The Klein-Gordon equation and the meson π^{-} Marcello Colozzo

Abstract

The study of the free motion of the meson π^{-}through the equation of Klein-Gordon, leads to its antiparticle i.e. the meson π^{+}.

1 The Klein-Gordon equation

Let us remember that the quantum-mechanical state of a non-relativistic particle of mass m and spin 0 is a solution of the Schrödinger equation which we write here in operational form:

$$
\begin{equation*}
\hat{H} \psi=i \hbar \frac{\partial \psi}{\partial t} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(\hat{\mathbf{x}}) \tag{2}
\end{equation*}
$$

is the Hamiltonian operator, while $\psi(\mathbf{x}, t)$ is the wave function of the particle. Let us quickly recall the representation of the various operators in the coordinate base [1]

$$
\hat{\mathbf{p}} \doteq-i \hbar \nabla \Longrightarrow \hat{H} \doteq-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{x})
$$

so we find the well-known form of the Scrhödinger equation:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(\mathbf{x}) \psi=i \hbar \frac{\partial \psi}{\partial t} \tag{3}
\end{equation*}
$$

In 1926 Klein, Gordon and Fok (and perhaps even Schrödinger himself before writing his famous equation (3)) used the following device (E is energy):

$$
\begin{equation*}
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad p \rightarrow-i \hbar \nabla \tag{4}
\end{equation*}
$$

where for simplicity we are considering the one-dimensional case. From relativistic mechanics [3]:

$$
E^{2}=m^{2} c^{4}+c^{2} p^{2}
$$

It follows that substitution (4) returns

$$
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}-\left(\frac{m c}{\hbar}\right)^{2} \psi=0
$$

The generalization to three-dimensional motion is immediate:

$$
\begin{equation*}
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}-\left(\frac{m c}{\hbar}\right)^{2} \psi=0 \tag{5}
\end{equation*}
$$

known as Klein-Gordon equation. A notable difference from that of Schrödinger is that the K-G is of the second order in the time derivative. And this will present probl

After some manipulation, we arrive at the continuity equation for magnitude

$$
\rho(\mathbf{x}, t)=\psi(\mathbf{x}, t) \psi^{*}(\mathbf{x}, t)=\frac{i \hbar}{2 m c^{2}}\left(\psi^{*} \frac{\partial \psi}{\partial t}-\psi \frac{\partial \psi^{*}}{\partial t}\right)
$$

Precisely:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{j}=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{j}(\mathrm{x}, t)=\frac{\hbar}{2 i m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \tag{7}
\end{equation*}
$$

We are tempted to call $\rho \ll$ probability density», but the presence of the second derivative with respect to time in the K-G leads to an inconsistency. Precisely, since the second order equation "resembles" the D'Alembert one, we have that a Cauchy problem is characterized by initial conditions (with obvious meaning of the symbols):

$$
\psi(\mathbf{x}, 0)=\varphi(\mathbf{x}),\left.\quad \frac{\partial \psi}{\partial t}\right|_{(\mathbf{x}, 0)}=\chi(\mathbf{x})
$$

where functions are assigned arbitrarily. This implies that the quantity ρ is not positive definite, so it is not a probability density. A possible re-interpretation consists in redefining:

$$
\begin{align*}
& \rho(\mathbf{x}, t)=\frac{i q \hbar}{2 m c^{2}}\left(\psi^{*} \frac{\partial \psi}{\partial t}-\psi \frac{\partial \psi^{*}}{\partial t}\right) \tag{8}\\
& \mathbf{j}(\mathbf{x}, t)=\frac{q \hbar}{2 i m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
\end{align*}
$$

being q the electric charge (possibly zero) of the particle. We are interested in solutions of the monochromatic plane wave type which, as is known, are quantum states with a defined momentum value. Without violating generality, let's consider the one-dimensional case:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}-\left(\frac{m c}{\hbar}\right)^{2} \psi=0 \tag{9}
\end{equation*}
$$

