boost associated with this speed. This boost describes the final space-
time deformation occuring locally in x. More precisely the final space-time
structure in x is described by the boost which is associated with the four-velocity
which is the barycentric operation of all the four-velocity of VGWs propagating
in x using the total energy of each VGW as its weight. The attenuation of the
propagation of the VGWs follows the rule of Ricci tensor being null in vacuum.
From this boost is calculated the metric. The question of the stability of this self-
induced mechanism arises. But if the universe is static, with this mechanism,
space-time structure converges into a stable structure. Indeed if the universe is
static, then a thought experiment can be done in which the energy distribution
is constructed by adding progressively the particles one after the other. Also
each of them can be added progressively, their energy at rest being increased
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progressively. Each of those successive energy distributions are static. As usual
in GR, space-time structure for each of them can be described with the system
of the normal frames, system of frames in which space-time appears virtually
flat Minkowskian. This system of frames is the system of privileged frames. In
this system, in any x space-time event, the sum of the momentum of the VGWs
occuring in x is null. This is valid also for the limit of these energy distributions.

11.4 An equation of G

The context and notations of paragraph 11.3 are used. For trying the construction
of an equation of G, now let’s assume, also, the following.

Assumption (i): Newton’s law is valid. But G may differ from its solar
system value.

This is based on experimental data. Newtons’ law must be supposed to be
valid almost in solar system because this law is validated with high accuracy,
at least in solar system [9]. And there are theoretical arguments for this law to
stay valid out of solar system, though being used with a different value of G.
This will be studied further in the present document in the paragraph about a
revisiting of Newton’s law.

Assumption (ii): the energy of a VGW evolves always following the same
attenuation function (function of the initial starting energy, and of the propaga-
tion distance), regardless of its location and starting energy.

Assumption (iii): in equation (3) the sum of the energy of the contributions
generated by P is far weaker than the sum of the energy of the other contribu-
tions.

This assumption will be confirmed with surrounding, where a sphere with
a 15 kpc ray, which is used for calculating the surrounding value, is fitted to
experimental data. The energy which is located in this sphere corresponds to the
time component of the rhs of equation (3), that is, the sum of the energy of the
contributions of this equation.

Assumption (iiii): the contributions of equation (3) can be replaced by their
asymptotic values without modifying consistently the result.

This assumption can be valid if the particles of the universe are isolated
enough from each other. This might be realistic because matter is known to be
extremely sparse in the universe, whatever the scale is, from particle’s physics
scale to cosmological scale. Assumptions (i) (ii) (iii) and (iiii) are easier to
accept asymptotically.

The calculations are presented in appendix 11. They are done from assump-
tions (i) (ii) (iii) and (iiii), equations (3), equation (4), and the geodesic equation
for Newton’s law which is reminded in the appendix. They result in the follow-
ing equation of G.

G � c4

2
�
Σ8n�0

b
C0pynq
}x�yn}3

	2 (10)
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Equation (10) is used, as usual, with VGWs. It has been shown that this
equation is a good approximation under (i) (ii) (iii) and (iiii) assumptions.

The potential divergence of equation (3) might appear worse in equation (10)
than in eqution (3). Indeed, the 1{aprq shows potentially a quick divergence.
Nevertheless it must be noticed that the resulting gravitational force will obey to
the 1{r2 rule. Indeed, equation (10) has been formed from that rule. Therefore
the final possible divergence is the Olbers’s paradox divergence. And it is easy to
modify equation (10), inserting a cut-off value of the contributions, for example
resulting in the following equations.

Φcut

�
a, b
� �

b ¤ Rcut :

c
a

b

b ¡ Rcut : 0

(11)

G � c4

2

�
Σ8n�0Φcut

�
C0pynq, }x� yn}3

	
2 (12)

Here Rcut is the maximum GW propagation distance. The 15 kpc value is
suggested by surrounding [1].

This cut-off value does not alter much the qualification of ”asymptotic” in
the previous reasoning and in the calculations of appendix 11. Indeed in the sur-
rounding gravitational model, the Rcut � 15 kpc value is fitted to experimental
data. It is a distance which would require an attracting object like a galaxy in
order to contradict this ”assymptotic” qualifier. And this equation (12) can still
be improved. For example it is possible to replace the simple 0 cut-off value by
a slow decrease of the contributions of equation (10).

12 Predicted surrounding effect

The above study shows that relativity predicts a variable G. And this variation
given by equation (10) follows the rule untitled ”surrounding” in [1]. Of course
equation (10) has been constructed under the (i), (ii), (iii) and (iiii) assumptions.

