On a Combinatorial Problem of Existing Matchings

Wladislaw Zlatjkovic Petrovescu

14 April 2024

Abstract
In this paper we prove a classic combinatorial result on matchings.
Theorem. Suppose that, in a class, any boy knows at least 1 girl, and there are n students in total. Prove that there exists a group of at least $\frac{n}{2}$ students such that any boy in this group knows an odd number of girls in the same group. (a classic problem from 1999)

Proof. Let B be the set of boys and let G be the set of girls. Number the boys from 1 to $|B|$, and let β_{i} be the number of girls that the boy numbered i knows. Now we consider N, the number of distinct pairs (b, S), where b is some boy and $S \subseteq G$ is a subset of the girls such that b knows an odd number of girls in S. We count N in two different ways.

Fix some boy b, and suppose that his number is k, so that he knows β_{k} girls. We find the number of was to construct S. Let us write

$$
S=S_{1} \cup S_{2}
$$

where S_{1} contains exactly the girls that b knows and S_{2} contains exactly those that he does not know.

Since S must contain an odd number of girls that b knows, we must have that $\left|S_{1}\right|$ is odd. There are β_{k} girls that b knows, giving

$$
\sum_{1 \leq i \leq \beta_{i}, 2 \nmid i}\binom{\beta_{k}}{i}=2^{\beta_{k}-1}
$$

ways to construct S_{1} with odd cardinality. Note that the above equality is due to a well-known combinatorial identity.

In addition, b can pick any girls that he does not know to be in S in order to construct S_{2}. Note that there are $|G|-\beta_{k}$ such girls, and since b has no restriction on how he can choose such a subset, he has a total of $2^{|G|-\beta_{k}}$ options. Thus b has $2^{\beta_{k}-1}$ choices for S_{1} and $2^{|G|-\beta_{k}}$ options for S_{2}; since S_{1} and S_{2} are disjoint sets, we have a total of

$$
\left(2^{\beta_{k}-1}\right)\left(2^{|G|-\beta_{k}}\right)=2^{|G|-1}
$$

ways to construct $S=S_{1} \cup S_{2}$.
It follows that there are $2^{|G|-1}$ pairs (b, S) for some fixed b and associated k. Since k ranges across $[|B|]$, so that there are $|B|$ boys in total, we sum the above to get

$$
\begin{aligned}
N & =\sum_{i=1}^{|B|} 2^{|G|-1} \\
& =|B| 2^{|G|-1}
\end{aligned}
$$

Now we count the same N, but this time by fixing $S \subseteq G$. For this S, let σ_{S} equal the number of boys knowing an odd number of girls in S. Clearly, it follows that there are σ_{S} options for a pair (b, S) of the desired form, where S is fixed. Therefore,

$$
N=\sum_{S \subseteq G} \sigma_{S}
$$

Now, note that

$$
\begin{aligned}
\sum_{S \subseteq G}|S| & =\sum_{i=0}^{|G|} i\binom{|G|}{i} \\
& =|G| 2^{|G|-1}
\end{aligned}
$$

where the last line is due to another well-known combinatorial identity. Hence, putting everything together, we get

$$
\begin{aligned}
\sum_{S \subseteq G}\left(\sigma_{S}+|S|\right) & =\sum_{S \subseteq G} \sigma_{S}+\sum_{S \subseteq G}|S| \\
& =N+|G| 2^{|G|-1} \\
& =|B| 2^{|G|-1}+|G| 2^{|G|-1} \\
& =(|B|+|G|) 2^{|G|-1} \\
& =n 2^{|G|-1},
\end{aligned}
$$

since $|B|+|G|=n$ by definition.
Since our sum runs across all $2^{|G|}$ subsets of G, using the Pigeonhole Principle we find that there must exist some subset T such that

$$
\begin{aligned}
\sigma_{T}+|T| & \geq \frac{\sum_{S \subseteq G}\left(\sigma_{S}+|S|\right)}{2^{|G|}} \\
& =\frac{n 2^{|G|-1}}{2^{|G|}} \\
& =\frac{n}{2}
\end{aligned}
$$

This implies that, for this particular choice of $T \subseteq G$, there must exist σ_{T} boys such that these $|T|$ girls and σ_{T} boys form a group with size at least $\frac{n}{2}$ such that each boy in this group knows an odd number of girls in the same group, by definition of σ_{T}. But this is what we wanted to prove, so we are done.

