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Abstract. This is a discussion of miscellaneous summation, integration and transformation formulas
obtained using Fourier analysis. The topics covered are: Series of the form

∑
n∈Z cne

πiγn2

; Fusion of inte-
grals, and in particular fusion of q-beta integrals related to Gauss-Fourier transform, and a related family
of eigenfunctions of the cosine Fourier transform; Summation formulas of the type

∑
n≥1

χ(n)
n

ϕ(n) with
Dirichlet characters; Trigonometric Fourier series expansion of hypergeometric functions of the argument
sin2 x; Modifications of the inverse tangent integral and identities for corresponding infinite products.

1. Series with general term cne
πiγn2

1.1. Consider the series of the form
∞∑
n=1

cne
πin2/a. (1)

Ramanujan has studied (1) with coefficients cn ([6], [38], [39])

1

n2
,

n

e2πn − 1
,

1

cosh(πn/
√
a)
,

and many others. A complete description of (1) is given when a is a positive integer by the following fact:
If f(x) has period 1 and its Fourier series expansion is

f(x) =
∑
n∈Z

cne
2πinx,

then ∑
n∈Z

cne
πin2/a =

eπi/4√
a

a∑
r=1

f
(r
a
− 1

2

)
e−πia(1/2−r/a)

2
, a ∈ N,

=
eπi/4√
a

a∑
r=1

f
(r
a

)
e−πir

2/a,
a

2
∈ N. (2)

This allows one to reduce the series (1) to a finite sum when a ∈ N and the function f(x) is known
explicitly. This fact is generally well known and the idea behind it is due to Dirichlet [3]. The case
f(x) = 1 gives the value of the Gauss sum

eπi/4√
a

a∑
r=1

e−πir
2/a = 1,

a

2
∈ N. (3)

As another illustration, we apply it to the sequence c0 = 0, cn = 1/2n2 (n 6= 0), in which case f(x) is
known

π2
(

1

6
− x+ x2

)
=
∞∑
n=1

cos(2πnx)

n2
, 0 ≤ x ≤ 1.

Substituting this into (2) and simplifying the result using (3) yields
∞∑
n=1

eπin
2/a

n2
=
π2

6
− π2√

a

a∑
r=1

r

a

(
1− r

a

)
eπi/4−πir

2/a,
a

2
∈ N.

This was recorded in Ramanujan’s Lost Notebook ([6], section 10.3) and first proved in [14] by different
methods, where it was also generalized to sums with cn = n−2m.
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1.2. Direct derivation of the fact above based on multisection (also called Simpson dissection, e.g., [3])
requires calculation of certain Gauss sums (see [14] for a similar calculation when cn = n−2m). However, a
method based on Poisson summation formula avoids calculation of Gauss sums. This method is sketched
below. We use Poisson summation formula in the form [3]∑

n∈Z

g(x+ n− 0) + g(x+ n+ 0)

2
=
∑
n∈Z

e2πinx
∫ ∞
−∞

g(t)e−2πintdt. (4)

Writing the sum as an integral we have, assuming a ∈ N:
e−πi/4√

a

∑
n∈Z

cne
πin2/a =

∫ ∞
−∞

f(t)e−πiat
2
dt (5)

=
∑
n∈Z

∫ 1/2

−1/2
f(t)e−πia(t+n)

2
dt

=
1

a

∑
n∈Z

e−πian
∫ a/2

−a/2
f(t/a)e−πit

2/ae−2πintdt

=
1

a

a∑
n=1

f

(
n

a
− 1

2

)
e−πia(

n
a
− 1

2)
2

.

Here, the last equility is the application of (4) to the function

g(t) =

{
f(t/a)e−πit

2/a, |t| ≤ a/2,
0, |t| > a/2.

The case a/2 ∈ N can be treated similarly.
1.3. The integral representation of the sum in (5) is valid for any a ∈ R. There is the following curious
identity related to this integral representation: If the real numbers α and β are such that αβ ∈ Z and the
functions f(x) and g(x) have period 1, then∫ ∞

−∞
f(αx)g(βx)eπix

2
dx = e−πi/4

∫ ∞
−∞

f(αx)eπix
2
dx

∫ ∞
−∞

g(βx)eπix
2
dx.

This is due to the fact that if one writes

f(αx)g(βx) =
∑
r∈Z

are
2πiαrx

∑
s∈Z

bse
2πiβsx,

and calculates the resulting integral over x as∫ ∞
−∞

eπix
2+2πix(αr+βs)dx = e−πi/4−πiα

2r2−πiβ2s2 · e−2πiαβrs,

then the term mixing the sums over r and s is

e−2πiαβrs ≡ 1

when αβ is an integer, so the sums over r and s decouple. A less trivial type of factorization is considered
in section 2.2, where we discuss the fusion of q-beta integrals.
1.4. An entry in Ramanujan’s Lost Notebook ([5], Entry 1.7.16) states that: Let a and b be any complex
numbers, and suppose that |xy| < 1. If

φ(a, x, y) =
∞∑
n=0

anxn(n+1)/2

(xy;xy)n
,

then

φ(a, x, y)φ(b, y, x) =

∞∑
n=0

(ax+ byn)(ax2 + byn−1) . . . (axn + by)

(xy;xy)n
.

In the limit x, y → 1−, this identity reduces to the identity∣∣∣∣∣
∞∑
n=0

eiγn
2

n!

∣∣∣∣∣
2

=

∞∑
n=0

2n

n!
(cos γn)n, γ ∈ R, (6)



3

which can be easily verified directly using binomial theorem.
1.5. Another formula similar to (6) is∣∣∣∣∣∑

n∈Z

eπiγn
2

p2 + 4π2n2

∣∣∣∣∣
2

=
1

p sinh p
2

+ 8p sinh p
2

+
∑
n∈Z

2

p2 + π2n2

[
cos
(
πγn2

)
cosh

(
p {γn} − p

2

)
− p

πn
sin
(
πγn2

)
sinh

(
p {γn} − p

2

)]
,

where γ ∈ R, and {x} denotes the fractional part of the real number x. Its continuous counterpart is∣∣∣∣∣
∫ ∞
0

eiαx
2

x2 + 1
dx

∣∣∣∣∣
2

= π

∫ ∞
0

e−2αx

x2 + 4

(
cosαx2 +

2

x
sinαx2

)
dx.

These type of integrals are related to Owen’s T-function [36]

T (h, a) =
1

2π

∫ a

0

e−h
2(1+x2)/2

1 + x2
dx.