But equation (3) shows already this surrounding effect, without any added
assumption. Let’s show this by rewriting it, shifting the total energy from left to
right, and isolating the resulting speed.

v

c
� fpx, y0qC0py0q

Σ8n�0fpx, ynqC0pynq (13)

The 1wpx, y0q and 1wpx, ynq terms disappeared because now only VGWs
are considered. There is allways a VGW which is propagated by the particle
located in yn and which is received by any given x event. The universe is still
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assumed to be at rest and filled with a constant matter density, except for only
one P particle at rest with the universe. And the VGW of y0 is still assumed to be
the only one emitted by P . Hence the numerator of the rhs of equation (13) is the
asymmetric contribution which is also the numerator of equation (28). Equation
(13) derives directly from equation (3), and shows that the space velocity of
the resulting four-velocity is inversely proportional to the denominator, which
increases with the energy surrounding the x location.

It can be noticed also that the denominator of the rhs of this equation is a
sum of positive scalars calculated in an isotropic manner. It induces naturally
to translate this equation (13) into a gravitational model, replacing this value by
the energy of the surroundings of the location where the gravitational force is
exerted. The result is that a surrounding gravitational model or a gravitational
model close to it is predicted by relativity. Therefore the so-called gravitational
anomalies of today might be no anomalies at all, but regular predictions of rela-
tivity.

The modified gravity theories of today must comply with the MOND [10]
model predictions, for the greatest part of experimental data. This is natu-
rally acomplished by the surrounding model. Indeed, when acceleration is low,
MOND increases it. But when acceleration is low, most of the time it means that
the surrounding energy and matter are low, also, and then the surrounding effect
increases acceleration too.

13 Revisiting Newton’s law

A revisiting of Einstein equation is naturally required by the previous study.
This equation is nothing more than the most direct translation of Newton’s law
from non relativistic physics into relativity. Therefore, the first step is to revisit
Newton’s law. The Poisson’s formulation of Newton’s law starts the construction
of Einstein equation, not only because it’s about Newton’s law. First of all,
in vacuum, this formulation expresses the following important non relativistic
principle.

(i) The flow of the acceleration vector field is constant in vacuum.
It results divpaq � 0 in vacuum, where a is the acceleration vector field.

This is not something new. But now it has been shown that space-time structure
in vacuum can be calculated by considering only the VGWs generated by theo-
retical infinitesimal relativistic particles. This gives a new insight about this (i)
principle: it corresponds to the conservation of flow of GW energy in vacuum.
Hence another argument for the Poisson’s formulation of Newton’s law is given.

Secondly, matter plays the role of a source for this field: matter is a source of
any interaction force. And this is not only true for gravitation. Indeed, the force
which attracts a given A particle to another given B particle is acting on A in the
direction of B. This direction is tangent to the geodesic relying A to B. At the
contrary, vacuum does not generate any force. Therefore the force vector field
has a divergence which is a function of matter density. And it is the same with
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the acceleration vector field, because of the fundamental principle of dynamics.
Hence, Newton’s law in its Poisson’s formulation is almost retrieved by the

previous theoretical considerations. The divergence of the acceleration vector
field should be a function of energy, such that for a null energy there is a null
divergence. This gives the following equations.

divpaq � fpρq (14)

fp0q � 0 (15)

ρ is matter density. In equations (14) and (15), nothing is told about neither
the sign of fpρq nor the exact feature of the f function. And the question of a
possible proportionnality of fpρq with ρ is related with conservation of energy
and the principle of action and reaction. Let’s show this. Equation (14) implies
for a P particle in an empty universe the following equation.

a � fpρqV
4πx2

(16)

In equation (16), a is the acceleration in any given M location, such as
MO � x, O being the location of a P particle generating this acceleration. ρ
and V are respectively the matter density and the volume of P . It was supposed
that ρ is constant in P . Then applying the fundamental principle of dynamics,
the following equation arises.

F � m1fpρqV
4πx2

(17)

Here, F is the force attracting a P 1 particle located in M , by P . m1 is the
P 1 mass. But the principle of action and reaction implies that this equation is
invariant by P and P 1 permutation. The following equation arises, where m is
the mass of P .

m1fpρqV � mfpρ1qV 1 (18)

This being true for V and V 1 being constant and for any value of m, m1, ρ,
and ρ1, it implies that fpρqV is proportional to m . A better demonstration of
that would consider the total energy E of P and P 1, in place of the principle
of action and reaction. This energy is the integral of the forces along space
distances. Then it is the invariance of E by the P and P 1 permutation which
would be used. This proportionnality would be written the following way.

fpρq � Kρ (19)

Here K is of course the unknown coefficient of this proportionnality. Using
equation (19) in equation (17), it yields the following equation.
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F � Kmm1

4πx2
(20)

But now no theoretical argument can be given here for calculating the K{p4πq
constant of equation (20). Historically Newton’s law has been constructed based
on experimental data more than theoretical considerations. To say the least, the
G determination was done completely based on experimental data.

