Integer Optimization and P vs NP Problem

Yuly Shipilevsky

Abstract

We transform NP-complete Problem to the polynomialtime algorithm which would mean that $\mathrm{P}=\mathrm{NP}$.

1. INTRODUCTION. Despite in general, Integer Programming is NP-hard or even incomputable (see, e.g., Hemmecke et al. [10]), for some subclasses of target functions and constraints it can be computed in time polynomial.

A fixed-dimensional polynomial minimization in integer variables, where the objective function is a convex polynomial and the convex feasible set is described by arbitrary polynomials can be solved in time polynomial(see, e.g ., Khachiyan and Porkolab [11]), see Lenstra [13] as well.

A fixed-dimensional polynomial minimization over the integer variables, where the objective function is a quasiconvex polynomial with integer coefficients and where the constraints are inequalities with quasiconvex polynomials of degree at most ≥ 2 with integer coefficients can be solved in time polynomial in the degrees and the binary encoding of the coefficients(see, e.g., Heinz [8], Hemmecke et al. [10], Lee [12]).

Minimizing a convex function over the integer points of a bounded convex set is polynomial in fixed dimension, according to Oertel et al. [15].

Del Pia and Weismantel [4] showed that Integer Quadratic Programming can be solved in polynomial time in the plane.

It was further generalized for cubic and homogeneous polynomials in Del Pia et al. [5].

We are going to transform well-known NP-complete problem to the poly-nomial-time integer minimization algorithm. It would mean, that $\mathrm{P}=\mathrm{NP}$, since if there is a polynomial-time algorithm for any NP-hard problem, then there are polynomial-time algorithms for all problems in NP (see Garey and Johnson [7], Manders and Adleman [14], Cormen et al. [2].).

Fortnow in [6] stated: "We call the very hardest NP problems (which include Partition Into Triangles, Clique, Hamiltonian Cycle and 3-Coloring) "NP-complete", i.e. given an efficient algorithm for one of them, we can find efficient algorithm for all of them and in fact any problem in NP".

[^0]
2. POLYNOMIAL-TIME ALGORITHM. SLIDING TANGENT.

Lemma 1 (De Loera et al. [3], Hemmecke et al. [10], Del Pia et al. [5]).
The problem of minimizing a degree-4 polynomial over the lattice points of a convex polygon is NP-hard.

Proof. They use the NP-complete problem AN1 on page 249 of Garey and Johnson [7]. This problem states it is NP-complete to decide whether, given three positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$, there exists a positive integer $\mathrm{x}<\mathrm{c}$ such that x^{2} is congruent with a modulo b. This problem is clearly equivalent to asking whether the minimum of the quartic polynomial function $\left(x^{2}-a-b y\right)^{2}$ over the lattice points of the rectangle:

$$
\left\{(\mathrm{x}, \mathrm{y}) \mid 1 \leq \mathrm{x} \leq \mathrm{c}-1,1-\mathrm{a} \leq \mathrm{by} \leq(\mathrm{c}-1)^{2}-\mathrm{a}\right\} \text { is zero or not. }
$$

According to Del Pia and Weismantel [4], minimization problem, given in the above proof of Lemma 1 is equivalent to the following problem:

$$
\begin{align*}
\min \{ & \left(\mathrm{x}^{2}-\mathrm{a}-\mathrm{by}\right) \text { s.t. } \\
& \mathrm{x}^{2}-\mathrm{a}-\mathrm{by} \geq 0, \tag{1}\\
& \left.1 \leq \mathrm{x} \leq \mathrm{c}-1,1-\mathrm{a} \leq \mathrm{by} \leq(\mathrm{c}-1)^{2}-\mathrm{a}, \mathrm{x}, \mathrm{y} \in \mathbf{Z}\right\} .
\end{align*}
$$

Without loss of generality, let us consider the case, where in (1) $a=b=1$, while c is an arbitrary sufficiently large positive fixed integer.

For the arbitrary fixed positive integers a and b it can be done similarly.
Thus, let us consider the following NP-complete problem:

$$
\begin{align*}
\min \{ & \left(x^{2}-1-y\right) \text { s.t. } \\
& x^{2}-1-y \geq 0, \tag{2}\\
& \left.1 \leq x \leq c-1,0 \leq y \leq(c-1)^{2}-1, x, y \in \mathbf{Z}\right\} \\
\text { If } \mathrm{L}: & =\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}-1-y \geq 0\right\} \\
& P:=\left\{(x, y) \in \mathbf{R}^{2} \mid 1 \leq x \leq c-1,0 \leq y \leq(c-1)^{2}-1\right\},
\end{align*}
$$

problem (2) can be rewritten as follows:

$$
\begin{equation*}
\min \left\{\left(\mathrm{x}^{2}-1-\mathrm{y}\right) \mid(\mathrm{L} \cap \mathrm{P}) \cap \mathbf{Z}^{2}\right\} \tag{3}
\end{equation*}
$$

Set L is not convex, as well as the set $\mathrm{L} \cap \mathrm{P}$ (see Boyd and Vandenberghe [1], Osborne [16] as well).