Closely related is also entry 7.4.24 in [1].
1.6. If αβ = 1, q = e−πα, then

1

2α

∣∣∣∣∣∑
n∈Z

eπiγn
2

cosh(πβn)

∣∣∣∣∣
2

−
∑
n∈Z

αn

sinh(παn)

= 2
(q2; q2)4∞
(q; q)2∞

∞∑
n=1

(q1+2nγ , q1−2nγ ; q2)∞
(q2+2nγ , q2−2nγ ; q2)∞

sin(πγn2)

sinh(παγn) sinh(πβn)
. (7)

Continuous analog of (7) is a relation between Mordell type integrals∫ ∞
0

sin(γx2)

sinh(πx) sinh(γx)
dx =

∣∣∣∣∣
∫ ∞
0

eiγx
2

cosh(πx)
dx

∣∣∣∣∣
2

.

In terms of elliptic integrals K(k) =
∫ π/2
0

dθ√
1−k2 sin2 θ

, E(k) =
∫ π/2
0

√
1− k2 sin2 θ dθ, k′ =

√
1− k2,

K ′ = K(k′), E′ = E(k′), formula (7) takes the form

4E′

π
+

∞∑
n=1

8i

sn(2iγK ′n, k)

sin(πγn2)

sinh(πKn/K ′)
=

π

K ′

∣∣∣∣∣∑
n∈Z

eπiγn
2

cosh(πKn/K ′)

∣∣∣∣∣
2

.

Series with elliptic functions are studied in the theory of elliptic hypergeometric functions [21]. The sum

f(α) =
∑
n∈Z

eπiγn
2

cosh(παn)

with γ = α2 was studied in [38], where it was shown that certain linear combination of f(α) and complex
conjugate of f(1/α) is a modular function of the variable iα .

2. Fourier-Gauss transform and fusion of integrals

2.1. Two integrals ([4], Entries 16.1.4-5)∫ ∞
−∞

e−x
2+2imx(a

√
q e2kx, b

√
q e−2kx; q)∞ dx =

√
π e−m

2 (ab; q)∞
(−ae2ikm,−be−2ikm; q)∞

, q = e−2k
2
, (8)

∫ ∞
−∞

e−x
2+2imx 1

(−ae2ikx,−be−2ikx; q)∞
dx =

√
π e−m

2 (a
√
q e−2km, b

√
q e2km; q)∞

(ab; q)∞
, q = e−2k

2
, (9)

involving infinite q-products, were proved by Askey using q-binomial theorem [7]. Pastro gave an alterna-
tive proof [34]. Stokman fused these integrals into a single integral with 4 parameters [40]. Note that (8)
and (9) are not independent: If one of them is given, then the other follows by inverse Fourier transform.
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Let us define Fourier-Gauss transform of a function f(x) by the formula∫ ∞
−∞

f(x) e−x
2+2imx dx.

It is a special case of the so called Fourier-Bros-Iagolnitzer transform [20]. Using the value of the gaussian
integral ([24], Entries 4.133.1-2)∫ ∞

−∞
e
−x

2

4γ
+βx+iax

dx = 2
√
πγ eγ(β

2−a2)+2iγaβ. (10)

we find that the action of Fourier-Gauss transform on the exponential function is given by∫ ∞
−∞

e2knx e−x
2+2imx dx =

√
π e−m

2 · ek2n2+2iknx, (11)∫ ∞
−∞

e2iknx e−x
2+2imx dx =

√
π e−m

2 · e−k2n2−2knx. (12)

Now, let un(k) be an absolutely summable sequence, (i.e., a sequence such that
∑

n∈Z |un(k)| <∞), and
define the functions φu(x, k), ψu(x, k) related to this sequence according to

φu(x, k) =
∑
n∈Z

un(k)e−k
2n2+2knx, (13)

ψu(x, k) =
∑
n∈Z

un(k)e2iknx. (14)

It follows from (11) and (12), that the functions (13)–(14) are related to each other by Fourier-Gauss
transform: ∫ ∞

−∞
e−x

2+2imxφu(x, k) dx =
√
π e−m

2
ψu(m, k),∫ ∞

−∞
e−x

2+2imxψu(x, k) dx =
√
π e−m

2
φu(−m, k).

This property of Fourier-Gauss transform was used in [8] to relate different families of orthogonal poly-
nomials to each other.

Thus, (8) and (9) give an example of pair of complementary functions (13)–(14) for a particular choice
of the sequence un(k):

φu(x, k) = (a
√
q e2kx, b

√
q e−2kx; q)∞, (15)

ψu(x, k) =
(ab; q)∞

(−ae2ikm,−be−2ikm; q)∞
. (16)

For a pair of complimentary functions containing 3 parameters, see Entry 1.7.19 in [5].
2.2. Another property of the pair of functions (13)–(14) is given below.
Proposition 1. Let k ∈ R. Let un(k), vn(k) be absolutely summable sequences. For x ∈ R and un(k)
define φu(x, k), ψu(x, k) by (13), (14) and similarly φv(x, k), ψv(x, k) for vn(k). Then for m ∈ R∫ ∞

−∞
e−x

2+2imxφu(x, k)ψv(x, π/k) dx =
√
π e−m

2
φv(−m,π/k)ψu(m, k).

Proof. We write
φu(x, k)ψv(x, k̃) =

∑
r∈Z

ur(k)e−k
2r2+2krx

∑
s∈Z

vs(k)e2ik̃sx.

Then by (10) ∫ ∞
−∞

e−x
2+2imx+2krx+2ik̃sxdx =

√
π ek

2r2−(m+k̃s)2+2ikmr+2ikk̃rs.

Thus, after integration, the mixing of the sums over r and s occurs through the factor e2ikk̃rs only. This
factor equals 1 when kk̃ = π (more generally, when kk̃/π ∈ N), in which case the sums over r and s
decouple. The sum over r results in the factor φv(−m,π/k), while the sum over s results in the factor
ψu(m, k). �

Coupling Proposition 1 with equations (15) and (16) one obtains that for 0 ≤ |a|, |b|, |c|, |d| < 1∫ ∞
−∞

e−x
2 (a

√
q e−2kx, b

√
q e2kx; q)∞

(−ce−2πix/k,−de2πix/k;Q)∞
dx =

√
π

(ab; q)∞(c
√
Q, d
√
Q;Q)∞

(−a,−b; q)∞(cd;Q)∞
, (17)
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where Q = e−2π
2/k2 . This is Proposition 3.1 in [40].

2.3. A family of eigenfunctions of the cosine Fourier transform. Define cosine Fourier transform of the
function f(x) by the formula

Fc(y) =

√
2

π

∫ ∞
0

f(x) cos(xy) dx.

It follows from Proposition 1, that for a suitable set of parameters it is possible to obtain functions that
are their own Fourier transforms (eigenfuntions of the Fourier transform): If

f(x) = e−x
2/2

∞∑
r=0

ur e
−πr2 cosh

(√
2π rx

) ∞∑
s=0

us cos
(√

2π sx
)
,

g(x) = e−x
2/2

∞∑
r=0

ur e
−πr2 sinh

(√
2π rx

) ∞∑
s=0

us sin
(√

2π sx
)
,

then
Fc(x) = f(x), Gc(x) = −g(x).