But an indirect theoretical argument can be given. Everything was done here
under the assumption that a complete vacuum exists outside of P and P 1. If
the vacuum is not perfect outside of the particles, the reasoning above becomes
wrong. The energy surrounding the particles must be taken into account. First
of all, matter density of the universe outside of P and P 1 generates also a diver-
gence by applying equation (14). This added divergence modifies the final result
given by equation (17). Secondly, the principle of action and reaction might
not be true in its simplest formulation. It is easier to understand that the energy
version of the demonstration is wrong. Indeed, rigorously speaking, the total
energy of P and P 1 must be replaced by the total energy of the universe. Indeed,
energy exchanges might exist between the particles and their environment. A
more practical version would be to approximate the energy of the universe to
P and P 1 energies plus the energy of the surroundings of the particles, to some
given extent suitable for a correct approximation.

The whole result of those theoretical arguments is Newton’s law. But these
arguments tend to prefer a variable G more than a constant G value, this variation
depending of the energy surrounding P and P 1 particles.

14 Revisiting Einstein equation

In the more general relativistic regime the same reasoning might be done, re-
placing the divergence of equation (14) by Einstein tensor, and matter density
by stress-energy tensor. Then the reasoning might give Einstein equation. But
this work is above the scope of the present document. Nevertheless, since Ein-
stein equation is the most direct formulation of Newton’s law in the context of
relativity, the reasoning above done in the non relativistic regime applies indi-
rectly to Einstein equation.

To say the least, what appears still seriously doubtful is the statement that
K{p4πq is a universal constant, in equation (20). At the contrary, the above
discussion shows that one would expect matter density of the universe to play a
role in the determination of this constant. A more practical formulation of that
would be that the energy of the surroundings of P and P 1 would play a role
in this determination. This was true for Newton’s law, and is therefore true for
Einstein equation, since it is the most direct translation of Newton’s law into
relativity.

The ρ � 0 particular case implies divpaq � 0, from equations (14) and
(15), but results also directly from the (i) principle. And the present study shows

16



Relativity predicts a variable G

absolutely no need to modify its relativistic formulation given by equation (1).
At the contrary, this equation allows to complete the new construction of space-
time structure done in the present document. This equation was used notably,
above, in the study about two particles in an empty universe.

By other means, the construction of Einstein equation from Newton’s law is
extremely simple. It is the simplest way to proceed. Inserting a multiplicative
tensor between the stress-energy tensor and Einstein tensor is something natural
which were rarely done in the literature. This mutiplicative tensor can be only
a function of energy: what else? Now the present document shows that this is
exactly the correct translation of Newton’s law into relativity. The result would
be surrounding, or a gravitational model close to it. A classical way to proceed
would be to calculate everything with such a Xµ

ν hypothetic multiplicative tensor
and then compare the predictions to experimental data. Very probably, it would
show that Xµ

ν must be proportional to the surrounding energy of the location
where the force is exerted. Indeed, the surrounding gravitational model indicates
strongly that this is exactly what would happen.

Also, today during the construction of the GR Lagrangian for matter, the
G anthropocentric solar system constant value is forced without any theoretical
argument. This is doubtful. At the contrary, the GR Lagrangian for vacuum
is the simple and well sounded scalar curvature. This is another argument for
applying it in the present study (it is equivalent to equation (1)).

15 Conclusion about G

Apart from the previous demonstrations, there are serious arguments in favour of
a variable G following the rule of the surrouding effect. They are the following.

1) Mach’s principle.

2) Correct theoretical construction of Newton’s law

3) Sophisticating the construction of Einstein equation.

4) Loss of information in the construction of the stress-energy tensor.

5) Implicit assumption of GR.

Items 1) 2) and 3) have been described above. Items 4) 5) and 6) are de-
scribed in [2]. Item 6) is the experimental argument about the quasi-relativistic
speed of the quarks.

Therefore, outside of solar system, it is much more relevant to use equa-
tion (10), or its translation with surrounding, than its solar system value for the
determination of G.
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16 Yang-Mills millenium problem

The remark done in [2] about the Yang-Mills millenium problem is still valid.
Moreover, this remark is conspicuously reinforced by the study of the present
document. Let’s remind briefly this remark. It starts by assuming the following.

Assumption (A): unification of the four forces is driven by gravitation.
Under this unifying assumption, the Yang-Mills millenium problem finds a

solution. Indeed this assumption awake the full relativity in the context of parti-
cle physics: now not only SR, but also GR underlines all the forces. Therefore
each of four forces is driven by the surrounding effect. And this effect modifies
enormously the interactions between three particles. This allows quark confine-
ment for long duration only when they are close to each other by groups of three.

