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Abstract: The Lie algebra of a Lie group is a set of commutation relations, equations satisfied by
the group’s generators. For SU(2) and many other Lie groups, the equations have been solved and
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1. Introduction
The special unitary group SU(3) has extensive applications in physics, from particle physics[1–5]

and nuclear physics[6,7] to the ubiquitous harmonic oscillator, specifically the 3D isotropic harmonic
oscillator.[8] For these investigations, it may be convenient to have quick and easy access to matrix
representations of the group. To possibly aid such endeavors, this article derives formulas for basis
generators of the group SU(3).

Many Lie groups have formulas for their basis generators. Matrix representations of the group
SU(2), one step down from SU(3), can be found for any integer or half-integer spin t by substituting t
into well-known formulas.[9–12] The homogeneous Lorentz group has matrix realizations determined
by compound SU(2) formulas.[2] Having formulas for these groups is fundamental to many numerical,
algebraic and analytic explorations of topics related to SU(2) and the Lorentz group. The same may
become true for SU(3).

The formulas derived here from the Lie algebra are more compact and simpler than the formulas
of the earlier experimental work,[13] which were inferred, in part, from numerical small-dimensional
irreducible representations (irreps) obtained irrep-by-irrep by computer.

Roughly put, the eight generators of the Lie algebra su(3) are the nine generators of three su(2)
algebras with two of the nine ‘averaged’ together.

To elaborate and introduce the notation, let T, U, V be three sets of generators for su(2), a total
of nine generators. The eight su(3) generators are T3, Y, T±, U±, V±, where Y = 2(U3 + V3)/3 is the
‘average’ that reduces nine generators to eight.

The two generators T3 and Y are diagonal matrices, by assumption and convention. That makes
the components on the diagonals of T3 and Y the eigenvalues of simultaneous eigenvectors. The
simultaneous eigenvalues are pairs of real numbers that, when plotted, make a pattern called a
‘multiplet.’[3,4,9,14]

Applying one of the six generators T±, U±, V± to a simultaneous eigenvector gives another
eigenvector with raised or lowered eigenvalues. One says ‘the six generators T±, U±, V± raise and
lower eigenvalues.’ Starting with one of the points on the multiplet pattern, all the points can be
reached by successive application of T±, U±, or V±.

Thus, T3 and Y, are diagonal matrices and T±, U±, V± are raising/lowering matrices.
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The matrices T3, Y, and T±, have formulas from the su(2) algebra, the T-matrices, and from the
properties of multiplets, the matrix Y. The T, Y-matrices are called ‘given’ since they have known
formulas. The task here is to derive formulas for the four ‘unknown’ U, V matrices, i.e. U± and V±.

Except that the order of SU(2)-irreps in the direct sum making the T-matrices is arbitrary. Equiva-
lently, there is considerable freedom to choose the sequence of the simultaneous eigenvectors of T3

and Y. We spend Sections 3, 4, 5, producing a special sequence of eigenvectors that is helpful in the
derivation.

The place n of an eigenvector in the special sequence depends on three parameters, n(a, b, α),
where a, b, and α are multiplet quantities. The function n is useful because the number of eigenvectors
is the same as the number of rows and columns in the matrix generators, both of which are the
dimension d of the SU(3)-irrep. See Appendix A for an example.

Make a one-to-one correspondence between row index r and the place n, r ↔ n(ar, br, αr), and a
one-to-one correspondence for the column index c, r ↔ n(ac, bc, αc). Then we can use the six quantities
(ar, br, αr, ac, bc, αc), as parameters in the function for the value of the matrix component in the rth row
and cth column.

The equations to solve and some initial conditions are found in Section 2. The special sequence of
eigenvectors is constructed in Sections 3, 4, 5. In Section 6, formulas are determined that relate the
row/column indices r, c of a matrix Mrc to the parameters (ar, br, αr, ac, bc, αc).

Formulas for the four given matrix generators T, Y require some assembly which is presented
in Section 7. Sections 8 and 9 have the derivation of formulas for the four remaining U, V matrices.
Section 8 considers those CRs that are linear in the U, V matrices. After evaluating several linear CRs,
only two unknown functions remain to be determined. In Section 9, the CRs quadratic in the U, V
matrices and the Casimir operator equation are solved for the two unknown functions. Inverting the
steps of the derivation yields formulas for the matrices U± and V±.

The solutions for the eight generators are shown in Section 10. A brief discussion concludes the
work, Section 11.

As Supplemental Material, we provide links to a FORTRAN computer program that calculates
the matrix generators for an irreducible representation (irrep) of the user’s choice[15,16] The program
also appears in Appendix B. A second link provides access to a Wolfram Mathematica program that
calculates generators for an irrep.[17,18] The Mathematica program also presents calculations that
verify that the formulas satisfy the 28 CRs of the Lie algebra su(3) for any finite-dimensional irrep.
Based on those verifying calculations, it is expected that the formulas hold for all finite-dimensional
SU(3)-irreps.

2. Lie algebra
The equations to solve are the 28 commutation relations (CR) of the Lie algebra su(3). For

convenience, we include an equation with the quadratic Casimir operator C, which is a well-known
consequence of the algebra and therefore does not provide any additional constraints.[3,19,20]

The Lie algebras CRs can be grouped into CRs of given T, Y matrices, CRs that are linear in the
unknown U, V matrices, and CRs that are quadratic in unknowns. [3,4,9]

CRs in T, Y matrices only:

[T+, T−] = 2 T3 ; [T3, T±] = ± T± ; (1)

[Y, T±] = 0 ; [Y, T3] = 0 . (2)

CRs linear in U, V matrices:

[T3, U±] = ∓ 1
2

U± ; [T3, V±] = ± 1
2

V± ; [Y, U±] = ±U± ; [Y, V±] = ±V± (3)

[T±, U∓] = [T±, V±] = 0 ; [T±, U±] = ±V± ; [T±, V∓] = ∓U∓ . (4)
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CRs quadratic in U, V matrices:

[U+, U−] =
3
2

Y − T3 ; [V+, V−] =
3
2

Y + T3 ; (5)

[U±, V∓] = ± T∓ ; [U±, V±] = 0 , (6)

The commutator [A, B] of two matrices is the difference of their dot products, [A, B] ≡ AB − BA.
The quadratic Casimir equation is [3,19,20]

C ≡
(
{T+, T−}+ {U+, U−}+ {V+, V−}

)
/2 + T32

+ 3Y2/4 =
(

p2 + pq + q2 + 3p + 3q
)

/3 1 , (7)

where the anti-commutator is {A, B} ≡ AB + BA, and the identity matrix 1 is appropriately dimen-
sioned. Equations (1) - (7) are the equations to solve.

We can reduce the number of cases to consider. Assume that we are given a set of generators T3,
Y, T±, U±, V± for the (p, q)-irrep. One can show that the negative transpose of the generators make a
basis for the (q, p)-irrep, i.e. for the reverse order of p and q.[3,4,9] In view of this, the derivation can
assume p is greater than or equal to q,

p ≥ q . (8)

Then, when we want formulas for a ( p̄, q̄)-irrep with p̄ < q̄, we can take the negative transposes of the
generators for the (p, q)-irrep with p = q̄ > q = p̄. In this way we get basis generators for (p, q)-irreps
with any nonnegative integers p and q by finding formulas for p ≥ q.

The eight matrices T3, Y, T±, U±, V±, are assumed to have real-valued components. They are
required to satisfy the 28 CRs of the Lie algebra su(3) and the expression for the quadratic Casimir
operator for the p ≥ q, (p, q)-irrep of the algebra.

The four matrices T±, T3, Y can be found with SU(2)-irreps and from the properties of a multiplet.
Both the SU(2) formulas and the multiplet properties are well documented, and their derivations are
not repeated here.

Thus, we need to derive formulas for the set of four unknown matrices U±, V±. We start by
placing the eigenvectors in a special sequence.

3. Eigenvectors
By the CRs in (1), the T-matrices satisfy the Lie algebra su(2). Therefore, we can assume that the T-

matrices are completely reduced to direct sums of irreps of SU(2). However, a similarity transformation
can rearrange the order of the SU(2) irreps, so we can arrange the SU(2) irreps in a special, useful
sequence.

We choose T3 and Y to be diagonal matrices, which is the standard choice. However, we find that
the eigenvalues of Y are not convenient to index the components of the matrix. So we define a matrix
Y0 with eigenvalues that are shifted from those of Y The new matrix Y0 and its eigenvalues y0 are

Y0 ≡ Y + 2(p − q)/3 1 and y0 = y + 2(p − q)/3 . (9)

The eigenvalues of Y0 and Y differ by 2(p − q)/3. The two matrices Y and Y0 are equivalent in the
sense that one may be found given the other. But unlike Y, the matrix Y0 is neither a generator nor a
linear combination of generators because the identity matrix 1 is not a combination of generators.

Let α and y0 be the rth component along the diagonals of T3 and Y0, resp, i.e. T3
rr = α and Y0

rr = y0.
Therefore, α and y0 are simultaneous eigenvalues for the eigenvector, in ‘bra-ket’ notation, |α, y0⟩. We
have

T3|α, y0⟩ = α|α, y0⟩ , Y0|α, y0⟩ = y0|α, y0⟩ , (10)
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with the rth column of the identity matrix 1 as |α, y0⟩,

|α, y0⟩ = (0, ..., 1, ...0)T, (11)

with the 1 in the rth place. For convenience, the transpose T is used to display the column vector.
Multiplying the eigenvector by an arbitrary nonzero real number A gives an eigenvector with the
same eigenvalue(s). We make note of eigenvector normalization when pertinent. We can assume that
the eigenvectors are columns of the identity matrix.

For the (p, q)-irrep, the matrix generators are d × d square matrices with real-valued components,
where the dimension d is known to be[3,4,9]

d =
1
2
(p + 1)(q + 1)(p + q + 2) . (12)

Thus, the identity matrix 1 has dimension d and the eigenvector |α, y⟩ is a column vector with d
components.

Figure 1. The (p, q) = (5, 3) multiplet. The eigenvalues α and y0 of the simultaneous eigenvectors |α, y0⟩ of T3

and Y0 make a six-sided figure whose sides have p or q spaces. The point (α, y0) is marked with the number
of eigenvectors, the ‘multiplicity,’ that share the eigenvalues α and y0. The multiplicity is one on the rim and
increases inward on smaller six-sided figures until reaching the central triangle with multiplicity 4. The point on
the rim with the maximum T3 eigenvalue α = 4 is labeled ‘Max α,’, often referred to as max weight.

CRs: [T3, T±], [T3, U±], [T3, V±], [Y, T±], [Y, U±], [Y, V±]. These equations govern the action of
the raising and lowering matrices, T±, U±, V±, on the eigenvectors |α, y0⟩.

Consider the CR with T3 and one of the raising or lowering matrices R. We have [T3, R] = rR, for
the constant r found in the CR. Applying the CR to an eigenvector gives

T3R|α, y0⟩ = RT3|α, y0⟩+ rR|α, y0⟩ = (α + r)R|α, y0⟩ ⇒ R|α, y0⟩ ∝ |α + r, y0⟩ . (13)

Thus, the action of applying the matrix R to an eigenvector |α, y0⟩ yields an eigenvector |α + r, y0⟩,
which has raised or lowered the eigenvalue α depending on the sign of r. For the Rs and rs in the CRs
listed above, we get

T±|α, y0⟩ ∝ |α ± 1, y0⟩ , U±|α, y0⟩ ∝ |α ∓ 1/2, y0 ± 1⟩ , V±|α, y0⟩ ∝ |α ± 1/2, y0 ± 1⟩ , (14)
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which includes the results of raising and lowering both eigenvalues α and y0. It is known that all
eigenvectors of a (p, q)-irrep can be obtained by the action of raising and lowering matrices applied to
any eigenvector of the irrep.