We are looking for solutions like this

$$
\begin{equation*}
\psi(x, t)=A e^{i(k x-\omega t)} \tag{10}
\end{equation*}
$$

After simple steps:

$$
\omega^{2}=c^{2}\left[k^{2}+\left(\frac{m c}{\hbar}\right)^{2}\right]
$$

Multiplying the first and second members by Planck's reduced constant and remembering the relationship between pulsation and energy, and between wave number and impulse, we have

$$
E^{2}=c^{2} p^{2}+m^{2} c^{4},
$$

that is, exactly what is expected. To remove ambiguity about the sign, we define

$$
\begin{equation*}
E_{P} \stackrel{\text { def }}{=}+\sqrt{m^{2} c^{4}+c^{2} p^{2}} \tag{11}
\end{equation*}
$$

so $E= \pm E_{P}$. It follows that the solutions (10) are written $\psi_{ \pm}(x, t)=A e^{\frac{i}{\hbar}\left(p x \mp E_{P} t\right)}$ or in the form more compact:

$$
\begin{equation*}
\psi_{\lambda}(x, t)=A e^{\frac{i}{\hbar}\left(p x-\lambda E_{P} t\right)}, \quad \lambda= \pm 1 \tag{12}
\end{equation*}
$$

Here an interpretative problem arises since we still have two progressive plane waves, but one of the two has a "negative frequency"; precisely

$$
\lambda=-1 \Longrightarrow \psi_{-}(x, t)=A e^{i(k x-(-\omega) t)} \text { dove }-\omega=-\frac{E_{p}}{\hbar}
$$

which describes a progressive plane wave with frequency $-\omega$. Replacing the (12) in the first of the (8)

$$
\begin{equation*}
\rho_{\lambda}(x, t)=\frac{\lambda q E_{P}}{m c^{2}} A^{2} \tag{13}
\end{equation*}
$$

where we have redefined the electric charge as $q=e$ where e is the absolute value of the charge of the electron. We can then interpret $\psi_{+}(x, t)$ as the wave function of a relativistic free particle of momentum p and electric charge q, while $\psi_{-}(x, t)$ is the wave function of a relativistic free particle of momentum p and electric charge $-q$.

2 Covariant form of the Klein-Gordon equation

Since the Klein-Gordon equation is the relativistic extension of the Schrödinger equation for a particle of spin 0 , we must write it in four-dimensional notation. For this purpose, we recall that the generic point-event of the spacetime of Special Relativity is determined by the 4 -vector $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ where $x^{(0)}=c t$ is the time coordinate, while $\left(x^{1}, x^{2}, x^{3}\right)$ are the spatial coordinates which in many cases coincide with the usual Cartesian coordinates (x, y, z). Here we have a metric tensor

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

and therefore an element of "distance":

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=c^{2} d t-(d x)^{2}-(d y)^{2}-(d z)^{2}
$$

which is manifestly invariant under Lorentz transformations. The 4-momentum of a particle of mass m is defined by the following 4 -vector:

$$
p^{\mu}=\left(\frac{E}{c}, \mathbf{p}\right)
$$

being $\mathbf{p}=\left(p^{1}, p^{2}, p^{3}\right)$ the usual 3 -momentum, while E is the energy

$$
E^{2}=m^{2} c^{4}+c^{2} \mathbf{p}^{2}
$$

Performing the scalar product or the contraction of the 4-impulse vector:

$$
p^{\mu} p_{\mu}=\frac{E^{2}}{c^{2}}-\mathbf{p}^{2}=m^{2} c^{2}
$$

Given this, we need to write the differential equation

$$
\begin{equation*}
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}-\left(\frac{m c}{\hbar}\right)^{2} \psi=0 \tag{14}
\end{equation*}
$$

in 4-dimensional notation. Let's remember the 4 -gradient operator:

$$
\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}=g^{\mu \nu} \frac{\partial}{\partial x_{\nu}},
$$

where $g^{\mu \nu}$ is the inverse metric tensor. We have

$$
\frac{\partial}{\partial x^{\mu}}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right)=\left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right) \Longrightarrow \partial^{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t},-\nabla\right)
$$