Let’s discuss the validity of assumption (A). It allows to get rid of the GR
effect which creates tidal forces, for example in black holes. This effect would
mean that space-time deformation would modify energy distribution a second
time. Indeed, space-time already modifies energy distribution with gravity. This
would appear more as a spontaneous creation of energy. Moreover, assumption
(A) is more than an assumption. Indeed, the following argument can be done.

Argument (*): acceleration generated by gravitation is explained by space-
time curvature. It is a simple and elegant rule. It is tempting to apply it to each
force. Nothing forbids it.

The argument (*) comes from relativity and gravitation. It might appear
difficult to find such a convincing hint starting from particle physics. For exam-
ple it might be difficult to find such a convincing argument with the following
assumption.

Assumption (B): unification of the four forces is driven by one of the three
forces of particle physics.

Under the (B) assumption, the strong force might be the better candidate.
Indeed, for example in figure 1 of [11], it is located on an extreme location as
compared to the others. Nevertheless assumptions (A) and (B) appear better than
the following one.

Assumption (C): no unification of the four forces exists.
Indeed, there is the apparent energy convergence at Planck scale which con-

tradicts it. But assumptions (A) and (B) must be compared with the following
one, which might be done by todays physics.

Assumption (D): unification of the four forces is driven by an effect in which
no force plays a leading role.

It might be this (D) assumption which is implicitly assumed todays [12, 13].
But the main arguments for it are symmetry considerations. Their relevance
must be compared with the relevance of argument (*).

A more experimental information in favor of assumption (A) is given by
the eclipses anomalies. Indeed, under this assumption, strong deviations of the
gravitational signal of the sun, by the moon, might be expected during solar
eclipses [14].
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the strong scattering of the gravitational force signal might be explained by
an interaction between gravitation and matter which would be stronger than

17 Discussion

A new determination of space-time by energy is presented. It uses the usual
GR concept of normal frames, which is called privileged frames in the present
document. This new name refers to a property of those frames which has been
dismissed in the literature. This property is that the evolution of those frames
is driven by energy. And this gives a clue for a new space-time structure calcu-
lation from energy. This new calculation is based on the first degree of metric
derivation. The second degree of derivation is calculated and then compared to
Einstein equation.

The demonstrations done in this document were for the most part, purely
mathematics. It results a more complicated relativity, more Machian than be-
fore, in which gravitation follows the rule of a surrounding effect. In its weaker
formulation this effect is the following. Increasing the energy of the surround-
ings of the location where the gravitational force is exerted results in decreasing
this force with respect to Newton’s law. It is proven that G is not a constant, and
that its variation is driven by this effect. An equation of G is given, which is a
good approximation under four assumptions, which might be valid most of the
time in gravitation.

When the complexity of the energy distribution does not allow to use Ein-
stein equation, then a method has been presented, allowing to calculate space-
time structure from an energy distribution made of an infinite number of dimen-
sionless particles. Of course this method leads to complicated calculations. But
are they more complicated than using Einstein equation without any symmetry
rule allowing to simplify?

It still remains to find the general principle allowing to replace completely
Einstein equation in any cases. Another Lagrangian might be constructed, based
on this new understanding of relativity. But in most of the cases, using Einstein
equation with this new equation of G might be a good or very good approxi-
mation. Whatever, it remains much better to use a G variation driven by the
surrounding effect than its constant anthropocentric solar system value.

Each so-called gravitational anomaly might be simply a prediction of rela-
tivity. Of course the work is huge until one can replace ”might be” by ”is” in
the previous sentence. Indeed, the surrounding gravitational model appears to
solve all those mysteries in a straightworward way. But it would need not one
but several articles to confirm that. And the surrounding gravitational model will
have to be tuned. For example, the brutal rectangle window used for calculat-
ing the surrounding value must be replaced by a smooth window, soon or later.
For example, the need for that appears for conforming surrounding to the wide
binaries problem [15–17]. Also, possible regressions might arise, in which this
G variation might induce wrong predictions in front of some given experimental
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data. This work is huge also.
But nevertheless a big step is done in gravitation. In particle physics, the

Yang-Mills millenium problem finds a solution under the relevant unifying as-
sumption that the four forces are different aspects of the same and unique force
of gravitation.
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1 Privileged frame

This thought experiment is simply imagining the energy at rest of a P particle
increasing progressively, and at the same time the whole energy of the universe
decreasing. At the end of the experiment the universe and the particle have their
roles permuted. Now the particle contains the energy of the previous universe,
and the universe contains the energy of the previous particle. The first result is
that the frame in which time elapses the most is no longer the frame attached to
the universe. Now this frame is the frame attached to the particle. It means that
the space-time structure is now the symmetrical result of a permutation of those
two frames. It means also that during the experiment, the space-time structure
has been modified progressively from the first state to the final one. And this
operation has allowed to revert the time dilatation. For example, if this was a
twin paradox configuration, at the end of his brother’s journey, the older twin
would become the youngest after the thought experiment. Therefore this space-
time modification is simply described by the boost transporting one frame into
another. It can be noticed that this reasoning is using the well established sup-
position that GR is coherent.