4. Multiplets
Plotting the eigenvalues (α, y0) of the eigenvectors of a (p, q)-irrep makes a three- or six-sided

figure called a ‘multiplet.’ See Figure 1. We list some well-known multiplet properties (MPs).[3,4,9,14]
MP1. The multiplets have a six-sided pattern with p + 1 points in the row with maximum y0 and

q + 1 points in the row with minimum y0. The sides alternately have p spaces and q spaces.
In Figure 1, the top row has six points with p = 5 spaces; the bottom row has q = 3 spaces.
MP2. The points (α, y0) on the outer rim each represent one eigenvector, so they have multiplicity

one. Each step inward from the rim has points representing an additional eigenvector, until the inner
triangle whose points have the maximum multiplicity.

In Figure 1, the outer rim has multiplicity ‘1,’ while the inner triangle is filled with points with
multiplicity ‘4,’ meaning each point represents four distinct eigenvectors that happen to have the same
eigenvalues.

MP3. The point on the right with the largest eigenvalue αmax, which is often called the point with
maximum ‘weight,’ has coordinates (αmax, y0) = ((p + q)/2, p − q).

Theorem 1 (MP4). At least one eigenvector has null eigenvalues α = y0 = 0. Thus, a multiplet always has at
least one eigenvector |0, 0⟩ at the α = y0 = 0 vertex of the inner triangle.

Proof. Start on the multiplet at the point of maximum weight, (αmax, y0) = ((p + q)/2, p − q). By (14),
after q applications of the raising matrix U+ and p applications of V−, we get an eigenvector at the
origin (α, y0) = (0, 0), which completes the proof. See Figure 1.

Theorem 2 (MP5). At any point of the multiplet, take double the spin component, i.e. 2α, and take y0 to make
the pair (2α, y0), both integers. The pair never has one odd integer and one even integer. It is always true that
the pair are both even integers or they are both odd integers.

Proof. Since p and q are integers, it follows that their sum and difference (p + q) and (p − q), are
even integers or are both odd integers. They are both even when p and q are both even or odd; they
are both odd integers when just one of (p, q) is even and the other is odd. Thus, MP5 is true for the
eigenvector with maximum weight, the point (αmax, y0) = ((p + q)/2, p − q), since we take double the
spin component 2αmax = (p + q). But all eigenvectors of the multiplet can be reached by the action of
the raising and lowering matrices, (14), so MP5 is true for all points of the multiplet.

5. Sequencing Eigenvectors
As stated previously, we determine a special sequence of SU(2) irreps for the reduced T-matrices.

The process takes two steps. First the eigenvectors are collected into SU(2) irreps. After collecting
SU(2) irreps, the SU(2)-irreps must be sequenced.

Collect the eigenvectors into SU(2)-irreps. An SU(2) irrep with spin t has 2t + 1 eigenvectors |α, y0⟩
with spin components α = t, t − 1, ...,−t. We proceed by example.

For example, collect the eigenvectors whose eigenvalues are plotted in the y0 = 3 row of Figure 1.
The leftmost point of the row has α = −7/2, and the rightmost point has α = +7/2, all with y0/2 = 3/2.
By the MP2 multiplet property, the multiplicities increase by one from "1" outside to a constant "3"
inside of the row.

See Table 1 which records the successive removal of eigenvectors in batches of SU(2)-irreps. Note
that, as a consequence of MP2, each SU(2) irrep collected has a unique combination of spin t and
half-eigenvalue y0/2.. There is only one (t, y0/2)-SU(2) irrep for a given combination (t, y0/2).
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Table 1. Collecting the eigenvectors in the y0 = 3 row of Figure 1. The first line has the original multiplicities of
the eigenvectors with T3 eigenvalues α. The second and third line have the multiplicities after the removal of
eigenvectors collected in the (t, y0/2)-SU(2) irrep in the right column.

α −7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 +7/2 (t, y0/2)

original 1 2 3 3 3 3 2 1 (7/2, 3/2)
1 2 2 2 2 1 (5/2, 3/2)

1 1 1 1 (3/2, 3/2)

The row y0 = 3 has 1 + 2 + 3 + 3 + 3 + 3 + 2 + 1 = 18 eigenvectors that have been collected into
three (t, y0/2)-SU(2) irreps (7/2, 3/2), (5/2, 3/2), (3/2, 3/2). These SU(2)-irreps have 2t + 1 = 8, 6, 4,
eigenvectors each.

The generalization to the other rows of Figure 1 and to the multiplet of any (p, q)-irrep should be
apparent.

Theorem 3 (MP6). Each of the collected irreducible representations (t, y0/2)-SU (2) is unique. At most one
SU(2)-irrep has that combination of t and y0/2.

Proof. Consider the set of all eigenvectors with eigenvalue y0, a horizontal row of the multiplet. By
MP2, only one eigenvector has the maximum eigenvalue α since the eigenvector is on the rim of the
multiplet. Again by MP2, there is at least one eigenvector with eigenvalues in unit steps from −α

to +α. Collecting one eigenvector for each eigenvalue makes exactly one (t, y0/2) -SU (2) irrep of
spin t = α. By MP2, the remaining set of eigenvectors has only one eigenvector with the maximum
eigenvalue α − 1. The collection process produces exactly one (t, y0/2) -SU (2) irrep of spin t = α − 1.
By MP2, the process continues until the remaining eigenvectors have a constant multiplicity of one and
collecting them makes the final SU(2)-irrep for the y0 row. Since each collection step makes exactly one
SU(2)-irrep and following steps give successively smaller spins t, it follows that none of the (t, y0/2)
-SU (2) irreps have duplicate t. Eigenvectors that have different eigenvalues y0 are in other constant y0

sets. Thus, either t or y0 are different for the (t, y0/2) -SU (2) irreps and that proves the statement.

That completes the collection of the eigenvectors into SU(2)-irreps.
Put the SU(2)-irreps in order. The (t, y0/2)-SU(2) irreps can now be placed in order. Spin t and the

half-value y0/2 served well in collecting eigenvectors in SU (2) irreps. However, we retire them in
favor of their sum and difference, which are more useful quantities for sequencing the SU(2)-irreps.

Let a and b be the difference and sum defined in

a ≡ t − y0/2 ; b ≡ t + y0/2 . (15)

Solving the equations for t and y0 gives

t = (a + b)/2 ; y0 = b − a . (16)

When plotted, as in Figure 2 for the (p, q) = (5, 3)-multiplet in Fig 1, the points (a, b) make a rectangle
aligned with the a and b-axes.

In view of the new parameters (t, y0/2) → (a, b), we give the (t, y0/2)-SU(2) irreps a second name,
the ‘(a, b)-SU(2) irrep.’ Since the eigenvectors collected in (t, y0/2)-SU(2) are the same eigenvectors in
the (a, b)-SU(2) irrep, we have a corollary to Theorem 3.

Corollary 1 (MP6). There is exactly one (a, b)-SU(2) irrep for each combination of integers a = 0, ..., q and b =
0, ..., p.



7 of 36

Figure 2. The sequence of SU(2) irreps in the direct sum of SU(2) irreps making the T-matrices. For the (p, q) = (5, 3)
multiplet in Figure 1, simultaneous eigenvectors |α, y0⟩ are collected in (a, b)-SU(2) irreps. By Corollary 1, each of
the (q + 1)(p + 1) points of the rectangle represents exactly one (a, b)-SU(2) irrep. The sequence of SU(2) irreps k
marks the points of the rectangle. The k = 1 irrep is the (a, b) = (0, 0)-SU(2) irrep and the k = 24 irrep is the (a, b) =
(p, q) = (5, 3)-SU(2) irrep.

We now show that the points (a, b) are pairs of integers: In a spin t SU(2) irrep, one of the spin
components α is α = t. From MP5, 2t and y0 are either both even integers or both odd integers. By their
definitions as a sum and difference in (15), it follows that a and b are integers.

Plotting the points (a, b) for the (a, b)-SU(2) irreps of the (p, q) = (5, 3)-multiplet in Figure 1
produces the rectangular array in Figure 2. There are (p + 1)(q + 1) = 24 points in the rectangle with
one SU(2) irrep represented at each point.

Since there is exactly one SU(2)-irrep represented at each point, we can assign an order to the
SU(2)-irreps by assigning an order to the points of the rectangle. The points are placed in row-by-row
order, starting with the bottom row of the rectangle. One can see that the (a, b)-SU(2) irrep is assigned
the kth place in the sequence, where

k = 1 + a + b (q + 1) . (17)

The range of the SU(2)-irrep index k is k = 1, ..., (q + 1)(p + 1).
For example, in Figure 2, the k = 15th SU(2) irrep is the (a, b) = (2, 3)-SU(2) irrep which was earlier

called the (t, y0/2) = (5/2, 1/2)-SU(2) irrep.
The reduction of T-matrices into the direct sum of SU(2)-irreps is complete. By (17), the (a, b)-SU(2)

irrep is the kth SU(2) irrep in the direct sum, where a = 0, ..., q, b = 0, ..., p. We call k the ‘single’ index for
the list of SU(2) irreps. The pair of integers (a, b) is called the ‘double’ index for the SU(2)-irrep list.

In each SU(2)-irrep, the eigenvectors are placed in descending order. Each (a, b)-SU(2) irrep has
spin t = (a + b)/2 with N(a, b) = 2t + 1 eigenvectors |α, y0⟩. We have

N(a, b) = 2t + 1 = a + b + 1 . (18)

These eigenvectors are placed in order of the spin component α, largest first, α = t, ...,−t. That makes
|α, y0⟩ the mth eigenvector in the (a, b)-SU(2) irrep, where

m = t − α + 1 = (a + b)/2 − α + 1 . (19)

The place number m is a positive integer, m = 1, ..., a + b + 1.
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In general, the point (a, b) for the (a, b)-SU(2) irrep is somewhere along the row b in the rectangle.
The eigenvectors to the left of (a, b) precede our selected eigenvector |α, y0⟩. In the b-row, those
eigenvectors in the (ā, b)-SU(2) irreps with ā = 0, ..., a− 1 precede the eigenvector |α, y0⟩ in the sequence
of eigenvectors.

The number of eigenvectors in the partial row to the left of (a, b) is

a−1

∑̄
a=0

N(ā, b) =
a−1

∑̄
a=0

(ā + b + 1) = a(a + 1)/2 + ab . (20)

This does not include the eigenvectors preceding |α, y0⟩ in the (a, b)-SU(2) irrep itself, which we will
count separately below.

For a complete row, a − 1 = q, so substitute a = q + 1 in (20). Thus the points (ā, b̄) with 0 ≤ ā ≤ q
make up the row with b = b̄. The SU(2)-irreps for the row have a number of eigenvectors nrow(b̄) given
by

nrow(b̄) = (q + 1)(q + 2)/2 + (q + 1)b̄ . (21)

All of the complete rows below the row with the point (a, b) have eigenvectors that precede our
eigenvector |α, y0⟩ in the sequence of eigenvectors.

Our eigenvector |α, y0⟩ is in the (a, b)-SU(2) irrep which is represented by the point (a, b). Com-
bining the numbers of eigenvectors in the complete rows below (a, b) with the number in the partial
row b to the left of (a, b) and placing the eigenvector as the mth eigenvector in the (a, b)-SU(2) irrep,
gives us the place n of the eigenvector |α, y0⟩ in the sequence of d eigenvectors.

Therefore, the place n is given by the formula

n(a, b, α) =

[
b−1

∑
b̄=0

nrow(b̄) +
a−1

∑̄
a=0

N(ā, b)

]
+ m

= [(q + 1)b(b + 1)/2 + b(q + 1)(q + 2)/2 + a(a + 1)/2 + ab] + (t − α + 1)

or
n(a, b, α) =

1
2
[(a + b)(a + b + 1) + qb(q + b + 2)] + [t − α + 1] , (22)

where the first square-bracketed term on the right counts the eigenvectors of the complete rows and
the partial row (ā, b̄)-SU(2) irreps that precede the (a, b)-SU(2) irrep. The second square-bracketed
term is the place of the eigenvector |α, y0⟩ in the (a, b)-SU(2) irrep, which has t = (a + b)/2.