For example

f(x) = e−x
2/2 (a

√
q e−

√
2πx, a

√
q e
√
2πx; q)∞

(−ae−
√
2πix,−ae

√
2πix; q)∞

, q = e−2π,

satisfies Fc(x) = f(x).
2.4. According to generalized Plancherel’s theorem, it follows from Proposition 1 that∫ ∞

−∞
e−2x

2
φu(x, k)ψv(x, π/k)φξ(x, k)ψη(x, π/k) dx

=

∫ ∞
−∞

e−2x
2
φv(−x, π/k)ψu(x, k)φη(x, π/k)ψξ(−x, k) dx.

Calculation of such integrals when φ is a function of the type (13) was discussed in [41], r = 2 case of
equation (4.1). Integrals in the right hand side of equation (4.1) in Suslov’s article are calculated using a
trick due to Bailey [9]. The result is an integral with 8 parameters expressed as a sum of two products of
two basic bilateral series 2ψ2 with bases q = e−2k

2 and Q = e−2π
2/k2 , respectively. In fact, the r = 2 case

of equation (4.1) is a generalization of modular transformation formula for Appell-Lerch sums [22]. This
is because Appell-Lerch sums have representation in terms of 2ψ2 [17].

A particular case of the said general 8 parameter integral is: Let k > 0, q = e−2k
2, Q = e−2π

2/k2 ,
a = e2kα, b = e2kβ, arg (ab) < π. Then∫ ∞

−∞
e−x

2

(
qae2kx, qbe2kx; q

)
∞(

−√qabe2kx,−√qe−2kx/ab; q
)
∞
dx =

√
π(

−√qa,−√q/a,−√qb,−√q/b; q
)
∞

− π

k2

√
πa

qb

eiπ(α+β)/k−2αβ−β
2

(q3Q)1/8 (q; q)4∞

∑
n∈Z

bnqn
2/2

1 + aqn−1/2

∑
n∈Z

e−2πiαn/kQn
2/2

1 + e2πiβ/kQn−1/2
. (18)

Using properties of Appell-Lerch sums one can deduce from (18) that the integral

I(α, β, k) = q1/12e(α+β)
2/2

∫ ∞
−∞

(
qe2k(x+α), qe2k(x+β); q

)
∞(

−√qe2k(x+α+β),−√qe−2k(x+α+β); q
)
∞
e−x

2
dx, q = e−2k

2
,

has the following non-trivial symmetries

I(α, β, k) = I(−iα, iβ, π/k) = I(−α,−β, k).

3. Series with general term χk(n)
n f(αn)

3.1. The formal identity
∞∑
n=0

(−1)n {ϕ(2n+ 1) + ϕ(−2n− 1)}
2n+ 1

=
π

2
ϕ(0), (19)
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was considered by Ramanujan. It was put on a rigorous ground in [11], p.95-96. One of the conditions for
the validity of formulas of this type is that ϕ(z) must be an entire function with bounded growth rate, i.e.
|ϕ(z)| < Ceπ|z|/2, |z| → ∞. Berndt proves this theorem by applying contour integration to the function

f(z)

z cos(πz/2)
.

One may consider
f(z)

z sin(π(z − s)) sin(π(z + s))
,

where f(z) is an even entire function with bounded growth rate |f(z)| < Ce2π|z|, |z| → ∞, and by a slight
change of Berndt’s argument deduce ∑

n∈Z

f (n+ s)

n+ s
= π cot(πs)f(0). (20)

When ϕ is an even function, (19) becomes

∞∑
n=0

(−1)nϕ(2n+ 1)

2n+ 1
=
π

4
ϕ(0). (21)

If we set s = 1/4 in (20) and rearrange the terms of the series (assuming it is justified) we obtain

∞∑
n=0

(
f(n+ 1/4)

4n+ 1
− f(n+ 3/4)

4n+ 3

)
=
π

4
f(0). (22)

This is the same as (21) under the identification f(x) = ϕ(4x). An interesting discussion of (19) is
contained in [23], where it is generalized to a sum over roots of Bessel functions.
3.2. According to Paley-Wiener theorem, the set of entire functions f(z) with bounded growth rate
|f(z)| < Ceσ|z|, |z| → ∞, that are square integrable on the real axes, coincides with the set of functions
Bσ that admit representation

f(x) =

∫ σ

−σ
eixtϕ(t)dt,

with ϕ(t) square integrable on [−σ, σ]. In other words, f(x) is a function whose Fourier spectrum is
limited to the band |t| < σ. Thus (20) is also valid for even band limited functions f(x) ∈ B2π. However,
it is instructive to give a proof of (20) for band-limited functions which is independent of the Paley-Wiener
theorem. Our starting point is the fact that the series

S(x) =
∑
n∈Z

cos (2πx(n+ s))

n+ s
= π cot(πs), x, s ∈ (0, 1), (23)

represents a piecewise continuous function ([24], entries 1.445.5-6; also, section 4.1).
Let f(x) be an even band-limited function

Fc(y) = 0, |y| > 2π.

Multiplying (23) by
√

8πFc(2πx) and integrating with respect to x from 0 to 1, using

√
8π

∫ 1

0
Fc(2πx) cos (2πx(n+ s)) dx =

√
2

π

∫ ∞
0

Fc(y) cos (y(n+ s)) dy = f(n+ s),

√
8π

∫ 1

0
Fc(2πx)dx =

√
2

π

∫ ∞
0

Fc(y)dy = f(0),

we recover (20). Formula (19) for band limited functions was studied in [47], equation (2.5).
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3.3. General sampling theorems twisted by Dirichlet characters were studied in [26]. Note that (22)
may be written as

∞∑
n=1

χ4(n)

n
f(n/4) =

π

4
f(0),

where χ4(n) = sin πn
2 is the odd Dirichlet character modulo 4. Notice that the coefficient π/4 on the left

hand side is the value of the Dirichlet L-series for the character χ4(n). We wish to generalize this formula
for other odd Dirichlet characters.

Let χk(n) be any k-periodic odd sequence

χk(n) = χk(n+ k), χk(k − n) = −χk(n). (24)

In particular, equations (24) are satisfied by odd Dirichlet character χk(n) modulo k. Let Lk(s, χk) be
the corresponding Dirichlet L-series

Lk(s, χk) =

∞∑
n=1

χk(n)

ns
.

Now, we set s = l/k in (20), where l is an integer such that 0 < l < k, and then rewrite the right hand
side using partial fractions expansion of the cotangent function

∞∑
n=0

(
f((nk + l)/k)

nk + l
− f((nk + k − l)/k)

nk + k − l

)
=

∞∑
n=0

(
1

nk + l
− 1

nk + k − l

)
f(0).