Now the need of naming the frames appears. Let’s call Ru a frame attached
to the universe. It can be supposed that the universe is filled with a constant,
homogenous distribution of matter, therefore this matter is supposed to be at rest
in Ru. Let’s call Rp a frame attached to the particle. The result of the thought
experiment is that the particle generates locally a space-time deformation which
is described by the boost from Ru to Rp. Of course, this deformation is local to
the particle but the more energy at rest of the particle, the more this deformation
is valid around the particle. A ”more valid deformation” means that the space-
time deformation exists significatively over a larger space-time domain.

The space-time deformation appearing in the experiment is described by a
boost which allows to transform progressively this privileged frame from Ru to
Rp. And it means that this frame remains privileged during the whole process,
even though it might be no longer the frame in which time elapses the most. This
frame is simply a frame in which the particle is at rest. Its physics relevance is
only local to the particle. The result is that it is possible to extend this identifica-
tion of the privileged frame of relativity to any space-time event in which there
exists matter. And this identification can be extended even further to events in
which vacuum prevails, by interpolation between those events in which there
is matter. The best way to interpolate is to constrain the interpolated frame to
remain inertial.

This ends what is a reminder about a feature or relativity.
The local space-time deformation of this thought experiment is inflexible.

It means that it remains the same whatever is the energy distribution. Notably,
whatever are the surroundings of the P particle, the local deformation generated
by P remains the same. This is true if the P particle is a dimensionless particle,
or at least if it gets a high enough matter density. This is a realistic modelization
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since matter is known to be extremely condensed. And it is true also for the
virtual microscopic particles which are used in the thought experiments of the
present document.

2 Integration constant

This appendix is about the integration constant of the space-time structure cal-
culation for the energy distribution of two particles in an empty universe.

This constant is possibly given by the following information. There are sin-
gularities along the straight line containing the particles’s locations, but only on
those points which are not between the particles’s locations. They are described
by the boost associated with the speed of light in the direction moving away
from the particles.

Of course the rigorous way to proceed is to calculate space-time structure
using symmetry consideration and equation (1). Then, the asymptotic values of
the deformation should allow to calculate the integration constant. This proce-
dure is already done for the energy distribution with one particle in an empty
universe. Symmetry consideration produces the Schwarzschild metric. Equa-
tion (1) gives the information that the metric is of the shape g00pxq � 1�M{r,
where g00pxq is the time-time component of the metric in the x space-time event,
r is the spatial distance from x to the particle, and M is the unknown integration
contant. Then the asymptotic value of the local space-time deformation given
by paragraph 6 allows to calculate M � 8. Therefore, it should be possible
to calculate this constant for the energy distribution of two particle in an empty
universe.

3 Uniformly moving non relativistic particle: local deformation

Let’s consider P , a non relativistic particle moving uniformly at the v speed, v  
c, along the D space line in a flat Minkowskian space-time. The RpO; ct, x, y, zq
frame is chosen such as O is contained by D and Ox is in the direction of the
P motion. The local deformation around P is first described by the bv boost
associated with the v speed, as shown before.

But equations (6) (7) and (8) show that a rescaling of ct time and x space axis
is required. If no rescaling occurs, then it means that the deformation generated
by P is wholly described by a boost. Then it is simply the usual change of
coordinates obeying to SR rule, and no deformation is noticed. Therefore a
rescaling occurs, and this one is coherent with time dilation between R and
R1. Therefore from equations (6) (7) and (8), if α and β are respectively the s
rescaling of ct and x, there is α2 � β�2 � 1� v2{c2.

Hence the complete deformation is described by bvs. Of course this defor-
mation results from the assumption that equations (6) (7) and (8) are valid. But
those equations themselves result, indirectly, from this particular deformation.
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Therefore what is required is a check of the coherence of the whole study, at the
end of it. And the whole study will be coherent indeed.

In the present document, it will be written abusively that the local deforma-
tion is described by a boost. Indeed, only the context will allow to deduce if a
rescaling occurs also, or not.

4 Uniformly moving relativistic particle: local deformation

Let’s prove that the deformation in C is the bC boost associated with the speed
of light along the D line in the direction of the GW propagation.

