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BOB ROSS

Abstract. Proof of this conjecture has been elusive for over 60 years. The key to a proof was to find the
right combination of logic and equations to complete the proof. We section the Natural numbers into 3

mutually exclusive sets. We first assume that for the first set that there is a number in the set that does
not obey Collatz and show this cannot be true since it leads to a contradiction. Using this result we show

that the other 2 sets must also obey Collatz

1. Introduction

1.1. Collatz. Long considered unsolvable the Collatz Conjecture is simple to understand but difficult to
find an attack or method to prove, although believed it to be true. We show in this proof that it is indeed
true. We first show a number of Lemmas that can be used to establish the proof.

2. Definitions

Definition 2.1. The Collatz Conjecture Function for x ∈ N

f(x) =

{
x
2 x = even
3x+1

2 x = odd

when applied to a root, x, and subsequent results will always create a sequence that includes the number
1. We use 3x+1

2 instead of 3x + 1 since 3x + 1always results in an even number and we avoid one step of
dividing by 2. We can think of the function as providing a sequence of elements of N, as follows: f(x0)=x1,
f(x1)=x2, f(x2)=x3, ..., xn. Numbers that obey the Collatz Conjecture will have xn=1 for some index value.

Definition 2.2. root This term is given to the initial value used to apply the Collatz function. The result
is the first element of a sequence (index of 1 for the sequence. Applying the Collatz function to each prior
result to form a sequence. If the number 1 is reached, the sequence will end since the sequence values would
loop with 1 2 1 forever.

Definition 2.3. index n. This is the index for a sequence created by applying the Collatz function. It
represents the position in the sequence with the root as position 0. There may be reasons to stop the
sequence at some specified index value.

Theorem 2.4. The Collatz Conjecture for x ∈ N, the function

f(x) =

{
x
2 x = even
3x+1

2 x = odd

when applied to a root x ∈ N and subsequent results will always create a sequence that includes the number
1. We use 3x+1

2 instead of 3x + 1 since 3x + 1 always results in an even number and we avoid one step of
dividing by 2.

Lemma 1. If the Collatz function is applied to a root x ∈ N in order to create a sequence of numbers, x1, x2,
x3, . . ., xn, that for some index, n, results in a sequence value of 1, then all of the numbers in the sequence
are thereby proven to have a 1 in their sequence for some index number. This satisfies the requirements for
both numbers to satisfy the requirements if the Collatz Conjecture. Thus all numbers in such a sequence
would satisfy the conjecture if the root does.
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Proof. If we create, using the Collatz function, a sequence a starting with a root of x0 that has for some
index number n, a value of xn = 1, and for an index m, between 0 and n, a value of xm, then using xm as
root to create a sequence using the Collatz function, must produce the same sequence for index numbers 0
thru n-m as x0 did for sequence numbers m thru n.This is because all of the same operations are performed
from xm to get a sequence element of 1 in both cases. □

Lemma 2. Useful properties of odd number set A5: For the odd number set A5 = {x | x = 22 + 1 + 22p},
and p ∈ N, 3x+1

2 is always an even number. Also, dividing that even number by 2 until an odd number results
will produce an odd number smaller than the original number.

Proof. Let x1 = 22 + 1 + 22p, p ∈ N
f(x1) =

3(22+1+22p)+1
2

= 23+22+22+(23+22)p
2

= 22 + 2 + 2 + (22 + 2)p
= 23 + (22 + 2)p = x2 which can never be an odd number.
Dividing x2 by 2 gives x3 = 22 + (2 + 1)p
∴ x3 is less than x2 is less than x1 □

Lemma 3. Useful properties of odd number set A3: Define the odd number set A3 = {x | x = 22 − 1+22p},
p ∈ N.
Set A3 can also be defined as {x | x = xik11}, k1 is odd, i ≥ 2. If x ∈ A3,

3x+1
2 never results in an even

number.