It immediately follows from this that
Proposition 2. Let f(z) be an even band limited function f(z) ∈ B2π. Let the sequence χk(n) be a
k-periodic odd sequence (24). Then

∞∑
n=1

χk(n)

n
f(n/k) =

∞∑
n=1

χk(n)

n
f(0). (25)

In particular, if χk(n) is an odd Dirichlet character mod k, then

∞∑
n=1

χk(n)

n
f(an/k) = Lk(1, χk)f(0), 0 ≤ a ≤ 1. (26)

As an example, consider the function

f(x) =
sin
√
b2 + (2πx)2√

b2 + (2πx)2
.

It follows from Entry 3.876.1 in [24]∫ ∞
0

sin
√
b2 + x2√

b2 + x2
cos(xy) dx =

{
π
2J0

(
b
√

1− y2
)
, 0 < y < 1,

0, y > 1,

that f
(
x
2π

)
∈ B1, and thus f(x) ∈ B2π. Hence, it follows from (26) that

∞∑
n=1

χk(n)

n

sin
√
b2 + (an/k)2√

b2 + (an/k)2
= Lk(1, χk)

sin b

b
, 0 ≤ a ≤ 2π. (27)

The k = 4, a = 2π case of (27) was recorded in [23] as

∞∑
n=0

(−1)n

2n+ 1

sin
√
b2 + π2(n+ 1/2)2√

b2 + π2(n+ 1/2)2
=
π

2

sin b

b
.
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3.4. We continue to study the sum (21). Define the sine Fourier transform Fs of the function f as

Fs(y) =

√
2

π

∫ ∞
0

f(x) sin(xy)dx.

Note the Poisson summation formula for the odd Dirichlet character χ4(n) = sin πn
2 modulo 4 [42]

√
α
∞∑
n=1

χ4(n)f(αn) =
√
β
∞∑
n=1

χ4(n)Fs(βn), αβ =
π

2
.

Proposition 3. If αβ = π
2 , then
∞∑
n=1

χ4(n)

n
f (αn) = β

√
π

2

∫ ∞
0

(−1)bt+
1
2
cFc(2βt)dt.

Proof. Our proof follows the proof of formula (1.6) in the article [23]. We start from the Fourier series
expansion

(−1)bt+
1
2
c =

4

π

∞∑
n=1

χ4(n)

n
cos(πnt). (28)

Multiplying it with Fc(2βt) and integrating we find

β

√
π

2

∫ ∞
0

(−1)bt+
1
2
cFc(2βt)dt = 2β

∞∑
n=1

χ4(n)

n

√
2

π

∫ ∞
0

Fc(2βt) cos(πnt) dt

=
∞∑
n=1

χ4(n)

n
f

(
πn

2β

)
,

as required. �
3.5. Note the Poisson summation formula for the odd Dirichlet character χ3(n) =

(
n
3

)
modulo 3 [42]

√
α
∞∑
n=1

χ3(n)f(αn) =
√
β
∞∑
n=1

χ3(n)Fs(βn), αβ =
2π

3
.

Proposition 4. Let α and β be real numbers such that αβ = 2π
3 , and let χ3(n) denote the odd Dirichlet

character mod 3. Then
∞∑
n=1

χ3(n)

n
f (αn) = β

√
2π

3

∫ ∞
0

ε(t)Fc(3βt)dt,

where
ε(t) =

{
−2, when t ∈

(
n+ 1

3 , n+ 2
3

)
, n ∈ Z

1, otherwise

}
.

Proof. Analogous to the proof of Proposition 3, using the Fourier series

ε(t) =
3
√

3

π

∞∑
n=1

χ3(n)

n
cos(2πnt)

instead of (28). �
Propositions 3 and 4 can be generalized to other Dirichlet characters. However, the functions ε(t) will

become more convoluted.
3.6. We consider several examples illustrating Propositions 3 and 4.
Example 1. The function

h(x) =
1

cosh
(√

π
2x
) (29)

is self-reciprocal, i.e. it satisfies Hc(x) = h(x) [42]. We have ([12], chapter 14, Entry 15)
∞∑
n=1

χ4(n)

n
h(αn) +

∞∑
n=1

χ4(n)

n
h(βn) =

π

4
, αβ =

π

2
. (30)

Combining the above facts with Proposition 3 we arrive at

α

∫ ∞
0

(−1)bt+
1
2
c

cosh(παt)
dt+ β

∫ ∞
0

(−1)bt+
1
2
c

cosh(πβt)
dt =

1

2
, αβ = 1. (31)
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This formula is in fact a different form of the Jacobi’s imaginary transformation for the modular angle.
When α = β = 1 we get the closed form ∫ ∞

0

(−1)bt+
1
2
c

cosh(πt)
dt =

1

4
.

Example 2. Consider the self-reciprocal function [42]

h(x) =
1

1 + 2 cosh
(√

2π
3 x
) .

It is known that (see footnote on page 4 in [25])
∞∑
n=1

(−1)n−1

n

sinh πny
a

sinh πnb
a

sin
πnx

a
+
∞∑
n=1

(−1)n−1

n

sinh πnx
b

sinh πna
b

sin
πny

b
=
πxy

ab
.

Simplifying further by setting x = a/3 and y = b/3 one obtains
∞∑
n=1

1

n

(n
3

) 1

1 + 2 cosh 2πbn
3a

+
∞∑
n=1

1

n

(n
3

) 1

1 + 2 cosh 2πan
3b

=
π

9
√

3
. (32)

Hence
∞∑
n=1

χ3(n)

n
h(αn) +

∞∑
n=1

χ3(n)

n
h(βn) =

π

9
√

3
, αβ =

2π

3
.

Thus, it follows from Proposition 4 that

α

∫ ∞
0

ε(t) dt

1 + 2 cosh(2παt)
+ β

∫ ∞
0

ε(t) dt

1 + 2 cosh(2πβt)
=

1

6
√

3
, αβ = 1.

The case α = β = 1 results in the closed form∫ ∞
0

ε(t) dt

1 + 2 cosh(2πt)
=

1

12
√

3
.

Example 3. Another integral evaluation is∫ ∞
0

arctan
(
e−παt

)
− arctan

(
e−πβt

)
t

(−1)bt+
1
2
c dt =

π

8
log

β

α
, αβ = 1. (33)

This formula is more interesting than the integrals considered in examples 1 and 2 because in each
region of continuity of the function (−1)bt+

1
2
c, the integrand does not have a closed form anti-derivative.

Differentiation with respect to α under the integral sign reduces (33) to (31). A similar formula may be
deduced from Example 2. Note also that according to Frullani’s formula∫ ∞

0

arctan
(
e−παt

)
− arctan

(
e−πβt

)
t

dt =
π

4
log

β

α
.