For example, in Figure 2, consider the (a, b)= (3, 2)-SU(2) irrep, which has spin t = 5/2. One of
its eigenvectors is |1/2,−1⟩, the number m = 3 eigenvector in its irrep. The partial row to the left of
(3, 2), has 3 + 4 + 5 = 12 eigenvectors. And the complete rows below (3, 2) have a total of 10 + 14 =
24 eigenvectors. Therefore, the eigenvector |1/2,−1⟩ in the (3, 2)-SU(2) irrep is the 24 + 12 + 3 = 39th

eigenvector in the sequence of d = 120 eigenvectors for the (p, q) = (5, 3) irrep of SU(3).
The sequence of eigenvectors is determined. The eigenvector |α, y0⟩ in the (a, b)-SU(2) irrep is

the n(a, b, α)th in the sequence of d eigenvectors. This is a one-to-one correspondence of the integers n,
where 1 ≤ n ≤ d, with the d eigenvectors in the collection of simultaneous eigenvectors |α, y0⟩ of T3

and Y0.

6. The Eigenvector Sequence and Matrix Indices
Let Mrc denote one of the matrix generators. The number of rows in Mrc is the same as the

number of eigenvectors in the SU(3)-irrep; both being the dimension d of the representation. Hence,
the row index r can be put in a one-to-one correspondence with the place number n of the eigenvectors
of the SU(3)-irrep. See Appendix A. The same is true for the column index c. We have

r = n(ar, br, α) ; c = n(ac, bc, β) , (23)
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where 0 ≤ ar, ac ≤ q, 0 ≤ br, bc ≤ p and the spin indices have ranges −tr ≤ α ≤ tr, −tc ≤ β ≤ tc, with
SU(2)-irrep spins tr = (ar + br)/2 and tc = (ac + bc)/2.

In this way, the row-column address of a matrix component in the matrix inherently contains
parameters, e.g. a, b, α, that may be used in the formulas for the component’s value. Thus, the indices
of the component as well as its value are functions of the parameters (a, b) and α.

It follows that we can identify the row and column with either the pair of integers r, c or with the
two sets of three parameters {ar, br, α} and {ac, bc, β}. In view of this, we introduce a new symbol for
the component Mrc. We have

Mrc = M(ar ,br),(ac ,bc)
α,β . (24)

We say that the indices r, c are a pair of ‘single’ indices, and that the combinations (ar, br), (ac, bc) are a
pair of ‘double’ indices.

It is convenient to talk about ‘(i, j)-blocks.’ For fixed double indices (ai, bi), (aj, bj), the rectangular
matrix with rows and columns indexed by α, β is called an ‘(i, j)-block’ defined by

M(i,j)
α,β = M

(ai ,bi),(aj ,bj)

α,β , (25)

where −ti ≤ α ≤ ti, −tj ≤ β ≤ tj, with ti = (ai + bi)/2 and tj = (aj + bj)/2. By (17), i = 1+ ai + bi(q + 1)
and j = 1 + aj + bj(q + 1), with i, j = 1, ..., (p + 1)(q + 1).

The block structure of the matrix M is a square array, (p + 1)(q + 1) on one side, of (i, j)-blocks
with each block containing a rectangular matrix of components (2ti + 1) by (2tj + 1).

When we write the CRs of the algebra, the commutator of two matrices M1 and M2 is written in
terms of block-block dot products. The dot product of two blocks has the form

[
M1, M2

](ai ,bi),(aj ,bj)

α,β
= 1M(ai ,bi),(an ,bn)

α,η
2M

(an ,bn),(aj ,bj)

η,β − 2M(ai ,bi),(an̄ ,bn̄)
α,η̄

1M
(an̄ ,bn̄),(aj ,bj)

η̄,β , (26)

with summation understood for repeated block indices and repeated spin components. The labels ‘1’
and ‘2’ are moved to the left to avoid crowding the superscripts on the right.

7. The T-matrices and Y
After a long development based largely on well-known properties of multiplets, it is time to write

the formulas for the ‘given matrices, the T-matrices and Y.
Since the T-matrices satisfy the Lie algebra su(2), they can be, and are here, direct sums of SU(2)-

irreps. Invoking standard formulas for the SU(2)-irreps,[2], the components of the T-matrices can be
written

±T
(ai ,bi)(aj ,bj)

α,β =
√
(ti ± α)(1 + ti ∓ α) δβ,α∓1 δi,j , (27)

3T
(ai ,bi)(aj ,bj)

α,β = α δα,βδi,j , (28)

where, by (16), ti = (ai + bi)/2, tj = (aj + bj)/2, α = ti, ti − 1, ...,−ti, β = tj, tj − 1, ...,−tj. In these
equations, the double indices on the right crowd out the identifiers ‘±’ and ‘3’ which move to the left
of ‘T.’

By (9) and(16), we can write the matrices Y0 and Y,

0Y
(ai ,bi)(aj ,bj)

α,β = (bi − ai) δα,βδi,j , (29)

Y
(ai ,bi)(aj ,bj)

α,β = [bi − ai − 2(p − q)/3] δα,βδi,j . (30)

The matrix Y0 is useful in the preceding work and the work to follow, but it is not a generator. The
matrix Y is one of the eight basis generators.

CRs: [T+, T−], [T3, T±], [Y, T±]. The five CRs listed only involve the four generators T±, T3, Y.
By (27), (28), (30), one can show that CRs (1) and (2) are satisfied.
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We have formulas for four of the eight generators, T±, T3, Y. That leaves four unknown generators,
U± and V±.

8. Commutation relations linear in unknown generators
Let us begin to constrain the components of the four unknown generators, U± and V±, by looking

at CRs linear in the unknowns, whose commutators combine a given T, Y generator with an unknown
U, V generator, (3) and (4).

CR: [T3, U±] = ∓U±/2. By T3 in (28), the CR with T3 and U+ gives

T3U+ − U+T3 = −U+/2 (31)

3T(i,n)
(α, σ)

+U(n,j)
(σ, β)

− +U(i,n̄)
(α, σ̄)

3T(n̄,β)
(σ̄, β)

= − +U(i,j)
(α, β)

/2 (32)

α +U(i,j)
(α, β)

− +U(i,j)
(α, β)

β = − +U(i,j)
(α, β)

/2 , (33)

which implies that either

+U(i,j)
(α, β)

= 0 or +U(i,j)
(α, β)

= +U(i,j)
(α, α+1/2) . (34)

Thus, the only components of the (i, j) block of U+ that may not vanish have spin components related
by β = α + 1/2. The possibly nonzero components of a U+ block occupy a diagonal of the block.

CR: [T3, V±] = ±V±/2. Calculations for V± are similar to those just completed for U+. The
results for all four of these CRs show that only the following components of the unknown matrices can
be nonzero,

±U(i,j)
(α, α±1/2) ; ±V(i,j)

(α, α∓1/2) . (35)

For all four U, V-matrices, the nonzero components can only occur on one diagonal in a block, a
diagonal of components with spin indices α and β that differ by plus or minus one half.

The difference of a half in spin indices implies that, of the two spins ti, tj, one spin is an integer
and the other is a half-integer. Recall that spin t is a half-integer when 2t is an odd integer. Thus,
2(tj − ti) is some odd integer 2m + 1. It is tempting to simply assume that m = 0, and 2(tj − ti) = ±1,
which is what we do.

Assumption 1. For the nonzero (i, j) blocks of the unknown matrices U± and V± the column-row spin
difference is one-half,

tj − ti = ±1/2 . (36)

Since a similarity transformation acting on a given basis of generators produces another such
basis, it seems reasonable to expect that a general solution would involve unnecessary similarity
transformation parameters. Therefore, in the course of the derivation, we make additional assumptions,
of which three assumptions are highlighted.

Upper, lower blocks. Since the spins of the block ti, tj are not equal, the nonzero blocks of U± and
V± are not diagonal blocks. Those (i, j) blocks that have j > i are above the main diagonal and are
called ‘upper’ blocks. The (i, j) blocks below the diagonal have i > j, and are called ‘lower’ blocks.

Assumption 1 and (16), t = (a + b)/2, constrain the (a, b) double indices for non-zero (i, j)-blocks.
We have

aj + bj = ai + bi ± 1 , (37)

where the choice +1 for the sign applies to nonzero upper blocks, j > i, and the choice −1 works with
nonzero lower blocks, i > j.
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CRs: [Y, U±] = ±U± and [Y, V±] = ±V±. These calculations follow the process shown in (31)
to (34): the CR is written out, the matrix Y is substituted and the result is simplified. One finds that
nonzero components in U± and V± occur only in (i, j) blocks with

yj − yi = y0
j − y0

i = ∓1 , (38)

where the choice of signs on the right is correlated with the sign in U± and V±. Thus e.g. yj - yi = −1
for U+ and V+. The constraint applies to the entire (i, j) block.

The conditions for nonzero (i, j)-blocks have consequences for their (a, b) double indices
(ai, bi)(aj, bj). By (16), y0 = b − a, the difference in y0s in (38) gives

bj − aj = bi − ai ∓ 1 , (39)

for U± and V±. Note the ∓ sign in (39) is correlated with the the ± sign in U± and V± and is the same
for both upper and lower blocks of a given U, V-matrix.

There are constraints on the (a, b) double indices, (37) and (39), and constraints on the spin
components in (35). These constraints imply that the only potentially nonzero components of the
upper blocks of U± and V± are the following,

+U(a−1,b),(a,b)
(β−1/2, β)

; +V(a−1,b),(a,b)
(β+1/2, β)

; −U(a,b−1),(a,b)
(β+1/2, β)

; −V(a,b−1),(a,b)
(β−1/2, β)

, (40)

and the potentially nonzero components of their lower blocks are

+U(a,b),(a,b−1)
(α, α+1/2) ; +V(a,b),(a,b−1)

(α, α−1/2) ; −U(a,b),(a−1,b)
(α, α−1/2) ; −V(a,b),(a−1,b)

(α, α+1/2) . (41)

These eight are the only nonzero component functions.
Each of the eight components in (40) and (41) is determined by three quantities, a, b, and α or

β. The values of a and b are those of the rectangle of Figure 2, except when the occurence of a − 1 or
b − 1 removes a = 0 or b = 0. Therefore, there are (p + 1)(q + 1)− 1 nonzero blocks for each of the
eight components. Each nonzero block has only one nonzero diagonal with spin indices (α, α ± 1/2)
or (β ± 1/2, β).

Thus, the block-block dot product of two matrix generators is the product of two blocks with only
one non-zero diagonal each. By (26), the dot product of two blocks is a block with just one non-zero
diagonal. This property simplifies the calculations.

By (27), the raising and lowering T -matrices T− and T+, are the transpose of each other. This
property makes F1 = (T+ + T−)/2 and F2 = −i(T+ − T−)/2 hermitian matrices. To have similar
constructs for the U- and the V-matrices, one requires that the raising and lowering matrices are each
other’s transpose. The full basis of hermitian generators is discussed in Section 10.

Assumption 2. The unknown raising and lowering matrices are assumed to be transposes of one another,

+U = −UT and +V = −VT . (42)

We need only deal with one of a pair of CRs that are each other’s transpose because the transpose
of a CR is satisfied when the CR is satisfied.

The possibly non-zero components are listed in (40) and (41). Assumption 2 requires the pairwise
identifications,

−U(a,b),(a−1,b)
(β, β−1/2) = +U(a−1,b),(a,b)

(β−1/2, β)
, (43)

where −t + 1 ≤ β ≤ t,
−U(a,b−1),(a,b)

(α+1/2, α)
= +U(a,b),(a,b−1)

(α, α+1/2) , (44)
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where −t ≤ α ≤ t − 1,
−V(a,b),(a−1,b)

(β, β+1/2) = +V(a−1,b),(a,b)
(β+1/2, β)

, (45)

where −t ≤ β ≤ t − 1,
−V(a,b−1),(a,b)

(α−1/2, α)
= +V(a,b),(a,b−1)

(α, α−1/2) , (46)

where −t + 1 ≤ α ≤ t. In (43) - (46), we have t = (a + b)/2.
In view of these transpose properties, all unknown components of −U or −V can be replaced with

their counterparts in +U or +V. Thus the number of unknowns is halved.
CR: [T−, U+] = 0. This CR gives recursion relations for components of the matrix generator U+.