Starting from appendix 3, taking the limit when v tends to c, the result is
obtained. As usual the interchange of limits theorem is used. The simple con-
vergence is enough for it to work since the studied deformation is only local.

5 Relation between the boost and the speed of a gravitational wave

It will be assumed that the speed of a GW is a given v positive possible value
with respect to the R frame. Generally, what is the relation between v and the V
speed which is associated with the boost describing its propagated deformation
in R? It might be guessed that V � v.

This demonstration is easier to understand in a contradiction way. Let’s
assume the result is wrong. Therefore, it is assumed that the GW speed is v
and that the boost of its deformation is V such as V � v.

Then it is considered a P 1 particle ”surfing” on the GW. That is, P 1 is always
located in close vicinity to a moving M point, where the GW deformation is
maximum, and which is of course in motion with the GW propagation. Let’s
write R1 a frame which is attached to this M point. The local deformation
generated by P 1 is independent of its energy. Indeed, the determination of the
new and old privileged frames before and after the existence of P are given by
SR. There are more details about that at the end of appendix 1. For the same
reason, the local deformation generated by P 1 is also independent of the GW
energy. And it is the same for the GW: its generated deformation is independent
of its energy and of the P 1 energy. Therefore, in R1, P 1 generates locally a
deformation which is noticed because V � v. If P 1 energy is low enough, then
the P ’ local deformation transforms more globally into the GW deformation
which is a null deformation in R1. In other words, in R1, locally it appears a flat
Minkowskian space-time, and also a smaller space-time deformation locally to
P 1. In R1, locally to P 1 a boost is noticed, associated with a w speed which is not
null (w is the relativistic substraction of v by W ). But the fact that a space-time
structure is generated by a GW or a particle does not modify the following rule:
with respect to a frame, a particle or a GW modifies locally space-time structure
with the boost which is associated with its speed. And the reverse is true: with
respect to a frame, a particle or a GW modifying space-time structure with the
boost associated with the w speed is in motion with the w speed. Applying this
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rule here, it results that P 1 is in motion in R1 at the w speed which is not null. A
contradiction arises. This proves the above claim.

6 Uniformly moving relativistic particle: propagation of the defor-
mation along the trajectory

Let’s deduce the following, from the result of appendix 4.
The deformation of P in C propagates along the D line in the same direction

as the motion of P and is described by bC which is associated with the speed of
light in the same direction.

This can be noticed as soon as P deviates from this D line trajectory. First of
all, the GW generated by P propagates along the D line for symmetry reasons.
The propagation speed is the speed of light as assumed by assumption (I). And
the propagated local deformation is bC : the demonstration is the same as in
appendix 5. Or it is possible to use appendix 5 in the non relativistic case and
then taking the limit to the relativistic case.

7 Uniformly moving particle: propagation of the deformation ev-
erywhere

The same context and notations as in paragraph 5 are used. Let’s assume first
that P is non relativistic. Therefore P moves with a v speed in the R frame,
with v   c. In the R1 frame attached to P , the GW propagates along a space
sphere centered in P , along the C 1l half lines, C 1 being the space location of P
in R1, and l being any possible space direction in R1. Locally to any M space
point on such a sphere, the GW appears to be a plane wave. The calculations in
literature shows only that the propagation speed is the speed of light if the GW is
weak (when the modification of the metric is far weaker thant the metric itself).
Therefore this can’t be applied here. Nevertheless, assumption (I) is easier to
assume here than in the general case. And in a given R frame in which D is
at rest, the GW still propagates at the speed of light. The trajectories of this
propagation from C 1 to M in R1 transform into the same trajectories. And the
propagation speed is still the speed of light. Let’s write EC a space-time event
having the C space location (therefore the P space location) at a given tC time
in R. Let’s write EM an event which is the propagation of the GW generated by
this EC event. In R1 the C 1M space line is a ray of the propagation sphere. It
has been seen that in R1, the speed from EC to EM is the speed of light. In R,
the speed from EC to EM is still the speed of light. But there is {CM,D � π{2,
if the C space point is considered at time tC . This angle will depend of v. And
in R the enveloppe of the propagation is a cone. The CM line is normal to the
cone in M , it is the propagation trajectory from the C space point (at tC in R)
to the M space point.

This remains true when v tends to c. Therefore if P is relativistic, then
in space with respect to R the propagation speed is c{?2 in the Hn direction
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normal to the cone.

8 Final picture for a uniformly moving relativistic particle

This results from the previous appendix. The final picture for a uniformly mov-
ing relativistic particle is that in R the deformation occuring in C at the EC event
propagates along the Hn space direction, at the c{?2 speed. This deformation
is described by the boost associated with the c{?2 speed in the n direction. This
picture is Lorentz invariant.