3.7. Though not a direct consequence of Propositions 3 and 4, the following integral evaluation is based
on the same principles ∫ ∞

0

(−1)bt+
1
2
c

cosh(πt)
eπit

2
dt =

1

2
√

2
. (34)

Using the formula ([24], entries 3.989.3-4)∫ ∞
0

cos(πat)

cosh(πt)
eπit

2
dt =

ie−πia
2/4 + e−πi/4

2 cosh πa
2

,

(34) is reduced to the symmetric case of the sum (30). To study more general integrals we will need
Proposition 5. The functions of the form f(x) = S

(
x√
2π

)
cos x

2

2 , g(x) = S
(

x√
2π

)
sin x2

2 , where

S(−x) = S(x), S(1− x) = −S(x),

(i.e., S(x) is a 2-periodic function, even with respect to integer points, and odd with respect to half integer
points) are self-reciprocal under cosine Fourier transform with eigenvalues 1 and −1, respectively:

Fc(x) = f(x), Gc(x) = −g(x).
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Proof. S(x) has Fourier series representation

S(x) =
∞∑
n=0

cn cos (πx(2n+ 1)) .

Defining h(x) = S
(

x√
2π

)
eix

2/2, assuming that termwise integration of the series is possible, and calculating
the integral using (10), we get

Hc(x) =

√
2

π

∞∑
n=0

cn ·
∫ ∞
0

eit
2/2 cos

(√
π
2 (2n+ 1)t

)
cos(xt)dt

=

√
2

π

∞∑
n=0

cn ·
√
πi

2
e−ix

2/2−πi(2n+1)2/4 cos
(√

π
2 (2n+ 1)x

)
.

To simplify the summand we note that e−πi(2n+1)2/4 = e−πi/4 for integer n, and get

Hc(x) = e−ix
2/2

∞∑
n=0

cn cos
(√

π
2 (2n+ 1)x

)
= e−ix

2/2S
(

x√
2π

)
,

from which the claim follows. �
Example. Taking S(x) = (−1)bx+

1
2
c in Proposition 5 gives two self-reciprocal functions

(−1)bx/
√
2π+1/2c cos x

2

2 , (−1)bx/
√
2π+1/2c sin x2

2 .

Combining these with generalized Plancherel’s formula ([42], 2.1.22)
√
α

∫ ∞
0

f(x)g(αx)dx =
√
β

∫ ∞
0

Fc(x)Gc(xβ)dx, αβ = 1,

and the self-reciprocal function (29) leads to transformation formulas

√
α

∫ ∞
0

cos(πx2)

cosh(αx)
(−1)bx+

1
2
cdx =

√
β

∫ ∞
0

cos(πx2)

cosh(βx)
(−1)bx+

1
2
cdx, αβ = π2, (35)

√
α

∫ ∞
0

sin(πx2)

cosh(αx)
(−1)bx+

1
2
cdx+

√
β

∫ ∞
0

sin(πx2)

cosh(βx)
(−1)bx+

1
2
cdx = 0, αβ = π2. (36)

Symmetric case of (36) is the imaginary part of (34). More generally: If Fc(x) = f(x), then∫ ∞
0

(−1)bx+
1
2
c sin(πx2)f

(√
2π x

)
dx = 0.

4. Trigonometric series for hypergeometric functions

4.1. Consider the Fourier series expansion

πeia(π−x)

sin(πa)
=
∑
n∈Z

einx

n+ a
, 0 < x < 2π. (37)

Real and imaginary parts of (37) result in the formulas ([24], entries 1.445.5-6)
∞∑
n=1

(
sin(n− a)x

n− a
+

sin(n+ a)x

n+ a

)
= π − sin(ax)

a
, 0 < x < 2π, (38)

∞∑
n=1

(
cos(n+ a)x

n+ a
− cos(n− a)x

n− a

)
= π cot(πa)− cos(ax)

a
, |x| < 2π. (39)

We used (39) in Section 3, equation (23). Generalizations of (38) and (39) with higher powers of (n± a)
in the denominator are studied in ([11], Chapter 9, Entries 1 and 2). However, an interesting question is,
what is the value of the truncated series in (37) where summation is over positive values of n only. This
question is answered by the less known formulas

∞∑
n=1

(
sin(n− a)x

n− a
− sin(n+ a)x

n+ a

)
= 3F2

(
1/2, 1/2 + a, 1/2− a

3/2, 3/2
; sin2 x

2

)
· 4a sin

x

2
, (40)
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∞∑
n=1

(
cos(n+ a)x

n+ a
+

cos(n− a)x

n− a

)
= 4F3

(
1, 1, 1 + a, 1− a

2, 2, 3/2
; sin2 x

2

)
· 2a2 sin2 x

2

− 2 ln
(

2 sin
x

2

)
+ 2ψ(1)− ψ(1− a)− ψ(1 + a), (41)

where ψ denotes the digamma function. These formulas can be derived from Newton’s formulas:

2F1

(
1/2 + a, 1/2− a

1/2
; sin2 x

)
cosx = cos(2ax), (42)

2F1

(
1/2 + a, 1/2− a

3/2
; sin2 x

)
sinx =

sin(2ax)

2a
, (43)

2F1

(
a,−a
1/2

; sin2 x

)
= cos(2ax), (44)

([19], Entries 2.8(11), 2.8(12)). When a→ 0, formula (40) reduces to
∞∑
n=0

(
2n

n

)
sin2n+1 x

22n(2n+ 1)2
= x log |2 sinx|+ 1

2

∞∑
n=1

sin(2nx)

n2
,

given as Entry 16 of Chapter 9 in [11].
4.2. The formula

41−a−b
√
π Γ(2a)Γ(2b)

Γ(1− a− b)Γ(a+ b+ 1/2)
2F1

(
2a, 2b

a+ b+ 1/2
; cos2 x

)
=
∑
n∈Z

Γ(a+ n/2)Γ(b+ n/2)

Γ(1− a+ n/2)Γ(1− b+ n/2)
cos(2nx), x ∈ R (45)

was derived in [16] as a Fourier series expansion of Gegenbauer functions (formula (1.2)). The formulas

Γ(1− a)Γ(1− b)
2Γ(1− a− b) 2F1

(
a, b

1/2
; cos2 x

)
=

1

2
+

∞∑
n=1

(a)n(b)n
(1− a)n(1− b)n

cos(2nx), x ∈ R (46)

Γ(2− a)Γ(2− b)
2Γ(2− a− b) 2F1

(
a, b

3/2
; cos2 x

)
cosx =

∞∑
n=0

(a)n(b)n
(2− a)n(2− b)n

cos(2n+ 1)x, x ∈ R (47)

follow from (45) and the quadratic transformation formulas 2.11(7) and 2.11(9) in [19]. A more direct
method is to use the general approach of [28] (see also [10]).