The T-matrix formulas in (27) give

[(ti − α + 1)(ti + α)]1/2 +U
(ai ,bi),(aj ,bj)

(α, β)
= +U

(ai ,bi),(aj ,bj)

(α−1, β−1)

[(
tj − β + 1

)(
tj + β

)]1/2 , (47)

where ti = (ai + bi)/2, tj = (aj + bj)/2, and the ranges of the spin indices are α = ti, ti − 1, ...,−ti + 1
and β = tj, tj − 1, ...,−tj + 1. The equation holds for both upper and lower blocks. We first treat the
upper blocks.

For (47) with upper blocks and applying the expression in (40), we have α = β − 1/2 and double
indices (ai, bi) = (a − 1, b) and (aj, bj) = (a, b). By (16), it follows that ti = t − 1/2 and tj = t, where t =
(a + b)/2. The upper block U+ recursion becomes

(t + β − 1)1/2 +U(a−1,b),(a,b)
(β−1/2, β)

= +U(a−1,b),(a,b)
(β−3/2, β−1)(t + β)1/2 . (48)

Starting with β = t at the top of the nonzero diagonal in the block, successive application of the
recursion in (48), produces an expression for all the nonzero components along an upper U+ block’s
diagonal,

+U(a−1,b),(a,b)
(β−1/2, β)

=

(
t + β

2t

)1/2
+U(a−1,b),(a,b)

(t−1/2, t) . (49)

where a = 1, ..., q, b = 0, ..., p, t = (a + b)/2 and β = t, t − 1, ...,−t + 1.
For (47) with the lower blocks of U+, substitute the double indices and spin component re-

quirements from (41), i.e. α + 1/2 = β and (ai, bi), (aj, bj) = (a, b), (a, b − 1). Then apply the resulting
recursion repeatedly to obtain an expression for all components of the block’s nonzero diagonal. One
finds an expression for the nonzero components along a lower U+ block’s diagonal

+U(a,b),(a,b−1)
(α, α+1/2) = (t − α)1/2+U(a,b),(a,b−1)

(t−1, t−1/2) , (50)

where a = 0, , ..., q, b = 1, ..., p, t = (a + b)/2 and α = t − 1, t − 2, ...,−t.
Thus, CR [T−, U+] = 0 yields recursions that reduce the number of unknowns in an upper or

lower non-zero block of U+. A block’s nonzero components lie on a diagonal and just one component
suffices to get the other components along the diagonal.

CR: [T+, V+] = 0. Follow the steps for CR [T−, U+] = 0: In the commutator [T+, V+], substitute
T+ from (27) to find an expression for both upper and lower blocks of V+. For the upper and lower
blocks of V+, (40) and (41) give restrictions on the double block indices and spin component indices.

For the nonzero components along an upper V+ block’s diagonal, one gets

+V(a−1,b),(a,b)
(β+1/2, β)

= (t − β)1/2+V(a−1,b),(a,b)
(t−1/2, t−1) , (51)

where a = 1, ..., q, b = 0, ..., p, t = (a + b)/2 and β = t − 1, t − 2, ...,−t + 1. For the nonzero components
along a lower V+ block’s diagonals, we find

+V(a,b),(a,b−1)
(α, α−1/2) =

(
t + α

2t

)1/2
+V(a,b),(a,b−1)

(t, t−1/2) , (52)
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where a = 0, , ..., q, b = 1, ..., p, t = (a + b)/2 and α = t, t − 2, ...,−t + 1.
Thus, one component determines all components on the diagonal of nonzero components in a

block of V+.
CRs: [T±, V∓] = ∓U∓, [T±, U±] = ±V±. These CRs bridge the gap between the matrices U and

V.
Start with the CR [T−, V+] = U+. Substituting the formula for T− from (27) gives

[(ti − α)(ti + α + 1)]1/2+V(i,j)
α+1,β −

+V(i,j)
α,β−1

[(
tj + β

)(
tj − β + 1

)]1/2
= +U(i,j)

α,β , (53)

which holds for both upper and lower blocks. We treat upper and lower blocks separately.
The nonzero components of the upper blocks of U+ and V+, i < j, are displayed in (40). Therefore,

we substitute for (i, j) the double indices (a − 1, b), (a, b) and we require α = β − 1/2. By (16) and with
t = (a + b)/2, we have ti = t − 1/2 with tj = t. The CR (53) is now

[(t − β)(t + β)]1/2+V(a−1,b),(a,b)
β+1/2,β − +V(a−1,b),(a,b)

β−1/2,β−1 [(t + β)(t − β + 1)]1/2 = +U(a−1,b),(a,b)
β−1/2,β , (54)

for the upper blocks.
Next, substitute expressions for the components from the recursions in (47),(51). The results is a

relationship between the U+ and V+ upper block unknowns,

+V(a−1,b),(a,b)
(t−1/2, t−1) = −(2t)−1/2+U(a−1,b),(a,b)

(t−1/2, t) , (55)

where simplification included canceling a common factor of (t + β), so β ̸= −t. The equation holds
because upper blocks have at least one component with β > −t, since a ≥ 1. The equation reduces the
number of upper block unknowns from two to one for the matrices U+ and V+.

For the lower blocks, substitutions follow from (41), we replace (i, j) by (a, b), (a, b − 1) and
assume that β = α + 1/2. With t = (a + b)/2, we have ti = t, tj = t − 1/2. The CR for lower blocks i > j
is then

[(t − α)(t + α + 1)]1/2+V(a,b),(a,b−1)
α+1,α+1/2 − +V(a,b),(a,b−1)

α,α−1/2 [(t − α)(t + α)]1/2 = +U(a,b),(a,b−1)
α,α+1/2 , (56)

A relationship between the two unknowns in the lower block follows using the recursions (50),(52).
One finds that

+V(a,b),(a,b−1)
(t, t−1/2) = (2t)1/2+U(a,b),(a,b−1)

(t−1, t−1/2) , (57)

where t = (a + b)/2. There is just one lower block unknown for U+ and V+.
The remaining CRs in the set, [T+, V−] = −U− and [T±, U±] = ±V±, are satisfied by applying

constraints that have been derived up to this point.
We can introduce an abbreviated notation. One unknown is the upper U+ block diagonal’s

endpoint
U(a,b) ≡ +U(a−1,b),(a,b)

(t−1/2, t) (58)

and the other is the lower block diagonal’s endpoint

U(a,b) ≡ +U(a,b),(a,b−1)
(t−1, t−1/2) , (59)

where U(a,b) and U(a,b) depend only on a pair of integers (a, b) whose values are restricted to a (p + 1)
by (q + 1) rectangle, as in Figure 2. The placement of the (a, b) indices as superscript or subscript is
meant to be a mnemonic for the upper block and lower block, respectively.

The CRs that are linear in the unknowns U± and V± have supplied many constraints on the
unknown U, V matrices that reduce the number of unknowns to just two, U(a,b) and U(a,b). This
prepares us for dealing with equations that are quadratic in the unknown matrices.
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9. Equations quadratic in unknown generators
The equations that are quadratic in the unknown matrices are the CRs in (5) and (6) as well as the

expression for the Casimir operator (7).
We have an action plan to reduce the number of unknowns in the quadratic equations. The plan

has three steps.
Step 1. The matrices U− and V− are rewritten using their transposes U+ and V+ by (43) - (46).
Step 2. The nonzero components of the blocks of U+ and V+ are functions of one unknown per

block via recursions (49), (50), (51),(52). The upper and lower block unknowns of U+ and V+ are
+U(a−1,b),(a,b)

(t−1/2, t) , +V(a−1,b),(a,b)
(t−1/2, t−1),

+U(a,b),(a,b−1)
(t−1, t−1/2), and +V(a,b),(a,b−1)

(t, t−1/2) , four unknowns for a given (a, b).

Step 3. By (55) and (57), the V+ unknowns +V(a,b),(a,b−1)
(t−1, t−1/2), and +V(a,b),(a,b−1)

(t, t−1/2) can be rewritten in

terms of the U+ unknowns U(a,b) and U(a,b) in (58) and (59).
After applying these three steps to an equation, the only unknowns have two forms U(a,b) and

U(a,b), with the possibility that they appear with various parameters (a, b).
The nonzero blocks of the unknown matrices U± and V± occur off-diagonal, as upper blocks and

lower blocks. We make a few remarks about the dot products of two matrices, each with off-diagonal
blocks.

The dot product of one upper block with a second upper block gives results in a block that is
twice removed from the diagonal blocks. The same is true for lower-lower block dot products, except
that the result is twice lowered. Only an upper-lower dot product or a lower-upper dot product can
contribute to a diagonal block.

The systematics of the off-diagonal blocks for the unknown matrices makes three equations for
each CR that is quadratic in unknown matrices. With one equation for upper-upper block commutators,
one for lower-lower block commutators, and one for upper-lower together with lower-upper block
commutators, this makes three equations for each CR that is quadratic in the generators U, V.

CR: [U+, U−] = 3Y/2 − T3. By selecting just the dot products of the upper-lower blocks of U+

and U− and the lower-upper blocks, we get contributions to the diagonal blocks on the left side. On
the right side, the matrices Y and T3, have nonzero diagonal blocks. One has

[U+
Upper, U−

Lower] + [U+
Lower, U−

Upper] = 3Y/2 − T3 (60)

As just remarked above, the upper-upper and lower-lower dot products do not make nonzero diagonal
blocks.

With (40) and (41), writing out the dot products on the left gives the following.

+U(a,b),(a+1,b)
α, α+1/2

−U(a+1,b),(a,b)
α+1/2, α − −U(a,b),(a−1,b)

α, α−1/2
+U(a−1,b),(a,b)

α−1/2, α

+ +U(a,b),(a,b−1)
α, α+1/2

−U(a,b−1),(a,b)
α+1/2, α − −U(a,b),(a,b+1)

α, α−1/2
+U(a,b+1),(a,b)

α−1/2, α . (61)

Applying Steps 1,2,3, we obtain

(
t + α + 1

2t + 1

)
U(a+1,b)2

−
(

t + α

2t

)
U(a,b)2

+(t − α)U(a,b)
2 − (t − α + 1)U(a,b+1)

2 = 3y0/2− p+ q− α ,

(62)
where t = (a + b)/2, t ̸= 0, y0 = (b − a), a = 0, ..., q − 1, b = 0, ..., p − 1.

CR: [V+, V−] = 3Y/2+ T3. The upper-lower dot products combined with those of the lower-upper
blocks produce nonzero diagonal blocks. One has

[V+
Upper, V−

Lower] + [V+
Lower, V−

Upper] = 3Y/2 + T3 (63)
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By (40) and (41), the two commutators on the left become

+V(a,b),(a+1,b)
α, α−1/2

−V(a+1,b),(a,b)
α−1/2, α − −V(a,b),(a−1,b)

α, α+1/2
+V(a−1,b),(a,b)

α+1/2, α

+ +V(a,b),(a,b−1)
α, α−1/2

−V(a,b−1),(a,b)
α−1/2, α − −V(a,b),(a,b+1)

α, α+1/2
+V(a,b+1),(a,b)

α+1/2, α . (64)

Applying Steps 1,2,3, produces(
t − α + 1

2t + 1

)
U(a+1,b)2

−
(

t − α

2t

)
U(a,b)2

+(t + α)U(a,b)
2 − (t + α + 1)U(a,b+1)

2 = 3y0/2− p+ q+ α ,

(65)
where t = (a + b)/2, t ̸= 0, y0 = (b − a), a = 0, ..., q − 1, b = 0, ..., p − 1. This is the same equation as (62),
aside from some sign differences.

We can eliminate the dependence on α in (62) and (65) by first adding the equations to get

2(t + 1)
2t + 1

U(a+1,b)2
− U(a,b)2

+ 2tU(a,b)
2 − 2(t + 1)U(a,b+1)

2 = 3y0 − 2p + 2q (66)

Subtracting (65) from (62) gives

1
2t + 1

U(a+1,b)2
− 1

2t
U(a,b)2

− U(a,b)
2 + U(a,b+1)

2 = −1 , (67)

where we canceled a factor of α which requires at least one spin component α ̸= 0. In these equations,
we have t = (a + b)/2, t ̸= 0, y0 = (b − a), a = 0, ..., q − 1, b = 0, ..., p − 1.