It follows

$$
\partial^{\mu} \partial_{\mu}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}=-\square
$$

Incidentally, passing from the individual physical quantities to the respective Hermitian operators:

$$
\mathbf{p} \rightarrow \hat{\mathbf{p}}=-i \hbar \nabla \Longrightarrow p^{\mu} \rightarrow \hat{p}^{\mu}=-i \hbar \partial^{\mu}
$$

Ultimately, in 4-dimensional notation the Klein-Gordon equation is written:

$$
\left(\partial^{\mu} \partial_{\mu}\right) \psi=-\left(\frac{m c}{\hbar}\right)^{2} \psi
$$

which is manifestly covariant.

3 Integration of the Klein-Gordon equation

After examining the covariant writing of the Klein - Gordon equation, let's rewrite it in threedimensional notation:

$$
\begin{equation*}
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=\left(\frac{m c}{\hbar}\right)^{2} \psi \tag{15}
\end{equation*}
$$

Let them be

$$
\varphi, \chi \mid \psi=\varphi+\chi, \quad i \hbar \frac{\partial \psi}{\partial t}=m c^{2}(\varphi-\chi)
$$

It follows

$$
\begin{gathered}
\nabla^{2}(\varphi+\chi)-\frac{1}{c^{2}} \frac{\partial}{\partial t}\left[-\frac{i}{\hbar} m c^{2}(\varphi-\chi)-\frac{m^{2} c^{2}}{\hbar^{2}}(\varphi+\chi)\right]=0 \\
\Longrightarrow \nabla^{2} \varphi+\nabla^{2} \chi+\frac{i}{\hbar} m\left(\frac{\partial \varphi}{\partial t}-\frac{\partial \chi}{\partial t}\right)-\frac{m^{2} c^{2}}{\hbar^{2}} \varphi-\frac{m^{2} c^{2}}{\hbar^{2}} \chi=0 \\
\Longrightarrow\left[\frac{\hbar^{2}}{2} \nabla^{2}(\varphi+\chi)-m^{2} c^{2} \varphi+i \hbar m \frac{\partial \varphi}{\partial t}\right]-\left[-\frac{\hbar^{2}}{2} \nabla^{2}(\varphi+\chi)+i \hbar m \frac{\partial \chi}{\partial t}+m^{2} c^{2} \chi\right]=0
\end{gathered}
$$

It is clear that the terms in brackets must cancel identically, obtaining:

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial \varphi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2}(\varphi+\chi)+m c^{2} \varphi \tag{16}\\
i \hbar \frac{\partial \chi}{\partial t}=\frac{\hbar^{2}}{2 m} \nabla^{2}(\varphi+\chi)-m c^{2} \chi
\end{array}\right.
$$

which is a system of two differential equations of the Schrödinger type.

4 Operational form of the Klein-Gordon equation

The mathematical device used in the previous number returns the sensational advantage of reducing the order of the Klein-Gordon differential equation in the time derivative by one unit (reducing it to a Schrödinger equation). The price you pay is the integration of a system of coupled differential
equations. The particular shape of this system suggests a matrix writing of the same. To do this, we define the column vector

$$
\begin{equation*}
\Psi=\binom{\varphi}{\chi} \tag{17}
\end{equation*}
$$

whose elements are the unknown functions that appear in the aforementioned system that we rewrite here:

$$
\left\{\begin{array}{l}
i \hbar \frac{\partial \varphi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2}(\varphi+\chi)+m c^{2} \varphi \tag{18}\\
i \hbar \frac{\partial \chi}{\partial t}=\frac{\hbar^{2}}{2 m} \nabla^{2}(\varphi+\chi)-m c^{2} \chi
\end{array}\right.
$$