Proof. Let x = 22 − 1 + 22p, we calculate 3x+1
2 as follows:

23+22−3+1+(23+22)p
2 = 22 + 2 + (22 + 2)p− 1 which is always odd.

Also, 22 − 1 + 22p = 22(1 + p)− 1.
Let 1 + p = k0, then 22(1 + p)− 1 = 22k0 − 1.
∃k1 and m, so that k0 = 2mk1, and k1 is odd,
∴ 22k0 = 2ik1, where k1 is odd and i=2+m □

Example 2.5. (for example) Let p be any odd number, then 1+p, is always an even number. If p = 9, then
22 − 1 + 22p = 4− 1 + 4(9) = 39, k0 = (2)(5), so
k1 = 5, m = 1, 22k0 − 1 = 22(2)(5)− 1 = 39, i = 3

Lemma 4. For x ∈ N, 3x+ 1, is always even.

Proof. For x, y ∈ N, let x = 2y + 1
3x + 1 = 3(2y + 1) + 1 = 6y + 3 + 1 = 6y + 4, which is always even. For this reason we can shorten the
number of steps by using 3x+1

2 instead of 3x+ 1 for odd numbers in defining the function of Collatz □

Lemma 5. ∀x ∈ A3 we may develop a formula for creating the values of of any particular sequence number
for a sequence based on the initial x value to start and the sequence number. Such a formula can be used as
long as subsequent elements are odd. The formula breaks after the first appearance of one odd number from
A5 and the next value which will be even. ”Breaks” only means that the formula cannot be used for sequence
number values beyond this point, but that does not matter since we have met a goal of finding a sequence
value from A5 The sequence number values would be seen as follows for the given sequence numbers. Where
n is the sequence number n ≥ 3

(1) f(x) =
3n(x) + 3n−1 + 3n−2(2) + 3n−3(22) + · · ·+ 3(2n−2) + 2n−1

2n

Proof. (1) 3x+1
2

(2) 32(x)+3+2)
22

(3) 33(x)+32+3(2)+22

23

Continuing in this fashion results in the f(x) above for the n’th sequence value. This is assuming that
there are no even numbers in the sequence until possibly the last one. If and when an even number is in
the sequence, one can calculate no further with this equation since it is developed to only apply 3x+1

2 to get
sequence values. □
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Lemma 6. For n ∈ N, 3n can be expanded to a generalized form as follows
n ≥ 3
3n = 3n−1 + 3n−2(2) + 3n−3(22) + · · ·+ 2n−1 + 2n

Proof.

3n = 3n−1 + 3n−1 + 3n−1

= 3n−1 + 3n−1(2)

= 3n−2(6) + 3n−1

= 3n−1 + 3n−2(2) + 3n−3(12)

= 3n−1 + 3n−2(2) + 3n−3(22) + 3n−4(24)

= + · · ·+
= 3n−1 + · · ·+ 2n−1 + 2n−1 + 2n−1

= 3n−1 + 3n−2(2) + 3n−3(22) + · · ·+ 2n−1 + 2n

Note that it is helpful to compare the last general formulas visually.

3n = 3n−1 + 3n−2(2) + 3n−3(22) + · · ·+ 2n−1 + 2n(2)

f(x) =
3n(x) + 3n−1 + 3n−2(2) + 3n−3(22) + · · ·+ 3(2n−2) + 2n−1

2n
(3)

□

Lemma 7. For x = x0 ∈ A3, as a root for a sequence using the Collatz function, 3x+1
2 , is in A5, when p

is even. Then, x1 ∈ A5 and x2 is an even number. And conversely, if an even number is at index 2 when
starting with any odd root from A3, then, x1 ∈ A5.