Equations (66) and (67) are two equations in four unknowns, the squares U(a+1,b)2
, U(a,b)2

, U(a,b)
2,

and U(a,b+1)
2. Here, the two unknown functions U(a,b) and U(a,b) appear with three sets of parameters:

(a, b), (a + 1, b), and (a, b + 1).
The Casimir equation, (7), is quadratic in the matrices U± and V± and otherwise depends on

block diagonal matrices, the T-matrices, Y, and the unit matrix 1. As noted previously, the dot products
of upper-lower combined with lower-upper blocks produce nonzero diagonal blocks. Putting the
unknowns on the left and the knowns on the right, we have

{U+
Upper, U−

Lower}+ {U+
Lower, U−

Upper}+ {V+
Upper, V−

Lower}+ {V+
Lower, V−

Upper} =

− {T+, T−} − 2T32 − 3Y2/2 +
[
2
(

p2 + pq + q2 + 3p + 3q
)

/3
]
1 . (68)

Rather than displaying the anti-commutators in detail, we refer to the commutators displayed in (61)
and (64). By carefully replacing the minus signs with pluses, we obtain the appropriate expression for
the anti-commutators on the left.

On the right side of (68), the matrices are known. The T matrices can be evaluated with (27) and
(28). By (30), the Y-matrix is known. Substituting these known matrices in (68) gives

2(t + 1)
2t + 1

U(a+1,b)2
+ U(a,b)2

+ 2tU(a,b)
2 + 2(t + 1)U(a,b+1)

2 =

− 2t(t + 1)− 3
2

[
y0 − 2(p − q)/3

]2
+

2
3

(
p2 + pq + q2 + 3p + 3q

)
, (69)

where t = (a + b)/2, y0 = (b − a), a = 0, ..., q − 1, b = 0, ..., p − 1. This equation has the same unknowns
as (66) and (67).

The three equations (66),(67),(69) involve the four squares, the two upper block unknowns

U(a+1,b)2
, U(a,b)2

, and the two lower block unknowns U(a,b)
2, U(a,b+1)

2. We shall show that linear
combinations of these three equations produce two recursions.
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First, let us separate the two upper block unknowns from the two lower block unknowns. Multiply
(66),(67),(69) by (t + 1/2), 2t(t + 1), 1/2, resp. Adding, rearranging and replacing t by (a + b)/2 yields

[(a + 1) + b + 1]U(a+1,b)2
= (a + b + 1)U(a,b)2

− 3a2 + a(−2p + 2q − 3) + 2q + pq , (70)

which gives us a recursion in the double index parameter a for the quantity (a + b + 1)U(a,b)2
. Since

the parameter a in the equation has the integer values a = 0, ..., q − 1, it follows that

(a + b + 1)U(a,b)2
= (b + 1)U(0,b)2

+
ā=a

∑̄
a=0

[
−3ā2 + ā(−2p + 2q − 3) + 2q + pq

]
. (71)

We find that
(a + b + 1)U(a,b)2

= (b + 1)U(0,b)2
+ a(p + a + 1)(q − a + 1) . (72)

This equation shows how the combination (a + b + 1)U(a,b) depends on the double index parameter a.
Next, multiply (66),(67),(69) by −(t+ 1/2), 2t(t+ 1), 1/2, resp. Adding, rearranging and replacing

t by (a + b)/2 yields the lower block equation

[a + (b + 1)][a + (b + 1) + 1]U(a,b+1)
2 = (a + b)(a + b + 1)U(a,b)

2 − 3b2 + b(2p − 2q − 3) + 2p + pq .
(73)

This is a recursion in the double index parameter b for the quantity (a + b)(a + b + 1)U(a,b)
2. Since the

parameter b takes the integer values b = 0, ..., p − 1 in the equation, it follows that

(a + b)(a + b + 1)U(a,b)
2 = a(a + 1)U(a,0)

2 +
b̄=b

∑
b̄=0

[
−3b̄2 + b̄(2p − 2q − 3) + 2p + pq

]
. (74)

We find that

(a + b)(a + b + 1)U(a,b)
2 = a(a + 1)U(a,0)

2 + b(p − b + 1)(q + b + 1) . (75)

This equation shows how the combination (a + b)(a + b + 1)U(a,b) depends on the double index
parameter b.

For the third linear combination of (66),(67),(69), we ignore (66) and multiply (67) by 2(t + 1) and
subtract (69). One finds

(a + b + 1)U(a,b)2
+ (a + b)(a + b + 1)U(a,b)

2 =

− a3 − b3 − (p − q)
(

a2 − b2
)
+ (a + b)(pq + p + q + 1) . (76)

Substitute (72) and (75) in (76) and simplify. One gets

(b + 1)U(0,b)2
+ a(a + 1)U(a,0)

2 = 0 , (77)

which holds for a = 0, ..., q − 1 and b = 0, ..., p − 1.

For a = 0, one has (b + 1)U(0,b)2
= 0, where b = 0, ..., p − 1. Putting that back in (77) gives

a(a + 1)U(a,0)
2 = 0 for a = 0, ..., q − 1. Though not all cases of a and b are covered, we drop the constants

in (72) and (75), i.e.
(b + 1)U(0,b)2

= 0 ; a(a + 1)U(a,0)
2 = 0 . (78)

Dropping these constants simplifies the formulas.



17 of 36

By (72), the upper block unknown U(a,b) satisfies

(a + b + 1)U(a,b)2
= a(p + a + 1)(q − a + 1) (79)

and, by (75), the lower block unknown U(a,b) obeys

(a + b)(a + b + 1)U(a,b)
2 = b(p − b + 1)(q + b + 1) . (80)

Taking positive square roots to get U(a,b) and U(a,b) from their squares is an assumption. However,
one can show that any of the four choices for the two sign factors would produce generators that
satisfy the CRs. To avoid the clutter of introducing two sign variables ϵ1 and ϵ2, we simply take the
positive roots.

Assumption 3. In (79) and (80, take the positive square roots to get the two unknowns U(a,b) and U(a,b).

By Assumption 3, one has

U(a,b) = +U(a−1,b),(a,b)
(t−1/2, t) = [a(p + a + 1)(q − a + 1)/(a + b + 1)]1/2 (81)

and
U(a,b) =

+U(a,b),(a,b−1)
(t−1, t−1/2) = [b(p − b + 1)(q + b + 1)/((a + b)(a + b + 1))]1/2 . (82)

Thus we have found the one remaining unknown quantity for an upper block and the one remaining
unknown for a lower block. With all the unknowns determined, we can construct a set of basis
generator formulas.

10. Matrix generator formulas
The formulas for the basis generators of the (p, q)-irrep of SU(3) are presented in two parts. First,

the formulas for the four matrix generators T3, Y, T+, T−, then, second, the formulas for the four
generators U± and V±.

It may be appropriate to repeat here some notation details. For the double index block notation, a
component of a matrix M is denoted

M
(ai ,bi)(aj ,bj)

α,β , (83)

where we have parameters (ai, bi)(aj, bj) for the row and column of the (i, j)-block in the array of
blocks.

The block itself is a matrix with its own rows and columns. The rows and columns of block
(ai, bi)(aj, bj) are indicated by the spin components α and β, with α = ti, ti − 1, ...,−ti and β = tj, tj −
1, ...,−tj. The ti and tj are the spins of the block given by ti = (ai + bi)/2 and tj = (aj + bj)/2.

The formulas below are in double index notation. They can be transformed into single index nota-
tion. The single index notation Mrc has row r and column c indices ranging from 1 to d, the dimension
of the matrices. The formulas for r and c are given parametrically in terms of {ai, bi, α}, {aj, bj, β}, resp.
We have

Mrc = M
(ai ,bi)(aj ,bj)

α,β ; r = n(ai, bi, α) ; c = n(aj, bj, β) , (84)

from (23). The function n(a, b, α) is shown in (22).
T3. The matrix T3 is one of the two diagonal matrix generators. By (28), we have

3T(a,b)(a,b)
α,α = α , (85)

where α = t, ...,−t, t = (a + b)/2, a = 0, ..., q, b = 0, 1, ..., p. The index parameters of the row r and column
c in (84) take the values ai = aj = a, bi = bj = b, α = β.
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Y. For the other diagonal matrix, by (30), we have

Y(a,b)(a,b)
α,α = b − a − 2(p − q)/3 , (86)

where α = t, ...,−t, t = (a + b)/2, a = 0, ..., q, b = 0, 1, ..., p. The index parameters of the row r and
column c in (84) take the values ai = aj = a, bi = bj = b, α = β. Since the value depends on a and b,
which determine the block indices (i, j), but not on the spin component α, each diagonal block of Y is
proportional to an identity matrix of dimension 2t + 1 = a + b + 1.

T+. By (27), the nonzero components of T+ are

+T(a,b)(a,b)
α,α−1 = [(t + α)(1 + t − α)]1/2 , (87)

where α = t, ...,−t + 1, t = (a + b)/2, a = 0, ..., q, b = 0, 1, ..., p. The index parameters of the row r and
column c in (84) take the values ai = aj = a, bi = bj = b, β = α − 1. Since the spin components are in
decreasing order, the condition β = α − 1 means places the non-zero components of T+ just above the
diagonal.

T−. By (27), a nonzero block of T− has components

−T(a,b)(a,b)
α,α+1 = [(t − α)(1 + t + α)]1/2 , (88)

where α = t − 1, ...,−t, t = (a + b)/2, a = 0, ..., q, b = 0, 1, ..., p. The index parameters of the row r and
column c in (84) take the values ai = aj = a, bi = bj = b, β = α + 1. The nonzero components of T− are
just below its diagonal. T− is the last of the four matrices that are non-zero in diagonal blocks.

We now outline the procedure for determining the four generator matrices U± and V±. One
substitutes the formulas for U(a,b) and U(a,b) in (81) and (82) back through the derivation. There are
the U-V bridge equations, (54), (56). Then there are the recursions (49), (50), (51), (52), which fill up the
non-zero diagonal in each U+ and V+ block. That completes U+ and V+. The final two matrices U−

and V− are determined because they are the transposes of the U+ and V+ matrices, respectively, by
(43) - (46).

By construction, each U, V matrix formula is dependent on either U(a,b) or U(a,b). We prefer to
write the U, V matrix formulas in terms of two other, related functions g and h, which are defined as

g(p, q, a, b) = [a(p + a + 1)(q − a + 1)]/[(a + b)(a + b + 1)] (89)

h(p, q, a, b) = [b(p − b + 1)(q + b + 1)/((a + b)(a + b + 1))] .

Note that g is the function U(a,b) with an additional factor in the denominator and that h is just
U(a,b). The presence of U appearing in the formulas would possibly be confusing, hence the change in
notation.

The four matrix generators U+, U−, V+, V−, each have non-zero components in their upper and
lower blocks, as listed in (40) and (41). So, there are two formulas, upper and lower, for the nonzero
components of each of these generators.

U+, upper blocks. By (49) and (81), we get

+U(a−1,b),(a,b)
(β−1/2, β)

= [g(p, q, a, b)(t + β)]1/2 , (90)

where a = 1, ..., q, b = 0, 1, ..., p, t = (a + b)/2. The row r and column c index parameters take the values
ai = a − 1, aj = a, and bi = bj = b, α = β − 1/2.

U+, lower blocks. By (50) and (82), we get

+U(a,b),(a,b−1)
(α, α+1/2) = [h(p, q, a, b)(t − α)]1/2 , (91)
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where a = 0, ..., q, b = 1, ..., p, t = (a + b)/2. The row r and column c index parameters are ai = aj = a,
and bi = b, bj = b − 1, β = α + 1/2.