Let's write a Schrödinger-type equation

$$
\begin{equation*}
\hat{X} \Psi=i \hbar \frac{\partial \Psi}{\partial t} \tag{19}
\end{equation*}
$$

where

$$
\hat{X}=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

whose matrix elements are second-order differential operators acting on the elements of the Hilbert space $L^{2}\left(\mathbb{R}^{3}\right)$. Expliciting the product rows by columns, we obtain:

$$
\left\{\begin{array}{l}
X_{11} \varphi+X_{12} \chi=i \hbar \frac{\partial \varphi}{\partial t} \\
X_{21} \varphi+X_{22} \chi=i \hbar \frac{\partial \chi}{\partial t}
\end{array}\right.
$$

from which

$$
\begin{align*}
& X_{11}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+m c^{2}, \quad X_{12}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \tag{20}\\
& X_{21}=\frac{\hbar^{2}}{2 m} \nabla^{2}, \quad X_{22}=\frac{\hbar^{2}}{2 m} \nabla^{2}-m c^{2}
\end{align*}
$$

To separate matrices by the differential operator nabla, we write

$$
\hat{X}=-\frac{\hbar^{2}}{2 m} Y \nabla^{2}+m c^{2} Z
$$

where Y, Z are matrices (to be determined) of order 2 on the complex field. One possible determination is

$$
Y=\tau_{3}+i \tau_{2}, \quad Z=\tau_{3}
$$

having introduced the matrices:

$$
\tau_{1}=\left(\begin{array}{ll}
0 & 1 \tag{21}\\
1 & 0
\end{array}\right), \quad \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which verify the following properties:

$$
\begin{aligned}
\tau_{k}^{2} & =I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\tau_{k} \tau_{l} & =-\tau_{l} \tau_{k}=i \tau_{m}, \quad i=1,2,3 \text { in ordine ciclico }
\end{aligned}
$$

We conclude that the operational form of the Klein - Gordon equation is:

$$
\begin{equation*}
\hat{H}_{f} \Psi=i \hbar \frac{\partial \Psi}{\partial t} \tag{22}
\end{equation*}
$$

where the Hamiltonian operator is

$$
\begin{equation*}
\hat{H}_{f}=-\frac{\hbar^{2}}{2 m}\left(\tau_{3}+i \tau_{2}\right) \nabla^{2}+m c^{2} \tau_{3} \tag{23}
\end{equation*}
$$

For a physical interpretation of the functions that make up Ψ, we take the electric charge density and the corresponding current density:

$$
\begin{aligned}
& \rho(\mathbf{x}, t)=\frac{i q \hbar}{2 m c^{2}}\left(\psi^{*} \frac{\partial \psi}{\partial t}-\psi \frac{\partial \psi^{*}}{\partial t}\right) \\
& \mathbf{j}(\mathbf{x}, t)=\frac{q \hbar}{2 i m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
\end{aligned}
$$

It follows

$$
\begin{gather*}
\rho=\frac{i q \hbar}{2 m c^{2}}\left[\frac{m c^{2}}{i \hbar}\left(\varphi^{*}+\chi^{*}\right)(\varphi-\chi)+\frac{m c^{2}}{i \hbar}(\varphi+\chi)\left(\varphi^{*}-\chi^{*}\right)\right] \\
\rho=q\left(\varphi \varphi^{*}-\chi \chi^{*}\right) \tag{24}
\end{gather*}
$$

The obvious result

$$
\left(\begin{array}{ll}
\varphi^{*} & \chi^{*}
\end{array}\right) \underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{=\tau_{3}}\binom{\varphi}{\chi}=\varphi \varphi^{*}-\chi \chi^{*}
$$

allows us to express the charge density as

$$
\rho=q \Psi^{\dagger} \tau_{3} \Psi
$$

being

$$
\Psi^{\dagger}=\left(\begin{array}{ll}
\varphi^{*} & \chi^{*}
\end{array}\right)
$$

the conjugate Hermitian function of Ψ. The electric charge in a volume of physical space represented by a regular domain Ω, is

$$
Q_{\Omega}(t)=\int_{\Omega} \rho(\mathbf{x}, t) d^{3} x=q \int_{\Omega}\left(\varphi \varphi^{*}-\chi \chi^{*}\right) d^{3} x
$$