Proof. Let x = 22 − 1 + 22p, let p=2t
3x+1

2 = 22(3)−3+22(6t)+1
2

= 22+22+2+2−2+22(6t)
2

= 23+2+22(6t)
2 = 22 + 1 + 22(3t). Let 3t = c, then 32 + 1 + 22c, which is the definition of A5 By Lemma 3,

above /srt never results in an even number when x ∈ A3. □

Proof. We now use the above Lemmas to prove the Collatz Conjecture.
The first elements of N can be calculated and shown to obey the Conjecture. Assume ∃x0 ∈ A5, that does

not satisfy Collatz. Then, since A5 is an ordered set, there must be a smallest such number. But, by Lemma
2, if x0 is the root f(x0) results in a smaller odd number, xs, as the next odd number in the sequence, which
by Lemma 1 forces a contradiction. By assuming that xs satisfies Collatz, we have assumed that if we use it
as root to generate a sequence, the sequence will contain a 1. Since xs is in the sequence for x0, this forces a
1 into the sequence for x0 as a root. Since the element of A5 chosen for the root can be any number in A5,
all of A5 satisfies Collatz by Lemma 1.

If there is to be an odd number that does not satisfy Collatz, then it must be found in A3. For x0 ∈ A3

and x = 22 − 1 + 22p, consider two possibilities. For p as an even number, we saw from Lemma 7 that for
the sequence at index position 1, x1 ∈ A5. From Lemma 1 and the fact that all numbers in A5 obey Collatz,
we conclude that these numbers from A3 obey Collatz.

We now consider the remainder of the members of A3, where p is odd. From Lemma 3, we know that
members of A3 never result in an even number when 3x+1

2 is applied once. From Lemma 2 we see that

applying 3x+1
2 to a x ∈ A5 results in an even number. Thus, if we apply the Collatz Function to start a

sequence with x0 ∈ A5 , and if we find at index, i, of the sequence, the first even number in the sequence,
then the number at index i-1 is from A5. Again, by Lemma 1, the chosen x0 ∈ A3 would be proven to obey
Collatz. Our next goal then is to show that for any x ∈ A3, we can find a first even number in the sequence.
and we need to only look at index i ≥ 3, when p is odd.

The equation 3, above, was developed with the assumption that applying Collatz starting with a root
does not need to use any part of the Collatz function except 3x+1

2 . Since members of A3 always produce an
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odd number for the sequence we can use this function to find an index where the first even number. If that
index is i, then the sequence value at index i-1 must be a number from A5 by Lemma 7.

If x0 = 22 − 1 + 22p and p is an odd number, in order to find the first even number in a sequence with a
root in A3 we will let x ∈ A3, and use the general function from equation 3, to show that every member of
A3 (that is defined with an odd p) can be shown to have an even number in the sequence in at least sequence
index 3.

(4) f(x) =
3n(x) + 3n−1 + 3n−2(2) + 3n−3(22) + · · ·+ 3(2n−2) + 2n−1

2n

Let x = 2ik1, as described in Lemma 3. Then to get the value at index n evaluate f(x). f(x) =
3n(2ik1)−3n+···+2n−1

2 Using equation 2 to eliminate terms in this result reduces it to f(x) = 3n(2ik1−2n

2n .
Choosing sequence number i and letting n=i,, we get f(x) = 3n(k1) − 1, which is always an even number.
since the product of odd numbers 3n and k1 is always odd and subtracting 1 from that product is always
even. Note that for n less than i we would see an odd number in all previous sequence elements. Since only
elements of A5 can result in in an even number when 3x+1

2 is applied to it, and since all of that set obeys
Collatz, we have a sequence element that obeys Collatz at index i-1. By Lemma 1, we have verified all of
the set A3 as obeying Collatz. Let Ae be the set of all even numbers in N. When the Collatz function is
applied to any x0 ∈ Ae, the function causes the root to be divided by 2 until an odd number xb ∈ A3 ∪ A5

is obtained at some index of b. Since the element at index b is anumber in the the sequence that obeys
Collatz, by Lemma 1, so does x0.

Since N = Ae ∪ A3 ∪ A5, and since we have shown that all elements of those sets must obey Collatz, we
have proven that Collatz is proven for all of N

□

Independent Researcher

Email address: sekyharlp@proton.me

4