Another trigonometric expansion formula is found in [19] (formula 3.5(2)), which we write here as
√
π Γ(1/2 + a)

2Γ(1 + a− c)Γ(c)
2F1

(
a, 1− a

c
; sin2 x

)
(2 sinx)2c−2

=
∞∑
k=0

(1 + a− c)k(3/2− c)k
k!(1/2 + a)k

sin
[
2(2k + 1 + a− c)x

]
, 0 < x <

π

2
(48)

The hypergeometric function appearing on the left hand side of (48) is the so called Ferrers function
up to an elementary function prefactor. More recently, (48) was considered in [45]. Note that the
types of hypergeometric functions on the left hand sides of (45) and (48) are related by the quadratic
transformation formula ([19], Entry 2.11(2))

2F1

(
2a, 2b

a+ b+ 1/2
; sin2 x

)
= 2F1

(
a− b+ 1/2, b− a+ 1/2

a+ b+ 1/2
; sin2 2x

)
, |x| < π

4
.

Particular case of (48), namely a = 1/2, c = 1,

K(sinx) =
π

2
· 2F1

(
1/2, 1/2

1
; sin2 x

)
= π

∞∑
n=0

(1/2)2n
(n!)2

sin(4n+ 1)x, 0 < x <
π

2
, (49)

was derived by Tricomi [43], [44] (also reproduced in [19], Entry 13.8(8)), using a connection between
Legendre expansions, Abel transform and triginometric Fourier series. More recently, the same connection
appeared in the paper [29] in the context of numerical algorithms, and was extended to Gegenbauer
polynomials in [30]. (49) was used recently in [48] to calculate certain integrals of elliptic integrals.
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4.3. The following formula which gives a Fourier series expansion of a generalized hypergeometric func-
tion 3F2 of the argument sin2 x is motivated by the formulas above:

3F2

(
1, a, b

(a+ b)/2, (1 + a+ b)/2
; sin2 x

)
cosx =

a+ b− 1

b− 1

∞∑
n=0

(a)n
(2− b)n

cos(2n+ 1)x

+
Γ(a+ b)Γ(1− b)

Γ(a)(2 sinx)a+b−1
sin
(
π
2 (a+ b) + x(b− a)

)
, 0 < x <

π

2
. (50)

Proof. Starting from (42) written in the form
∞∑
k=0

(1/2 + s)k(1/2− s)k
k!(1/2)k

sin2k x =
cos(2sx)

cosx
,

we multiply it by
Γ(1/2− s)Γ(1/2 + s)Γ(c− s)Γ(d+ s) (51)

to obtain
∞∑
k=0

Γ(1/2 + k + s)Γ(1/2 + k − s)Γ(c− s)Γ(d+ s)
sin2k x

k!(1/2)k
=
πΓ(c− s)Γ(d+ s) cos(2sx)

cosx cos(πs)
,

and then integrate over s along the contour C parallel to the imaginary axes that separates the increasing
set of poles of (51) from the decreasing set of poles. The integral on the left hand side can be calculated
using Barnes’ first lemma [3]. The integral on the right hand side is convergent because of the condition
0 < x < π/2. It can be calculated by closing the contour C on the left half plane, picking up residues at
−1/2− n and −n− d with n ≥ 0, as described in [3]. The sum over residues at −1/2− n results in the
first term on the right hand side of (50). It turns out, that the sum over the residues −n−d is summable
by the binomial theorem, and it results in the second term on the right hand side of (50). �

(50) is essentially a three-term quadratic transformation formula for 3F2 when arguments of the two of
the functions 3F2 lie on the unit circle. Formulas (46), (47), (50) are generalizations of (42), (43), (44) in
the following sense. Setting b = 1 − a and changing a to 1/2 − a in (50) immediately yields (42). After
setting b = −a in (46), one may notice that the series on right hand side is Fourier series expansion of

πa
2 sin(πa) cos(π − 2x)a (section 4.1). Similarly, (43) follows from (47) when b = 1 − a and redefinition of
parameters.

The series on the right hand side of (50) is a truncation of the bilateral series∑
n∈Z

(a)n
(2− b)n

cos(2n+ 1)x. (52)

Due to Riemann’s form of the binomial theorem (when the argument lies on the unit circle), the series
(52) has a closed form in terms of trigonometric functions (e.g., [35], and references therein). While the
truncated series does not have a simple closed form, (50) shows that it is related to a hypergeometric
series with argument sin2 x, similar to the sitution encountered in subsection 4.1.

5. Inverse tangent integral and associated infinite products

5.1. Consider the problem submitted by Ramanujan to the Journal of the Indian Mathematical Society
and solved by him in the article [37] (also [15], page 31; [13], chapter 37, entry 30): Let α > 0 and
0 < β < 1, with

1

2
πα = log tan

{
1

4
π(1 + β)

}
,

then (
12 + α2

12 − β2

)(
32 − β2

32 + α2

)3(
52 + α2

52 − β2

)5

. . . = eπαβ/2. (53)

Here, the condition on α and β can be cast in the symmetrical form

tanh
(πα

4

)
= tan

(πβ
4

)
,

or equivalently

cosh
(πα

2

)
cos
(πβ

2

)
= 1,
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and the product can be written more succinctly as
∞∏
n=1

(
n2 + α2

n2 − β2

)nχ4(n)

.

The logarithm of the infinite product in (53) can be expressed through the inverse tangent integral

Ti2(z) =

∫ z

0

tan−1 t

t
dt,

as was shown in [37]. There is a trigonometric series expansion for the inverse tangent integral ([37]; [11],
chapter 9, Entry 17; also mentioned in [27], section 2.4.2):

Ti2(tanx) =

∞∑
n=0

(−1)n tan2n+1 x

(2n+ 1)2
= x log | tanx|+ 1

2

∞∑
n=0

sin(4n+ 2)x

(2n+ 1)2
, |x| < π

4
.

Thus, the logarithm of the infinite product in (53) can be expressed in terms of dilogarithm function.
More generally, the infinite product

∞∏
n=1

(
1− β2

n2

)nχk(n)
= exp

−π
k

k−1∑
j=1

χk(j)

∫ β

0
x cot

π(x+ j)

k
dx

 , (54)

where χk(n) is an odd Dirichlet character modulo k (or any k-periodic odd sequence (24)), can be expressed
in terms of exponential of a linear combination of dilogarithms (after integration by parts, the integrals in
(54) are expressed in terms of Clausen function, which in turn can be expressed in terms of dilogarithms).
Closely related to (54) is the integral representation for the logarithm of the ratio of Barnes G-functions

log
G(1 + z)

G(1− z)
= z log(2π)−

∫ z

0
πx cot(πx) dx

([46], chapter 12, example 49; also, equation (33) in [2]; or the recent historical account [32]).
5.2. The considerations below were motivated by a search for a finite version of (53).
Lemma 6. Let m be a non-negative integer, α > 0, 0 < β < π/2. Then∫ α