Density and current are related by the continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{j}=0 \tag{25}
\end{equation*}
$$

cwhich expresses the conservation of electric charge. Integrating over all physical space manifestly results

$$
\begin{equation*}
\frac{d Q}{d t}=0, \quad\left(Q=\int_{\mathbb{R}^{3}} \rho d^{3} x\right) \tag{26}
\end{equation*}
$$

with the normalization condition:

$$
\int_{\mathbb{R}^{3}} \rho d^{3} x= \pm e
$$

i.e.

$$
\int_{\mathbb{R}^{3}} \Psi^{\dagger} \tau_{3} \Psi d^{3} x= \begin{cases}+1, & \text { if }+e \tag{27}\\ -1, & \text { if }-e\end{cases}
$$

5 Free motion. Particle and antiparticle

The free motion of a particle is described by a <wave function»

$$
\begin{equation*}
\Psi(\mathrm{x}, t)=\binom{\varphi(\mathbf{x}, t)}{\chi(\mathbf{x}, t)} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(\mathbf{x}, t)=\varphi_{0} e^{\frac{i}{\hbar}(\mathbf{p} \cdot \mathbf{x}-\varepsilon t)} ; \quad \chi(\mathbf{x}, t)=\chi_{0} e^{\frac{i}{\hbar}(\mathbf{p} \cdot \mathbf{x}-\varepsilon t)} \tag{29}
\end{equation*}
$$

being φ_{0}, χ_{0} constant quantities. So

$$
\begin{equation*}
\Psi(\mathbf{x}, t)=\binom{\varphi_{0}}{\chi_{0}} e^{\frac{i}{\hbar}(\mathbf{p} \cdot \mathbf{x}-\varepsilon t)} \tag{30}
\end{equation*}
$$

assuming that (30) is a solution of (22) we obtain the system of equations:

$$
\left\{\begin{array}{c}
\left(\varepsilon-m c^{2}\right) \varphi_{0}=\frac{p^{2}}{2 m}\left(\varphi_{0}+\chi_{0}\right) \tag{31}\\
\left(\varepsilon+m c^{2}\right) \chi_{0}=-\frac{p^{2}}{2 m}\left(\varphi_{0}+\chi_{0}\right)
\end{array}\right.
$$

It follows

$$
\exists!\left(\varphi_{0}, \chi_{0}\right) \neq(0,0) \Longleftrightarrow \varepsilon= \pm E_{P} \text { where } E_{P}=+\sqrt{m^{2} c^{4}+c^{2} p^{2}}
$$

So

$$
\begin{gather*}
\Psi_{(+)}(\mathbf{x}, t)=\binom{\varphi_{0(+)}}{\chi_{0(+)}} e^{\frac{i}{\hbar}\left(\mathbf{p} \cdot \mathbf{x}-E_{P} t\right)} \tag{32}\\
\varphi_{0(+)}=\frac{E_{P}+m c^{2}}{2 \sqrt{m c^{2} E_{P}}}, \quad \chi_{0(+)}=\frac{m c^{2}-E_{P}}{2 \sqrt{m c^{2} E_{P}}}
\end{gather*}
$$

and

$$
\begin{gather*}
\Psi_{(-)}(\mathbf{x}, t)=\binom{\varphi_{0(-)}}{\chi_{0(-)}} e^{\frac{i}{\hbar}\left(\mathbf{p} \cdot \mathbf{x}+E_{P} t\right)} \tag{33}\\
\varphi_{0(+)}=\frac{E_{P}+m c^{2}}{2 \sqrt{m c^{2} E_{P}}}, \quad \chi_{0(+)}=\frac{m c^{2}-E_{P}}{2 \sqrt{m c^{2} E_{P}}}
\end{gather*}
$$