Let $1 \leq \mathrm{i} \leq \mathrm{c}-1, \mathrm{i} \in \mathbf{Z}$. The equation of the tangent to the parabola: $y=x^{2}-1$, at the point i is given by: $y_{i}(x)=2 i(x-i)+i^{2}-1$. The segment of this tangent(hypotenuse), which is inside P and having one end on X axis, and another end on the line $\mathrm{x}=\mathrm{c}-1$, together with two other segments (on X axis and on the vertical line $\mathrm{x}=\mathrm{c}-1$: cathetuses), form some right triangle $\mathrm{S}_{\mathrm{i}} \subset \mathrm{L} \cap \mathrm{P}, \mathrm{S}_{\mathrm{i}}:=\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{P} \mid \mathrm{y} \leq \mathrm{y}_{\mathrm{i}}(\mathrm{x})\right\}, 1 \leq \mathrm{i} \leq \mathrm{c}-1, \mathrm{i} \in \mathbf{Z}$. Thus, instead of non-convex set $L \cap P$, we are going to consider a collection of right triangles: $\left\{\mathrm{S}_{\mathrm{i}}\right\}$, so that search space of the problem (3):
$(\mathrm{L} \cap \mathrm{P}) \cap \mathbf{Z}^{2}=\cup\left(\mathrm{S}_{\mathrm{i}} \cap \mathbf{Z}^{2}\right), 1 \leq \mathrm{i} \leq \mathrm{c}-1, \mathrm{i} \in \mathbf{Z}$. Let us denote:

$$
\begin{equation*}
\mu_{\mathrm{i}}:=\min \left\{\left(\mathrm{x}^{2}-1-\mathrm{y}\right) \mid(\mathrm{x}, \mathrm{y}) \in \mathrm{S}_{\mathrm{i}} \cap \mathbf{Z}^{2}\right\}, 1 \leq \mathrm{i} \leq \mathrm{c}-1, \mathrm{i} \in \mathbf{Z} . \tag{4}
\end{equation*}
$$

It is clear, that we have:
Theorem 1. $\min \left\{\mu_{i} \mid \quad 1 \leq i \leq c-1, i \in \boldsymbol{Z}\right\}=\mu=$ $\min \left\{\left(x^{2}-1-y\right) \mid(L \cap P) \cap \boldsymbol{Z}^{2}\right\}$.

Each problem (4) is integer quadratic programming problem in the plane. According to Del Pia and Weismantel [4, Theorem 1.1], they can be solved in polynomial time.

Recall that polynomial-time algorithms are closed under union, composition, concatenation, intersection, complementation and some other operations: see, e.g., Hopcroft et al. [9, pp. 425-426].

That is why, due to Theorem 1, our original NP-complete problem (3) can be solved in polynomial time as well.

As we mentioned above, similarly, this algorithm can be developed for any fixed positive integers a and b as well.

As a result, since due to the above algorithm, NP-complete problem can be solved in polynomial time, we can conclude that $\mathrm{P}=\mathrm{NP}$, since, as we mentioned above, if there is a polynomial-time algorithm for any NP-hard problem then there are polynomial-time algorithms for all problems in NP.
3. CONCLUSION. We reduced NP-complete problem to the polynomialtime algorithm, Thus, we can conclude that $\mathrm{P}=\mathrm{NP}$, since if there is a poly-nomial-time algorithm for any NP-hard problem then there are polynomialtime algorithms for all problems in NP.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction To Algorithms, third ed., The MIT Press, Cambridge, 2009.
[3] J. A. De Loera, R. Hemmecke, M. Köppe and R.Weismantel, Integer polynomial optimization in fixed dimension, Mathematics of Operations Research, 31 (2006) 147-153.
[4] A. Del Pia and R. Weismantel, Integer quadratic programming in the plane, SODA (Chandra Chekuri, ed.), SIAM, 2014, pp. 840-846.
[5] A. Del Pia, R. Hildebrand, R. Weismantel and K. Zemmer, Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane, Mathematics of Operations Research, 41(2) (Jan. 2015a) 511-530.
[6] L. Fortnow, The Status of the P versus NP Problem, Northwestern University, 2009.
[7] M. R. Garey and D. S. Johnson, Computers and intractability, W. H. Freeman and Co., San Francisco, Calif., A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences, 1979.
[8] S. Heinz, Complexity of integer quasiconvex polynomial optimization, J. Complexity, 21(4) (2005) 543-556.
[9] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to automata theory, languages and computation, second ed., Addison-Wesley, Boston, 2001.
[10] R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear Integer Programming, in: M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, L.Wolsey (Eds.), 50 Years of Integer Programming 1958-2008: The Early Years and State-of-the-Art Surveys, Sprin-ger-Verlag, Berlin, 2010, pp. 561-618.
[11] L. G. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets, Discrete and Computational Geometry, 23(2) (2000) 207-224.
[12] J. Lee, On the boundary of tractability for nonlinear discrete optimization, in: Cologne Twente Workshop 2009, 8th Cologne Twente Worksh-
op on Graphs and Combinatorial Optimization, Ecole Polytechnique, Paris, 2009, pp. 374-383.
[13] H.W. Jr. Lenstra, Integer programming with a fixed number of variables, Mathematics of Operations Research, 8(4):538-548, 1983.
[14] K. Manders and L. Adleman, NP-complete decision problems for binary quadratics, Journal of Computer and System Sciences, 16:168-184, 1978.
[15] T. Oertel, C. Wagner and R. Weismantel, Convex integer minimization in fixed dimension, arxiv:1203.4175v1(2012).
[16] M. J. Osborne, Mathematical Methods for Economic Theory: a tutorial, University of Toronto, 2007.

[^0]: 2020 Mathematics Subject Classifications. Primary: 11A05, 90C10; Secondary: 68Q25.
 Key words and phrases. Integer Optimization, NP-complete, Polynomial-time