U−, upper blocks. By (44), (50) and (82), we get

−U(a,b−1),(a,b)
(β+1/2, β)

= [h(p, q, a, b)(t − β)]1/2 , (92)

where a = 0, ..., q, b = 1, ..., p, t = (a + b)/2. The row r and column c index parameters have the values ai

= aj = a, and bi = b − 1, bj = b, α = β + 1/2.
U−, lower blocks. By (43), (49) and (81), we get

−U(a,b),(a−1,b)
(α, α−1/2) = [g(p, q, a, b)(t + α)]1/2 , (93)

where a = 1, ..., q, b = 0, 1, ..., p, t = (a + b)/2. The row r and column c index parameters are given by ai

= a, aj = a − 1, and bi = bj = b, β = α − 1/2.
V+, upper blocks. By (51), (55) and (81), we get

+V(a−1,b),(a,b)
(β+1/2, β)

= −[g(p, q, a, b)(t − β)]1/2 , (94)

where a = 1, ..., q, b = 0, 1, ..., p, t = (a + b)/2. The row r and column c index parameters take the values
ai = a − 1, aj = a, and bi = bj = b, α = β + 1/2.

V+, lower blocks. By (52), (57) and (82), we get

+V(a,b),(a,b−1)
(α, α−1/2) = [h(p, q, a, b)(t + α)]1/2 , (95)

where a = 0, ..., q, b = 1, ..., p, t = (a + b)/2. The row r and column c index parameters have values ai =
aj = a, and bi = b, bj = b − 1, β = α − 1/2.

V−, upper blocks. By (46), (52), (57) and (82), we get

−V(a,b−1),(a,b)
(β−1/2, β)

= [h(p, q, a, b)(t + β)]1/2 , (96)

where a = 0, ..., q, b = 1, ..., p, t = (a + b)/2. The row r and column c index parameters are ai = aj = a,
and bi = b − 1, bj = b, α = β − 1/2.

V−, lower blocks. By (45), (51), (55) and (81), we get

−V(a,b),(a−1,b)
(α, α+1/2) = −[g(p, q, a, b)(t − α)]1/2 , (97)

where a = 1, ..., q, b = 0, 1, ..., p, t = (a + b)/2. The row r and column c index parameters here take values
ai = a, aj = a − 1, and bi = bj = b, β = α + 1/2.

The eight formulas for the U, V matrices in Section 10 have some common characteristics. Each
formula has a factor of g1/2 or h1/2. The upper blocks have (t ± β)1/2, while the lower blocks have
(t ± α)1/2.

By inspection, one sees that U− is the transpose of U+ and V− is the transpose of V+. For example,
consider the upper block of V−, (96) and the lower block of V+, (95). They are related by −V ↔ +V,
(a, b − 1) ↔ (a, b), and (β − 1/2, β) ↔ (α, α − 1/2).

Thus, one can calculate the nonzero components of a generator M from the equations for

M
(ai ,bi),(aj ,bj)

(α, β)
and then place the value in the matrix Mrc by calculating r, c from the parameters

ai, bi, aj, bj, α, β.
For example, the matrices T+ and U+ for the (p, q) = (2, 1)-irrep are shown in Appendix A. The

FORTRAN program in Appendix B implements the formulas in the program’s Sections 6-13.
The basis derived in this article includes nonsymmetrical matrices with real-valued components.

Such matrices are not hermitian.
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Following conventional treatments, such as those in Refs. [1,3,4,9], an hermitian basis Fj, j =
1, 2, ..., 8, can be constructed. Define the hermitian basis Fj by

F1 = (T+ + T−)/2 ; F2 = −i(T+ − T−)/2 ; F3 = T3 ; F4 = (V+ + V−)/2 ;

F5 = −i(V+ − V−)/2 ; F6 = (U+ + U−)/2 ; F7 = −i(U+ − U−)/2 ; F8 =
√

3Y/2 . (98)

Note that, in terms of the matrices Fj, the quadratic Casimir operator, (7), is given by

C =
8

∑
j=1

FjFj . (99)

Also note that a similarity transformation can be applied to the Fj to obtain an equivalent hermitian
basis.

11. Discussion
Without further validation, the formulas in Section 10 should be considered tentative. Various

simplifying assumptions were made, such as the spin difference Assumption 1 and the positive root
Assumption 3. Such additional constraints may cause the formulas to fail.

Partial validation, case by case for any given SU(3)-irrep, is provided by numerical calculation
of the matrix generator basis and subsequent confirmation that the CRs of the su(3) Lie algebra are
obeyed.

Two computer programs are linked as Supplementary Materials that can perform the necessary
calculations.[15,17] The FORTRAN program is included here in the Appendix B. The author has tested
and verified that each matrix generator basis satisfies the CRs of su(3) for all (p, q) SU(3)-irreps with
p + q ≤ 20.

Supporting and convincing algebraic evidence that the formulas work is provided in the Supple-
mentary Materials; see Section 3 in the Wolfram Mathematica notebook [17]. There, each CR is tested
using symbolic algebraic computer techniques, the essence of a proof that the formulas give a valid SU
(3) irrep for all finite nonnegative integer pairs (p, q). A detailed proof may be the topic of a future
article.

Like the T, U, V-matrices with SU(3), all Lie algebras su(n) can be set with embedded copies
of SU(2). A strategy for obtaining formulas for matrix generators of su(n) could be based on the
derivation presented in this article for su(3). Or, perhaps, such formulas could be obtained in some
other way. Either way, formulas for matrix generator bases of general su(n) Lie algebras could be
useful tools to have in the toolbox.

Funding: This research received no external funding.

Data Availability Statement: The software in references [16] and [17] are available in publicly accessible reposito-
ries.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Aspects of the (2,1)-irrep
Why (2, 1)? The dimensions of irreducible representations of SU(3) (irreps) grow rapidly with p

and q. The matrix generators for the (p, q) = (2, 1) SU(3)-irrep are 15 × 15 matrices, since the dimension
d is d = (p + 1)(q + 1)(p + q + 2)/2 = 15. The dimension is d = 120 for the (p, q) = (5, 3)-irrep of
Figures 1 and 2 in the text is too large for this Appendix. This Appendix has examples of quantities for
the d = 15 dimensional (2, 1) SU(3)-irrep.

Recall that the sequence of eigenvectors in Section 5 provides the parameters a, b, and α for the
matrix indices in (84) and the non-zero components in (85)-(97).
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Parameters Indices
a b α y0 k m n
0 0 0 0 1 1 1
1 0 1

2 −1 2 1 2
1 0 − 1

2 −1 2 2 3
0 1 1

2 1 3 1 4
0 1 − 1

2 1 3 2 5
1 1 1 0 4 1 6
1 1 0 0 4 2 7
1 1 −1 0 4 3 8
0 2 1 2 5 1 9
0 2 0 2 5 2 10
0 2 −1 2 5 3 11
1 2 3

2 1 6 1 12
1 2 1

2 1 6 2 13
1 2 − 1

2 1 6 3 14
1 2 − 3

2 1 6 4 15
Table A1. The Sequence n of SU(3) Eigenvectors. The eigenvectors |α, y0⟩ of T3 and Y0 were sequenced by their
eigenvalues α and y0. The eigenvalues α, y0 are used to sort the eigenvectors into SU(2)-irreps, each SU(2)-irrep
identified by the index k with k = 1, ..., (p + 1)(q + 1) = 6. The mth eigenvector in an SU(2)-irrep has a distinct
spin component α. There are a + b + 1 spin components α in each SU(2)-irrep, so m = 1, ..., a + b + 1. The d = 15
eigenvectors are indexed by n = 1, ..., 15.

For the allowed values of the integers a and b, the (a, b) SU(2)-irrep is the kth irrep in the direct
sums of SU(2)-irreps that make the matrices T+, T−, and T3. In each SU(2)-irrep, the T3 eigenvalue α is
the mth eigenvalue. Combining the irreps, the parameters a, b, and α identify the mth eigenvector in the
kth SU(2)-irrep, which is the nth eigenvector in the sequence of eigenvectors. A list of these quantities
is shown in Table A1 for the (2, 1)-irrep.

The formulas for the generators, (85)-(97), are formulas for the components of blocks. One must
combine blocks to make a generator. Thus, for the (2, 1) SU(3)-irrep, the matrix T+ is

T+ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
√

3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



, (A1)

with its blocks outlined. Note that non-zero components occur only in diagonal blocks.
For example, consider the component +T14,15, the component in the right column 15 of row 14,

which is the row just above the bottom row. The double indices (ai, bi)(aj, bj) and the spin components
α, β can be read from Table A1. We have (ai, bi, α) = (1, 2,−1/2) since i = 14 and (aj, bj, β) = (1, 2,−3/2)
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since j = 15. Now, the value of the component can be calculated from (87). With ti = (ai + bi)/2 = 3/2,
one finds that +T14,15 = [(ti + α)(1 + ti − α)]1/2 δβ,α−1 =

√
3, which is consistent with the value in (A1).

The U,V-matrices are nonzero in the upper and lower off-diagonal blocks. The matrix U+ is

U+ =



0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2√
3

0 0 0 0 0 0 0 0 0
√

3 0 0 0 0 0
√

2
3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 2√
3

0 0 0 0 0 0 0 0
√

2
3 0 0

0 0 0 0 2
√

2
3 0 0 0 0 0 0 0 0 1√

3
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
√

2
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2√
3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0



, (A2)

where all of the nonzero components occur in the upper and lower blocks just above and below the
diagonal blocks.

For the U+ matrix, let us look at the component +U14,7, a component in a lower block of U+. By
Table A1, we have (ai, bi, α) = (1, 2,−1/2) since i = 14 and (aj, bj, β) = (1, 1, 0) since j = 7. By (91), with
a = ai = 1, b = bi = 2, α = −1/2, t = (ai + bi)/2 = 3/2, we have

+U14,7 =

[
b(p − b + 1)(q + b + 1)

(a + b)(a + b + 1)

]1/2

(t − α)1/2 =
2√
3

,

which confirms the value of the component +U14,7 in the matrix, (A2). The other non-zero components
of U+ can be verified in the same way.

Appendix B. Computer Program
The following Fortran-90 program calculates a basis of matrix generators for a given (p, q)-

irrep.[15] As of this writing, access to Fortran compilers is available to the public.[16]
See Section 1 of the program for some guidance.