9 The gravitational wave four-momentums add themselves

Let’s prove that in any x space-time event, the four-momentums of all the GWs
propagating in x add themselves. This will result in the four-momentum which
describes locally space-time structure.

The demonstration will first consider the GWs which are generated by the
Pi particles, for i from 0 to infinity (using the same context and notations as in
paragraph 10). It means that x is in the intersection of only two or three GWs.

Indeed, the set of the space-time locations of the x events such as there exists
only one GW propagating is a set of two dimensional manifolds. For only two
GWs encountering themselves in x, this set is the one dimensional intersections
of those manifolds (two of them). For only three GWs, it is the zero dimensional
intersections (isolated events). Four of more than four manifolds propagating in
the same event is something extremely rare which can be avoided in physics.

The studied distribution of energy is an infinite set of dimensionless parti-
cles. Let’s write R the frame which is the privileged frame in x before all the
GWi occur in x. Let’s suppose that n GWs are propagating and encountering
themselves in a given x space-time event. Let’s write, for i from 0 to n, GWi

the GW having the i indice. For each i, it can be created a Pi particle such
that its momentum counteracts exactly the effect of GWi in x. It means that
the Pi speed is the speed of light, and that its total energy in R is the energy
of GWi in R. It means also that the direction of the Pi motion is opposite to
the motion of GWi. The result of the existence of Pi in x is that Pi and GWi

together yields the same space-time deformation locally in x as if they were not
existing together in x. Therefore the overall effect of all these Pi particles is
such that it cancels the space-time deformation generated by all the GWi. But
the sum of all the Pi particles is a big compound object, let’s call it P . So the
space-time deformation of all the GWi is exactly conteracting the space-time
deformation generated by P . But conservation of energy principle states that
the P four-momentum is the sum of the Pi four-momentums. Therefore the
four-momentum of the space-time deformation of the whole set of GWi is the
sum of the GWi four-momentums.
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(21)

Fmpq is a function giving the four-momentum of a particle or a GW. This is
the end of the proof.

10 The free falling particle in the Schwarzschild metric

Let’s prove that in the Schwarzschild metric, a P1 free falling particle, being
at rest when located infinitely far from the P particle which is located in the
center of the symmetry, having an infinitely small energy, (or an energy weak
enough in order not to modify its free fall trajectory), follows a time line which
is transformed by equations (6) (7) and (8). The same context and notations as
in paragraph 11.3 are used. Notably the R0 frame is attached to P .

The P1 trajectory is from the start aligned with the time axis of the new and
old privileged frames of P (from the start those frames are the same). Since the
privileged frame is inertial, the P1 trajectory is exactly the time line described
by the time axis of the new privileged frame. This appears to be the end of the
demonstration. Indeed, one can assume that the deformation generated by P1

is the same as the gravitational deformation generated by P . This would result
from a complete coherence of GR. But let’s prove that coherence directly here.

For this, in the R1 frame which is attached to P1, let’s study another P2

particle which always stays infinitely close to P1 and which has an energy at rest
far weaker than the P1 rest energy. P2 follows the same trajectory as P1. And
this can be understood as only the result of the space-time deformation of P1.
Indeed, P2 energy is far weaker than P1 energy, and P2 is always close to P1. It
must be noticed that the space-time gravitational deformation generated by P is
without effect locally to P1, completely replaced by the space-time deformation
of P1. The P2 free fall allows to ignore it completely.

Therefore the P1 deformation of space-time is what forces P2 to follow the
same trajectory as P1. The R1 frame attached to P1 is privileged because it’s in-
ertial and also because it’s privileged from the start, when P1 is at rest infinitely
far from P . But the P1 deformation is described by the b1 boost associated with
its motion in R0. Now let’s decrease P1 energy to 0, progressively, without mod-
ifying the P2 energy (it does not mean that the conservation of energy principle
is broken). This P1 energy decrease will not change the P2 trajectory. This is
because P1 energy (hence P2 energy, too) has been assumed to be weak enough,
in order to give that result.

Since their energies are allways considered infinitelly small, P1 and P2 are
allways in free fall. Hence their trajectories remain the same whatever is their
energies. Noteably it is true for P2.
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Therefore, the local space-time deformation generated by the P1 motion in
R0, along its trajectory, is the same as the gravitational space-time deformation
generated by P along this trajectory.

The result is that b1 describes the gravitational local deformation generated
by P , along the P1 trajectory. Of course after the execution of b1, a rescaling
is required in order to account for the more global curvature. This ends the
demonstration.

This demonstration can be applied to any energy distribution being a flat
Minkowskian space-time everywhere except for a bounded space-time domain.
Indeed the above demonstration can be re-executed without change for those
generalized energy distributions. The behavior and evolution of the privileged
frame is the behavior and evolution of the free falling particle, having a neglige-
able mass, located infinitely far.