0

sinh x
2m+1

coshx
dx+

∫ β

0

sin y
2m+1

cos y
dy

= (−1)m ln
cosh α

2m+1

cos β
2m+1

+
m−1∑
k=0

(−1)k sin
π(2k + 1)

2(2m+ 1)
· log

sin2 π(2k+1)
2(2m+1) + sinh2 α

2m+1

sin2 π(2k+1)
2(2m+1) − sin2 β

2m+1

. (55)

Proof. It is quite straightforward to verify the partial fractions expansion

2m+ 1

cosh ((2m+ 1)x)
=
∑
|k|≤m

(−1)m−k
cos πk

2m+1 coshx

sinh2 x+ cos2 πk
2m+1

. (56)

By multiplying this formula by sinhx and integrating with respect to x from 0 to α/(2m+ 1) one obtains
evaluation of the first integral in (55), that is (55) with β = 0. Similarly, considering the companion
partial fraction expansion

2m+ 1

cos ((2m+ 1)y)
=
∑
|k|≤m

(−1)m−k
cos πk

2m+1 cos y

cos2 πk
2m+1 − cos2 y

,

one evaluates the second integral in (55) (the condition β < π/2 ensures that cos2 πk
2m+1 − cos2 y > 0 for

all |k| ≤ m). Then, their sum is the quantity on the right hand side of (55). �
One can deduce (53) from the Lemma 6 as follows. Assume that α and β in Lemma 6 are related by

cosh(α) cos(β) = 1. We multiply (55) by (2m + 1) and then take the limit m → ∞. It may be easily
verified that when α and β are subject to the constraint cosh(α) cos(β) = 1, then

dα

coshα
= dβ,

dβ

cosβ
= dα.

As a result ∫ α

0

ydy

cosh y
+

∫ β

0

ydy

cos y
= αβ,
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when cosh(α) cos(β) = 1. Hence, the left hand side of (55) multiplied by (2m + 1) tends to αβ in the
limit m → ∞. The right hand side multiplied by (2m + 1) tends to a logarithm of a certain infinite
product, which after rescaling α and β by a factor of π/2 coincides with the infinite product in (53).
Exponentiation of both sides then completes the proof of (53). Thus, we were able to give an elementary
proof of (53).
5.3. Is it possible that an identity of the similar type as (53) exists for Dirichlet characters other than
χ4? Consider the elementary integral∫ α

0

sinh(x)

sinh(3x)
dx = arctan

(
tanhα√

3

)
.

It follows from this that when π
3 < β < π

2 and tanh(α) tan(β) =
√

3∫ α

0

x sinh(x)

sinh(3x)
dx+

∫ π/2

β

y sin(y)

sin(3y)
dy = −αβ√

3
.

Alternatively, one can check this by differentiation. Moreover

res
z=n

{
sin(πz/3)

sin(πz)

}
=

√
3

2π

(n
3

)
,

where
(
n
3

)
is Legendre symbol mod 3. Thus, one arrives at the following result:

Proposition 7. If 1 < β < 3/2 and tanh
(
πα
3

)
tan

(πβ
3

)
=
√

3, then
∞∏
n=1

(
(n2 + α2)(n2 − β2)

n2(n2 − 9/4)

)n(n3 )
= e−2παβ/3.

5.4. Similarly, when 0 < β < π
4 and tanh(α) =

√
3 tan(β)∫ α

0

x sinh(x)

sinh(3x)
dx+

∫ β

0

y sin(y)

sin(3y)
dy +

1

2

∫ 2β

0

y sin(y)

sin(3y)
dy =

αβ√
3
.

This results in two formulas that are dual to each other:
Proposition 8. If 0 < β < 1/2 and tanh

(
πα
3

)
=
√

3 tan
(πβ

3

)
, then

∞∏
n=1

(
n2(n2 + α2)2

(n2 − β2)2(n2 − 4β2)

)n(n3 )
= e4παβ/3.

Proposition 9. If 0 < β < 1 and tan
(πβ

3

)
=
√

3 tanh
(
πα
3

)
, then

∞∏
n=1

(
n2(n2 − β2)2

(n2 + α2)2(n2 + 4α2)

)n(n3 )
= e−4παβ/3.

Due to the formula (54), Propositions 7–9 can also be proved directly using functional equations for the
dilogarithm function, though calculations in this case are more cumbersome.
5.5. Let sinp x and cosp x denote the generalized trigonometric functions defined as the solution to the
differential equation [49]

d

dx
sinp x = cosp x, sinpp x+ cospp x = 1, sinp 0 = 0,

when x ∈ [0;πp/2], where

πp = 2

∫ 1

0

dt

(1− tp)1/p
.

The generalized hyperbolic functions are defined by as a solution to the differential equation [49]
d

dx
sinhp x = coshp x, coshpp x− sinhpp x = 1, sinhp 0 = 0.

There is a certain duality between the generalized trigonometric and hyperbolic functions. Such a duality
has been explicitly stated in [31]. On the other hand, the generalized Gudermannian function was defined
by Neuman [33] as

gdp(x) =

∫ x

0

dt

coshp−1p t
,
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where he has shown that the inverse function of the generalized Gudermannian function is

gd−1p (x) =

∫ x

0

dt

cosp−1p t
.

If β = gdp(α) (or equivalently α = gd−1p (β)) it follows from gd′p(α) ·
[
gd−1p (β)

]′
= 1 and Neuman’s

result, that α and β are subject to the condition coshp α · cosp β = 1, and vice versa. This implies: If
0 < β < πp/2 and coshp α · cosp β = 1, then∫ α

0

ydy

coshp−1p y
+

∫ β

0

ydy

cosp−1p y
= αβ. (57)

In general, there are no simple partial fractions expansion formulas for generalized trigonometric func-
tions. For example, it has been shown in [18] that for certain set of parameters generalized trigonometric
functions are expressed in terms of Jacobi elliptic functions, and thus they are doubly periodic. This
means their partial fractions expansion is a double series, similar to Weierstrass elliptic functions. This
probably means that there are no formulas similar to (53) resulting from (57) unless p = 2.

References

[1] M. Abramowitz, and I.A. Stegun, eds. Handbook of mathematical functions with formulas, graphs, and mathematical
tables, US Government printing office (1968).