To write the normalization condition, we first observe that the constant quantities φ_{0}, χ_{0} are dimensionless. Since a wave function has the dimensions of $V^{-1 / 2}$ where $V \mathrm{~V}$ is a volume, we must multiply by a constant quantity A having this dimension. To normalize it is however convenient to refer to the motion in a region Ω of volume V, so

$$
\begin{equation*}
\Psi_{(\pm)}(\mathbf{x}, t)=V^{-1 / 2}\binom{\varphi_{0(+)}}{\chi_{0(+)}} e^{\frac{i}{\hbar}\left(\mathbf{p} \cdot \mathbf{x} \mp E_{P} t\right)} \tag{34}
\end{equation*}
$$

The normalization condition immediately follows

$$
\begin{equation*}
\varphi_{0(\pm)} \varphi_{0(\pm)}-\chi_{0(\pm)} \chi_{0(\pm)}= \pm 1 \tag{35}
\end{equation*}
$$

We refer to the motion of the positively charged particle:

$$
\begin{equation*}
\Psi_{(+)}(\mathbf{x}, t)=\binom{\varphi_{0(+)}}{\chi_{0(+)}} e^{\frac{i}{\hbar}\left(\mathbf{p} \cdot \mathbf{x}-E_{P} t\right)}=\binom{\varphi_{(+)}(\mathbf{x}, t)}{\chi_{(+)}(\mathbf{x}, t)} \tag{36}
\end{equation*}
$$

So let's define

$$
\begin{aligned}
\Psi_{c}(\mathbf{x}, t) & =\binom{\chi_{(+)}^{*}(\mathbf{x}, t)}{\varphi_{(+)}^{*}(\mathbf{x}, t)} \\
& =\binom{\chi_{0(+)}}{\varphi_{0(+)}} e^{\frac{i}{\hbar}\left[(-\mathbf{p}) \cdot \mathbf{x}+E_{P} t\right]}
\end{aligned}
$$

so Ψ_{c} describes the motion of a particle with negative charge and momentum $-\mathbf{p}$. The reverse is also true:

$$
\begin{equation*}
\Psi_{(-)}=\binom{\varphi_{(-)}}{\chi_{(-)}} \rightarrow \Psi_{c}=\binom{\chi_{(-)}^{*}}{\varphi_{(-)}^{*}} \tag{37}
\end{equation*}
$$

Here Ψ_{c} describes the motion of a positively charged particle. We conclude that there is a solution $\Psi=\binom{\varphi}{\chi}$ the solution corresponds uniquely $\Psi_{c}=\binom{\chi^{*}}{\varphi^{*}}$ which is called the solution of the conjugated charge relative to Ψ. Note that

$$
\begin{equation*}
\Psi_{c}=\tau_{1} \Psi \tag{38}
\end{equation*}
$$

Definition 1 If the relativistic motion of a particle of mass m and spins $=0$ is described by the "wave function"

$$
\Psi=\binom{\varphi}{\chi}
$$

the particle described by the conjugate charge function $\Psi_{c}=\tau_{1} \Psi$, it's called antiparticle.
Example 2 The meson π^{-}has zero spin and charge $q=-e$. It follows that the meson π^{+}is the antiparticle.

Definition 3 The transformation

$$
\begin{equation*}
\Psi=\binom{\varphi}{\chi} \longrightarrow \Psi_{c}=\binom{\chi^{*}}{\varphi^{*}} \tag{39}
\end{equation*}
$$

is called conjugation particle - antiparticle. The (39) transforms particles into antiparticles and vice versa. If the state of motion is invariant with respect to (39), the particle is said to be effectively neutral.

Example 4 The neutron and neutrino are electrically neutral particles but not actually neutral. The photon is an electrically neutral and effectively neutral particle.

References

[1] Sakurai J.J., Modern Quantum Mechanics.
[2] Davydov A.S., Meccanica Quantistica. Editori Riuniti.
[3] Landau L. D. Lifsits M.L. Fisica Teorica 2. Teoria dei campi. Editori Riuniti.