11 An equation of G: calculations

In this appendix an equation of G is tried. Assumptions (i) (ii) (iii) and (iiii) are
assumed. The same context and notations as in paragraph 11.3 are used.

Let’s remind that in the Schwarzschild metric, the fllowing equation relies
the metric to the free fall speed.

g00px1q � 1� v2{c2 (22)

v is the speed of the usual P1 free falling test particle. The validity of equa-
tion (22) comes from assumption (i). Indeed, equations (22) and g00px1q �
1�R{r where R is the Schwarzschild ray of P , r being the distance between P
and the x1 event, are valid together because Newton’s law is assumed to be valid.
Equation (24), which comes further, can be used to confirm that. From equation
(4) and (22), using e � D1pxq{D0pxq, it results the following equation.

g00px1q � 1� 2e

p1� eq2 (23)

Then the geodesic equation of P1 is calculated [8].

B2r
Bτ2 � �c2

2

Bg00
Br (24)

Here r is the space distance between P1 and P , and τ is the proper time of
P1. Replacing g00 by its value given by equation (23), equation (24) becomes
the following one.

B2r
Bτ2 � c2

e

p1� eq3
Be
Br (25)

Then assumption (i) is used, Newton’s law is valid. The asymptotic formula-
tion of equation (25) is yielded, relying Newton’s law with the asymptotic value
of the rhs of equation (25).
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r2
� c2e
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Br (26)

Here M0 is the mass of P . Assumtion (iii) is used. The contribution of P in
equation (3) is far weaker than the sum of the other contributions. Therefore, e is
asymptotically equal to 0 in front of 1. The solution of this differential equation
gives the asymptotic value of e.

e �
c

R

r
(27)

R is the Schwarzschild ray of P . From that is deduced D1pxq{D0pxq �a
R{r. Now, v being the speed of the free falling particle, it is also the speed

which is used in equations (6) and (8). This is shown in appendix 10. Using also
equation (3), it results the following equation.

1wpx, y0qfpx, y0qC0py0q
Σ8n�01wpx, ynqfpx, ynqC0pynq �

c
R

r
(28)

It has been supposed that the y0 virtual particle is the only one pertaining
to P . It was used C0py0q � C1py0q, which reflects the fact that Cµ is a null
four-momentum.

Under (iii) assumption, the denominator of equation (28) is constant, that is,
independant of the x location. Therefore this equation shows that the 1wpx, y0q
fpx, y0qC0py0q contribution is proportional to 1{?r. Under the (ii) assumption,
it can be deduced that the 1wpx, ynqfpx, ynqC0pynq contributions are propor-
tional to 1{a|x� yn}3. }x� yn}3 is the space length calculated in a covariant
way along the yn to x geodesic and observed in x, in R0.

Also x, and therefore r being constant, the 1wpx, y0qfpx, y0qC0py0q con-
tribution is not proportional to C0pynq but proportional to

?
R, therefore toa

C0pynq. This is in contradiction with the hypothesis at the construction of
equation (3). Here it is noticed a proportionnality to the square root of an en-
ergy. The answer to this contradiction is that the final picture is coherent. For
example the effective energy of any GW brought by Cpynq is calculated from
the geodesic equation which derives from the metric. And at the end of it, the
C0pynq contribution will be multipied by itself in order to give the effective
energy of this GW.

Therefore one can replace each 1wpx, ynqfpx, ynqC0pynq contribution of
equation (28) by 1wpx, ynq

a
C0pynq{}x� yn}3. The result is the following.

1wpx, ynq
b

C0py0q
r

Σ8n�01wpx, ynqfpx, ynq
b

C0pynq
{}x�yn}3

�
c

R

r
(29)

It can be used R � 2M0G{c2 and C0py0q � M0c
2, in order to transform

equation (29) into the following one.
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G � c4

2
�
Σ8n�01wpx, ynq

b
C0pynq
}x�yn}3

	2 (30)

Now it is possible to use this result with VGWs. It means that the energy
distributions of the Pi are replaced by the limits of the Si

n distributions, as shown
by equation (2). The result is equation (10), which is equation (30), without the
1wpx, ynq terms. Indeed, in any given x and yn space-time events, it is possible
to find a m and a Sn

m distribution centered on yn, such as the GW, generated
by the relativistic virtual particle of Sn

m, propagates in x. Moreover, this Sn
m

distribution can be chosen with a circle’s ray as weak as we want (remember that
those Sn

m distributions are circle like trajectories of relativistic virtual particles).
Another argument allowing to erase the 1wpx, ynq terms is that after the limits
of equation (2) are done, each x space-time event is reached by the VGWs of
each Pn particle.
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