[2] V.S. Adamchik, Contributions to the theory of the Barnes function, Int. J. Math. Comput. Sci 9.1, 11-30 (2014).
[3] G.E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge (2006).
[4] G.E. Andrews, and B.C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer, New York (2005).
[5] G.E. Andrews, and B.C. Berndt, Ramanujan’s Lost Notebook, Part II, Springer, New York (2009).
[6] G.E. Andrews, and B.C. Berndt, Ramanujan’s Lost Notebook, Part IV, Springer, New York (2013).
[7] R. Askey, Two integrals of Ramanujan, Proceedings of the American Mathematical Society, 85.2, 192-194 (1982).
[8] N.M. Atakishiyev, and S.M. Nagiyev, On the Rogers-Szego polynomials, Journal of Physics A: Mathematical and General,

27(17), 611-615 (1994).
[9] W.N. Bailey, On the basic bilateral hypergeometric series 2ψ2, Quart. J. Math. 1, 194-198 (1950).
[10] S.D. Bajpai, Fourier series of generalized hypergeometric functions, Mathematical Proceedings of the Cambridge Philo-

sophical Society 65 (3), 703-707 (1969).
[11] B.C. Berndt, Ramanujan’s Notebooks, Part I, Springer-Verlag, New York (1985).
[12] B.C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York (1989).
[13] B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York (1998).
[14] B.C. Berndt, H.H. Chan, and Y. Tanigawa, Two Dirichlet series evaluations found on page 196 of Ramanujan’s Lost

Notebook, Mathematical Proceedings of the Cambridge Philosophical Society, 153 (2), (2012).
[15] B.C. Berndt, Y.-S. Choi, S.-Y. Kang, The Problems Submitted by Ramanujan to the Journal of the Indian Mathematical

Society, 215-258 in Ramanujan: Essays and Surveys, American Mathematical Society (2001).
[16] B.C. Carlson, and W.H. Greiman, The Fourier series of Gegenbauer’s function, Duke Math. J. 33.1, 41-44 (1966).
[17] Y-S. Choi, The basic bilateral hypergeometric series and the mock theta functions, The Ramanujan Journal 24.3,

345-386 (2011).
[18] D.E. Edmunds, P. Gurka, and J. Lang, Properties of generalized trigonometric functions, J. Approx. Theory 164 (1),

47-56 (2012).
[19] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Volumes 1-3, McGraw-

Hill (1953).
[20] G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press (1989).
[21] G. Gasper, M. Rahman, Basic hypergeometric series, 2nd ed., Cambridge University Press, Cambridge (2004).
[22] B. Gordon, and R.J. McIntosh, A survey of classical mock theta functions, in Partitions, q-series, and modular forms,

Springer New York, 95-144 (2011).
[23] R.W. Gosper, M.E. Ismail, R. Zhang, On some strange summation formulas, Illinois Journal of Mathematics 37(2),

240-277 (1993).
[24] I.S. Gradshteyn, and I.M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, Boston (2000).
[25] G.A. Grinberg, Izbrannye Voprosy Matematicheskoj Teorii Elektricheskih i Magnitnyh Yavlenij, Publishing House of

the Academy of Sciences of the USSR (1948).
[26] D. Klusch, The sampling theorem, Dirichlet series and Hankel transforms, Journal of Computational and Applied

Mathematics 44(3), 261-273 (1992).
[27] L. Lewin, Polylogarithms and Associated Functions, New York: North-Holland (1981).
[28] T.M. MacRobert, Fourier series for E-functions, Mathematische Zeitschrift 75(1), 79-82 (1961).
[29] E. De Micheli, and G.A. Viano, A new and efficient method for the computation of Legendre coefficients https:

//arxiv.org/abs/1106.4718 (2011).
[30] E. De Micheli, and G.A. Viano, The expansion in ultraspherical polynomials: a simple procedure for the fast compu-

tation of the ultraspherical coefficients https://arxiv.org/abs/1106.4718 (2011).

https://arxiv.org/abs/1106.4718
https://arxiv.org/abs/1106.4718
https://arxiv.org/abs/1106.4718


16

[31] H. Miyakawa, and S. Takeuchi, Applications of a duality between generalized trigonometric and hyperbolic functions,
Journal of Mathematical Analysis and Applications 502.1, 125241 (2021).

[32] Y.A. Neretin, The double gamma function and Vladimir Alekseevsky, arXiv:2402.07740 (2024).
[33] E. Neuman, Generalized Gudermannian function, Probl. Anal. Issues Anal. 7, 70-86 (2018).
[34] P.I. Pastro, Orthogonal polynomials and some q-beta integrals of Ramanujan, Journal of mathematical analysis and

applications, 112(2), 517-540 (1985).
[35] T.J. Osler, Taylor’s series generalized for fractional derivatives and applications, SIAM J. Math. Anal. 2, 37-48 (1971).
[36] D.B. Owen, A table of normal integrals, Communications in Statistics: Simulation and Computation 9(4), 389-419

(1980).
[37] S. Ramanujan, On the integral

∫ x
0

tan−1 t
t

dt, Journal of the Indian Mathematical Society VII, 93 - 96 (1915).
[38] S. Ramanujan, Some definite integrals connected with Gauss’s sums, Mess. Math. 44, 75-85 (1915).
[39] S. Ramanujan, On certain infinite series, Mess. Math. 45 , 11-15 (1916).
[40] J.V. Stokman, Hyperbolic beta integrals, Advances in Mathematics 190.1, 119-160 (2005).
[41] S.K. Suslov, Multiparameter Ramanujan-Type q-Beta Integrals, Ramanujan J. 2, 351-369 (1998).
[42] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd.ed., Oxford University Press (1948).
[43] F.G. Tricomi, Trasformazioni funzionali e polinomi ortogonali in ispecie sferici, Bollettino della Unione Matematica

Italiana 14, 213-218, 277-282 (1935).
[44] F.G. Tricomi, Generalizzazione di una formula sui polinomi di Legendre, Bollettino della Unione Matematica Italiana

15, 102-105 (1936).
[45] H. Volkmer, Fourier series representation of Ferrers function P, https://arxiv.org/abs/2109.00156 (2021).
[46] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge University Press (1996).
[47] A.I. Zayed, A proof of new summation formulae by using sampling theorems, Proceedings of the American Mathematical

Society 117, 3, 699-710 (1993).
[48] D.H. Bailey, J.M. Borwein, D. Broadhurst, and M.L. Glasser, Elliptic integral evaluations of Bessel moments, J. Phys.

A: Math. Theor. 41 205203 (2008).
[49] L. Yin, L.G. Huang, Y.L. Wang, and X.L. Lin, A survey for generalized trigonometric and hyperbolic functions, Journal

of Mathematical Inequalities, 13(3), 833-854 (2019).

https://arxiv.org/abs/2109.00156

	1. Series with general term cnexp(piign2)
	1.1. 
	1.2. 
	1.3. 
	1.4. 
	1.5. 
	1.6. 

	2. Fourier-Gauss transform and fusion of integrals
	2.1. 
	2.2. 
	2.3. 
	2.4. 

	3. Series with general term chi(n)f(an)/n
	3.1. 
	3.2. 
	3.3. 
	3.4. 
	3.5. 
	3.6. 
	3.7. 

	4. Trigonometric series for hypergeometric functions
	4.1. 
	4.2. 
	4.3. 

	5. Inverse tangent integral and associated infinite products
	5.1. 
	5.2. 
	5.3. 
	5.4. 
	5.5. 

	References