!RULER789112345678921234567893123456789412345678951234567896123456789712345678981
!
!Formulas for SU(3) Matrix Generators, the FORTRAN Program,
! by Richard Shurtleff, Wentworth Institute of Technology, Boston,
! MA, USA - retired
! email: shurtleffr(at)wit.edu, momentummatrix(at)yahoo.com
!
!------- CONTENTS -----------------------
!---0. Preamble
!---1. Readme
!---2. Program Start, Interface Blocks
!---3. Type declarations
!---4. Set (p,q), MaxErrLimit
!---5. Preliminaries
!---6. Make T3
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!---7. Make Y
!---8. Make Tp
!---9. Make Tm
!--10. Make Up
!--11. Make Um
!--12. Make Vp
!--13. Make Vm
!--14. Extra steps needed when p < q
!--15. Check 28 commutation relations and the Casimir equation
!--16. Save the results to a file, end program
!--17. External functions, end-of-file
!
!----------------------------0. Preamble----------------------------------
!This FORTRAN program implements the calculations in the Main article [1],
! ’Formulas for SU(3) Matrix Generators’ by Richard Shurtleff,
! Main article’s Abstract:
! The Lie algebra of a Lie group is a set of commutation relations, equations
! satisfied by the group’s generators. For SU(2) and many other Lie groups,
! the equations have been solved and matrix generators are realized as
! algebraic expressions. This article derives formulas for a basis of matrix
! generators for the irreducible representations of the Lie group SU(3).
! A special sequence of eigenvectors is deduced to assist the derivation. As
! algebraic functions, the formulas are suited to numerical evaluation,
! algebraic manipulations and analytic operations.
!
! Acknowledgment
! I would like to express my appreciation for Patrick Koh’s debugging of a
! previous program which guided the writing of this program.
!
! Copyright: CC BY-SA. Public use and modification of this code are allowed
! provided that the preprint[1] or any subsequent published version is cited.
!
! References
!
! [1] R. Shurtleff, "Formulas for SU(3) Matrix Generators"
! To be submitted to MDPI Modern Mathematical Physics
! [2] This program can be downloaded by following the link:
! https://www.dropbox.com/scl/fi/fq1jck3s4wbeyc35kngdi/SU3GENpq.MDPIb.f90?rl
! key=brxlx9254rwfmjat14hhxycrk&st=2fwnu1c5&dl=0
!
!
!--------------------------1. Readme------------------------------------
!
! This program calculates 8 basis generator matrices for the (p,q) irrep of
! the su(3) Lie algebra. Each generator is constructed in a separate section.
! The equations are implicit in the code.
! See the article Ref. [1] for details.
!
! This FORTRAN 90 program ran successfully on a Windows 11 computer with a
! GNU fortran compiler Code::Blocks 20.03, Created: 2010/25/05 11:52
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! Updated: 2010/25/05 11:52, Author: HighTec EDV-Systeme GmbH,
! Copyright 2010 HighTec EDV-Systeme GmbH, available at
! https://gcc.gnu.org/fortran/ and http://www.codeblocks.org
!
! USER GUIDE:
! INPUT your value of p and q in Sec. 4 Begin as p0 and q0.
! SET the tolerance for error, MaxErrLimit, if you wish.
! I set MaxErrLimit to 1.D-10. Check the code; it is easily changed.
!
! OUTPUT to standard screen
! Some data is sent to the standard output. This includes the integers
! p0 and q0 that identify the irrep, the dimension of the irrep’s matrices,
! the error tolerance, the maximum error found in 29 equations that the
! generators are required to solve.
!
! OUTPUT to a DATA File named "p#q#SU3MatrGen.dat" where # stands for the
! values of p,q. The DATA File’s records are
! Record 1: the integers p, q, and the max error in 29 su(3) algebra
! equations: the 28 commutation relations plus the Casimir expression.
! The Format of Record 1: FORMAT(2I3,1ES16.7).
!
! Records 2,3,...: the components of the eight BASIS matrices, a total
! of 8n**2 real numbers, where n is the matrix dimension dimREP, n = dimREP.
! Each of the 8 TYUV matrices X has n**2 components arranged by rows, i.e.
! X(1,1), X(1,2),X(1,3),...,X(1,n),X(2,1),X(2,2),X(2,3),...,X(n,n).
! The sequence of TYUV matrices is X = T3, Y, Tp, Tm, Up, Um, Vp, Vm.
! The Format of Record 2,3,...: FORMAT(5F16.12),
!Thus the matrix components appear 5 real numbers per line until the last line.
!
! Sample records from (p,q) = (3,1) irrep file "p3q1SU3MatrGen.dat"
! Record #1:
! 3 1 3.5527137E-15
! Record #12:
! -0.500000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
! Record #541:
! 0.000000000000 1.118033988750 0.000000000000 0.000000000000 0.000000000000
! Record #923
! 0.000000000000 0.000000000000 0.000000000000
!
! Given n = dimREP = 24 for (p,q) = (3,1), the four Records shown tell us that
! Record 1: p = 3, q = 1, MaxErr = 3.5527137E-15
! Record 12: 5*(11-1)+1 = 51 = 2*n + 3 implies T3(3,3) = -0.5
! Record 541: 5*(540-1)+2 = 4*24**2 + 16*24 + 9 implies Up(17,9) = 1.11803399
! Record 923: 5*(922-1) + 3 = 4608 = 8*24**2 = 8*n**2, Total # of components
!
! Best wishes, may you find the program of use.
!
PROGRAM SU3Generators
!

IMPLICIT NONE
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!------------------------2. Program Start, Interface Blocks -------------------
!
INTERFACE

FUNCTION nSEQUENCE(p,q,a,b,alpha) RESULT (w) !
IMPLICIT NONE ! The nth place in the sequence belongs to

INTEGER :: p,q ! the T3 eigenvector with eigenvalue alpha
INTEGER :: a,b,m ! in the (a,b)-SU2 irrep
REAL(8) :: alpha,w !the eigenvector is in the mth place in the irrep,

! ! m = (a+b)/2 -alpha + 1
END FUNCTION

END INTERFACE
INTERFACE

FUNCTION g(p,q,a,b) RESULT (w) !
IMPLICIT NONE ! Four of the U,V formulas have

INTEGER :: p,q ! the factor SQRT(w), where
INTEGER :: a,b !w = a*(p+a+1)*(q-a+1)/[(a+b)(a+b+1)]
REAL(8) :: w

END FUNCTION
END INTERFACE
INTERFACE

FUNCTION h(p,q,a,b) RESULT (w) !
IMPLICIT NONE ! Four of the U,V formulas have

INTEGER :: p,q ! the factor SQRT(w), where
INTEGER :: a,b !w = b*(p-b+1)*(q+b+1)/[(a+b)(a+b+1)]
REAL(8) :: w

END FUNCTION
END INTERFACE
!
!------------------------3. Type declarations -----------------------
!
INTEGER :: p0,q0,p,q ! integers p,q identify the (p,q)SU(3) irrep
INTEGER :: a,b,c ! (a,b) identifies an SU2-irrep in the reduced T-matrices
INTEGER :: ai,bi,aj,bj ! i for row and j for column
REAL(8), ALLOCATABLE :: unitMatrix(:,:)
REAL(8),ALLOCATABLE :: T3(:,:),Y(:,:),Tp(:,:),Tm(:,:),Up(:,:),Um(:,:)
REAL(8),ALLOCATABLE :: Vp(:,:),Vm(:,:)
!
REAL(8) :: MaxErr,MaxErrLimit !Max error found in required equations, tolerance
INTEGER :: dimREP ! TYUV matrix dimension
REAL(8) :: alpha,beta ! spin components as block indices
REAL(8) :: t ! spin
INTEGER :: i,j,k,m,n,r,w ! dummy indices; r row, w column, n dimREP
!
REAL(8),ALLOCATABLE:: T3Tpcomm(:,:),T3Tmcomm(:,:),T3Upcomm(:,:),T3Umcomm(:,:)
REAL(8),ALLOCATABLE:: T3Ycomm(:,:),T3Vpcomm(:,:),T3Vmcomm(:,:),TpTmcomm(:,:)
REAL(8),ALLOCATABLE:: TpUpcomm(:,:),TpUmcomm(:,:),TpYcomm(:,:),TpVpcomm(:,:)
REAL(8),ALLOCATABLE:: TpVmcomm(:,:),TmUpcomm(:,:),TmUmcomm(:,:),TmYcomm(:,:)
REAL(8),ALLOCATABLE:: TmVpcomm(:,:),TmVmcomm(:,:),YUpcomm(:,:),YUmcomm(:,:)
REAL(8),ALLOCATABLE:: YVpcomm(:,:),YVmcomm(:,:),UpUmcomm(:,:),UpVpcomm(:,:)
REAL(8),ALLOCATABLE:: UpVmcomm(:,:),UmVpcomm(:,:),UmVmcomm(:,:),VpVmcomm(:,:)
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REAL(8),ALLOCATABLE:: Casimir(:,:)
!
LOGICAL:: p0GEq0,MaxErrNotTooBig ! p0 >= q0?, matrices all numerical?
CHARACTER (len=20) :: file_name ! file name for output data file
!
!
!---------------------4. Set (p,q), MaxErrLimit -----------------------
!
! The (p,q)-irrep is calculated.
p0 = 5 ! Initially, the irrep identifiers (p,q)
q0 = 3 ! are called (p0,q0).
WRITE(*,*) ’p,q = ’, p0,q0
WRITE(*,*) ’The program calculates basis generators &

for the (p,q) irrep of SU(3)’
WRITE(*,*) ’The program produces an output file with the &

values of p and q in the file-name.’
!

MaxErrLimit = 1.D-10 ! Set the tolerance, the largest allowed error in
! any component of the 29 eqns

! ! Main article, Eq.(12)
dimREP = (p0+1)*(q0+1)*(p0+q0+2)/2 !Matrices are nxn square, n = dimREP
!WRITE(*,*) ’p0,q0,dimREP = ’, p0,q0,dimREP
!
!------------------------5. Preliminaries -----------------------
!
IF (p0 .GE. q0) THEN ! The formulas are set up for p >= q.

p0GEq0 = .TRUE. ! For p < q, we swap p and q for the calculation
p = p0 ! and take negative transposes to get the generators.
q = q0
ELSE IF (p0 < q0) THEN !When p < q,

p0GEq0 = .FALSE.
p = q0
q = p0

END IF
ALLOCATE( unitMatrix(dimREP,dimREP)) ! The unit matrix is the identity matrix

DO i = 1,dimREP
DO j = 1,dimREP ! The unit matrix has

unitMatrix(i,j) = 0.0_8 ! zeros everywhere,except
END DO

unitMatrix(i,i) = 1.0_8 ! ones along the diagonal.
END DO

!
!
!-----------------6. Make T3 -----------------------
!
ALLOCATE( T3(dimREP,dimREP))
!
DO i = 1,dimREP

DO j = 1,dimREP
T3(i,j) = 0._8
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END DO
END DO
!
DO b = 0,p

DO a = 0,q
DO m = 1,a+b+1

alpha = DBLE((a+b)/2._8 - m + 1._8) ! Main article, Eq.(19)
r = nSEQUENCE(p,q,a,b,alpha)
T3(r,r) = alpha ! Main article, Eq.(85)

END DO
END DO

END DO
!
!-----------------7. Make Y -----------------------
!
ALLOCATE( Y(dimREP,dimREP))
!
DO i = 1,dimREP

DO j = 1,dimREP
Y(i,j) = 0._8

END DO
END DO
!
DO b = 0,p

DO a = 0,q
DO m = 1,a+b+1

alpha = DBLE((a+b)/2._8 - m + 1._8)
r = nSEQUENCE(p,q,a,b,alpha)
Y(r,r) = DBLE(b-a-2._8*(p-q)/3._8)
! (bi - ai - 2 (pp - qq)/3)

END DO
END DO

END DO
!
!-----------------8. Make Tp -----------------------
!
ALLOCATE( Tp(dimREP,dimREP))
!
DO i = 1,dimREP

DO j = 1,dimREP
Tp(i,j) = 0._8

END DO
END DO
!
DO b = 0,p

DO a = 0,q
DO m = 1,a+b

alpha = DBLE((a+b)/2._8 - m + 1._8)
beta = alpha - 1._8
r = nSEQUENCE(p,q,a,b,alpha)
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c = nSEQUENCE(p,q,a,b,beta)
t = (a+b)/2._8

Tp(r,c) = DSQRT((t+alpha)*(1._8+t-alpha))
!(((ai + bi)/2 + \[Alpha]) (1 + (ai + bi)/2 - \[Alpha]))^(1/2)

END DO
END DO

END DO
!
!-----------------9. Make Tm -----------------------
!
ALLOCATE( Tm(dimREP,dimREP))
!
DO i = 1,dimREP

DO j = 1,dimREP
Tm(i,j) = 0._8

END DO
END DO
!
DO b = 0,p

DO a = 0,q
DO m = 2,a+b+1

alpha = DBLE((a+b)/2._8 - m + 1._8)
beta = alpha + 1._8
r = nSEQUENCE(p,q,a,b,alpha)
c = nSEQUENCE(p,q,a,b,beta)
t = (a+b)/2._8

Tm(r,c) = DSQRT((t-alpha)*(1._8+t+alpha))
!(((ai + bi)/2 + \[Alpha]) (1 + (ai + bi)/2 - \[Alpha]))^(1/2)

END DO
END DO

END DO
!
!-----------------10. Make Up -----------------------
!
ALLOCATE( Up(dimREP,dimREP))
!
!WRITE(*,*) "Up"
! Make the upper blocks of Up
DO i = 1,dimREP

DO j = 1,dimREP
Up(i,j) = 0._8

END DO
END DO
!
DO b = 0,p !upper block

DO a = 1,q
DO m = 1,a+b+1

ai=a-1
beta = DBLE((a+b)/2._8 - m + 1._8)
alpha = beta - 0.5_8



29 of 36

IF ((alpha .LT. -(ai+b)/2._8).OR.(alpha .GT. (ai+b)/2._8)) THEN
!WRITE(*,*) "ai,b,ti,r,alpha = ", ai,b,(ai+b)/2._8,r,alpha
CYCLE
END IF

r = nSEQUENCE(p,q,ai,b,alpha)
c = nSEQUENCE(p,q,a,b,beta)

t = (a+b)/2._8
Up(r,c) = DSQRT(g(p,q,a,b)*(t+beta))

