On a Combinatorial Problem of Existing Matchings

Wladislaw Zlatjkovic Petrovescu

14 April 2024

Abstract

In this paper we prove a classic combinatorial result on matchings.

Theorem. Suppose that, in a class, any boy knows at least 1 girl, and there are n students in total. Prove that there exists a group of at least $\frac{n}{2}$ students such that any boy in this group knows an odd number of girls in the same group. (a classic problem from 1999)

Proof. Let B be the set of boys and let G be the set of girls. Number the boys from 1 to |B|, and let β_i be the number of girls that the boy numbered i knows. Now we consider N, the number of distinct pairs (b, S), where b is some boy and $S \subseteq G$ is a subset of the girls such that b knows an odd number of girls in S. We count N in two different ways.

Fix some boy b, and suppose that his number is k, so that he knows β_k girls. We find the number of was to construct S. Let us write

$$S = S_1 \cup S_2,$$

where S_1 contains exactly the girls that b knows and S_2 contains exactly those that he does not know.

Since S must contain an odd number of girls that b knows, we must have that $|S_1|$ is odd. There are β_k girls that b knows, giving

$$\sum_{\leq i \leq \beta_i, 2 \nmid i} \binom{\beta_k}{i} = 2^{\beta_k - 1}$$

1

ways to construct S_1 with odd cardinality. Note that the above equality is due to a well-known combinatorial identity.

In addition, b can pick any girls that he does not know to be in S in order to construct S_2 . Note that there are $|G| - \beta_k$ such girls, and since b has no restriction on how he can choose such a subset, he has a total of $2^{|G|-\beta_k}$ options. Thus b has 2^{β_k-1} choices for S_1 and $2^{|G|-\beta_k}$ options for S_2 ; since S_1 and S_2 are disjoint sets, we have a total of

$$(2^{\beta_k-1})(2^{|G|-\beta_k}) = 2^{|G|-1}$$

ways to construct $S = S_1 \cup S_2$.

It follows that there are $2^{|G|-1}$ pairs (b, S) for some fixed b and associated k. Since k ranges across [|B|], so that there are |B| boys in total, we sum the above to get

$$N = \sum_{i=1}^{|B|} 2^{|G|-1}$$
$$= |B|2^{|G|-1}.$$

Now we count the same N, but this time by fixing $S \subseteq G$. For this S, let σ_S equal the number of boys knowing an odd number of girls in S. Clearly, it follows that there are σ_S options for a pair (b, S) of the desired form, where S is fixed. Therefore,

$$N = \sum_{S \subseteq G} \sigma_S$$

Now, note that

$$\sum_{S\subseteq G} |S| = \sum_{i=0}^{|G|} i \binom{|G|}{i}$$
$$= |G|2^{|G|-1},$$

where the last line is due to another well-known combinatorial identity. Hence, putting everything together, we get

$$\sum_{S \subseteq G} (\sigma_S + |S|) = \sum_{S \subseteq G} \sigma_S + \sum_{S \subseteq G} |S|$$

= $N + |G|2^{|G|-1}$
= $|B|2^{|G|-1} + |G|2^{|G|-1}$
= $(|B| + |G|)2^{|G|-1}$
= $n2^{|G|-1}$,

since |B| + |G| = n by definition.

Since our sum runs across all $2^{|G|}$ subsets of G, using the Pigeonhole Principle we find that there must exist some subset T such that

$$\sigma_T + |T| \ge \frac{\sum_{S \subseteq G} (\sigma_S + |S|)}{2^{|G|}}$$
$$= \frac{n2^{|G|-1}}{2^{|G|}}$$
$$= \frac{n}{2}.$$

This implies that, for this particular choice of $T \subseteq G$, there must exist σ_T boys such that these |T| girls and σ_T boys form a group with size at least $\frac{n}{2}$ such that each boy in this group knows an odd number of girls in the same group, by definition of σ_T . But this is what we wanted to prove, so we are done.