!((+aj) (1 + pp + aj) (1 + qq - aj)/((aj + bj) (aj + bj + 1)))**(1/2)
!g = a*(p+a+1._8)*(q-a+1._8)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
! Make the lower blocks of Up
DO b = 1,p !lower block

DO a = 0,q
DO m = 1,a+b+1 ! replace 1 by 2 and drop IF

bj = b - 1
alpha = DBLE((a+b)/2._8 - m + 1._8)
beta = alpha + 0.5_8

IF ((beta .LT. -(a+bj)/2._8).OR.(beta .GT. (a+bj)/2._8)) THEN
!WRITE(*,*) "a,bj,(a+bj)/2._8,c,beta = ", a,bj,(a+bj)/2._8,c,beta
CYCLE
END IF

r = nSEQUENCE(p,q,a,b,alpha)
c = nSEQUENCE(p,q,a,bj,beta)

t = (a+b)/2._8
Up(r,c) = DSQRT(h(p,q,a,b)*(t-alpha))

!(+b(1+p-b)(1+q+b)/((a+b)(a+b+1)))**(1/2)
! h = b*(p-b+1)*(q+b+1)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
!
!-----------------11. Make Um -----------------------
!
ALLOCATE( Um(dimREP,dimREP))
!
!WRITE(*,*) "Um"
! Make the upper blocks of Um
DO i = 1,dimREP

DO j = 1,dimREP
Um(i,j) = 0._8

END DO
END DO
!
! Make the upper blocks of Um
DO b = 1,p !upper block

DO a = 0,q
DO m = 2,a+b+1



30 of 36

bi = b-1
beta = DBLE((a+b)/2._8 - m + 1._8)
alpha = beta + 0.5_8

IF ((alpha .LT. -(a+bi)/2._8).OR.(alpha .GT. (a+bi)/2._8)) THEN
!WRITE(*,*) "a,bi,ti,r,alpha = ", a,bi,(a+bi)/2._8,r,alpha
CYCLE
END IF

r = nSEQUENCE(p,q,a,bi,alpha)
c = nSEQUENCE(p,q,a,b,beta)

t = (a+b)/2._8
Um(r,c) = DSQRT(h(p,q,a,b)*(t-beta))

!(+b(1+p-b)(1+q+b)/((a+b)(a+b+1)))**(1/2)
! h = b*(p-b+1)*(q+b+1)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
!
DO b = 0,p !lower block

DO a = 1,q
DO m = 1,a+b+1 !for m = 1, alpha = t = (a+b)/2 MOVE TO Up

aj = a - 1 ! tj = (a+b-1)/2
alpha = DBLE((a+b)/2._8 - m + 1._8)
beta = alpha - 0.5_8 !For m = 1, beta = (a+b-1)/2

IF ((beta .LT. -(aj+b)/2._8).OR.(beta .GT. (aj+b)/2._8)) THEN
!WRITE(*,*) "aj,b,(aj+b)/2._8,c,beta = ", aj,b,(aj+b)/2._8,c,beta
CYCLE
END IF

r = nSEQUENCE(p,q,a,b,alpha)
c = nSEQUENCE(p,q,aj,b,beta)

t = (a+b)/2._8
Um(r,c) = DSQRT(g(p,q,a,b)*(t+alpha))

!(+a(1+p+a)(1+q-a)/((a+b)(a+b+1)))**(1/2)
!g = a*(p+a+1._8)*(q-a+1._8)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
!
!-----------------12. Make Vp -----------------------
!
ALLOCATE( Vp(dimREP,dimREP))
!
!WRITE(*,*) "Vp"
! Make the upper blocks of Vp
DO i = 1,dimREP

DO j = 1,dimREP
Vp(i,j) = 0._8

END DO
END DO
!
DO b = 0,p !upper block
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DO a = 1,q
DO m = 1,a+b+1

ai = a-1
beta = DBLE((a+b)/2._8 - m + 1._8)
alpha = beta + 0.5_8

IF ((alpha .LT. -(ai+b)/2._8).OR.(alpha .GT. (ai+b)/2._8)) THEN
!WRITE(*,*) "ai,b,ti,r,alpha = ", ai,b,(ai+b)/2._8,r,alpha
CYCLE
END IF

r = nSEQUENCE(p,q,ai,b,alpha)
c = nSEQUENCE(p,q,a,b,beta)

t = (a+b)/2._8
Vp(r,c) = -DSQRT(g(p,q,a,b)*(t-beta))

!((+aj) (1 + pp + aj) (1 + qq - aj)/((aj + bj) (aj + bj + 1)))**(1/2)
!g = a*(p+a+1._8)*(q-a+1._8)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
! Make the lower blocks of Vp
DO b = 1,p !lower block

DO a = 0,q
t = DBLE((a+b)/2._8)
DO m = 1,a+b+1 ! 1 replaced by 2

bj = b - 1
alpha = DBLE(t - m + 1._8)
beta = alpha - 0.5_8

IF ((beta .LT. -(a+bj)/2._8).OR.(beta .GT. (a+bj)/2._8)) THEN
!WRITE(*,*) "a,bj,(a+bj)/2._8,c,beta = ", a,bj,(a+bj)/2._8,c,beta
CYCLE
END IF

r = nSEQUENCE(p,q,a,b,alpha)
c = nSEQUENCE(p,q,a,bj,beta)

t = (a+b)/2._8
Vp(r,c) = DSQRT(h(p,q,a,b)*(t+alpha))

!(+b(1+p-b)(1+q+b)/((a+b)(a+b+1)))**(1/2)
! h = b*(p-b+1)*(q+b+1)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
!
!-----------------13. Make Vm -----------------------
!
ALLOCATE( Vm(dimREP,dimREP))
!
!WRITE(*,*) "Vm"
! Make the upper blocks of Vm
DO i = 1,dimREP

DO j = 1,dimREP
Vm(i,j) = 0._8

END DO
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END DO
!
! Make the upper blocks of Vm
DO b = 1,p !upper block

DO a = 0,q
t = (a+b)/2._8
DO m = 1,a+b+1

bi = b-1
beta = DBLE(t - m + 1._8)
alpha = beta - 0.5_8

IF ((alpha .LT. -(a+bi)/2._8).OR.(alpha .GT. (a+bi)/2._8)) THEN
!WRITE(*,*) "a,bi,ti,r,alpha = ", a,bi,(a+bi)/2._8,r,alpha
CYCLE
END IF

r = nSEQUENCE(p,q,a,bi,alpha)
c = nSEQUENCE(p,q,a,b,beta)

Vm(r,c) = DSQRT(h(p,q,a,b)*(t+beta))
!(+b(1+p-b)(1+q+b)/((a+b)(a+b+1)))**(1/2)
! h = b*(p-b+1)*(q+b+1)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
!
DO b = 0,p !lower block

DO a = 1,q
t = (a+b)/2._8
DO m = 1,a+b+1

aj = a - 1
alpha = DBLE(t - m + 1._8)
beta = alpha + 0.5_8

IF ((beta .LT. -(aj+b)/2._8).OR.(beta .GT. (aj+b)/2._8)) THEN
!WRITE(*,*) "aj,b,(aj+b)/2._8,c,beta = ", aj,b,(aj+b)/2._8,c,beta
CYCLE
END IF

r = nSEQUENCE(p,q,a,b,alpha)
c = nSEQUENCE(p,q,aj,b,beta)

Vm(r,c) = -DSQRT(g(p,q,a,b)*(t-alpha)) ! Main article, Eq.(97)
!(+a(1+p+a)(1+q-a)/((a+b)(a+b+1)))**(1/2)
!g = a*(p+a+1._8)*(q-a+1._8)/((a+b)*(a+b+1._8))

END DO
END DO

END DO
!
!-----------------14. Extra steps needed when p < q ---------------------
!
! If the given irrep integers p0 and q0 satisfy p0 >= q0, then the
! 8 matrices found above make the (p0,q0) irrep.
! For p0 < q0, we calculated with p = q0 and q = p0, so p > q. The negative
! transpose of the 8 matrices of the (p,q)-irrep make the (p0,q0) irrep.
! For p0 < q0, we need one more step to get the matrices.
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IF (.NOT.p0GEq0) THEN ! needed for p0 < q0
Tp = -TRANSPOSE(Tp)
Tm = -TRANSPOSE(Tm)
T3 = -TRANSPOSE(T3)
Up = -TRANSPOSE(Up)
Um = -TRANSPOSE(Um)
Y = -TRANSPOSE(Y)
Vp = -TRANSPOSE(Vp)
Vm = -TRANSPOSE(Vm)

END IF
!
! ------15. Check 28 commutator relations and the Casimir equation ----------
!
! The 8 matrices T3,Y,Tp,Tm,Up,Um,Vp,Vm have been calculated. Check them.
!
n = dimREP !n - the dimension of the matrices. ’n’ is shorter than dimREP
!
ALLOCATE(T3Tpcomm(n,n),T3Tmcomm(n,n),T3Upcomm(n,n),T3Umcomm(n,n))
ALLOCATE(T3Ycomm(n,n),T3Vpcomm(n,n),T3Vmcomm(n,n),TpTmcomm(n,n))
ALLOCATE(TpUpcomm(n,n),TpUmcomm(n,n),TpYcomm(n,n),TpVpcomm(n,n))
ALLOCATE(TpVmcomm(n,n),TmUpcomm(n,n),TmUmcomm(n,n),TmYcomm(n,n))
ALLOCATE(TmVpcomm(n,n),TmVmcomm(n,n),YUpcomm(n,n),YUmcomm(n,n))
ALLOCATE(YVpcomm(n,n),YVmcomm(n,n),UpUmcomm(n,n),UpVpcomm(n,n))
ALLOCATE(UpVmcomm(n,n),UmVpcomm(n,n),UmVmcomm(n,n),VpVmcomm(n,n))
ALLOCATE(Casimir(n,n))
! ! Main article, Eqs.(1-6)

T3Tpcomm = MATMUL(T3,Tp) - MATMUL(Tp,T3) - Tp ! 1
MaxErr = MAXVAL(ABS( T3Tpcomm ))

T3Tmcomm = MATMUL(T3,Tm) - MATMUL(Tm,T3) + Tm
MaxErr = MAXVAL(ABS( (/MaxErr, T3Tmcomm/) ))

T3Upcomm = MATMUL(T3,Up) - MATMUL(Up,T3) + Up/2._8
MaxErr = MAXVAL(ABS( (/MaxErr, T3Upcomm/) ))

T3Umcomm = MATMUL(T3,Um) - MATMUL(Um,T3) - Um/2._8
MaxErr = MAXVAL(ABS( (/MaxErr, T3Umcomm/) ))

T3Ycomm = MATMUL(T3,Y) - MATMUL(Y,T3) ! 5
MaxErr = MAXVAL(ABS( (/MaxErr, T3Ycomm/) ))

T3Vpcomm = MATMUL(T3,Vp) - MATMUL(Vp,T3) - Vp/2.
MaxErr = MAXVAL(ABS( (/MaxErr, T3Vpcomm/) ))

T3Vmcomm = MATMUL(T3,Vm) - MATMUL(Vm,T3) + Vm/2.
MaxErr = MAXVAL(ABS( (/MaxErr, T3Vmcomm/) ))

!
TpTmcomm = MATMUL(Tp,Tm) - MATMUL(Tm,Tp) - 2._8*T3
MaxErr = MAXVAL(ABS( (/MaxErr, TpTmcomm/) ))

TpUpcomm = MATMUL(Tp,Up) - MATMUL(Up,Tp) - Vp
MaxErr = MAXVAL(ABS( (/MaxErr, TpUpcomm/) ))

TpUmcomm = MATMUL(Tp,Um) - MATMUL(Um,Tp) ! 10
MaxErr = MAXVAL(ABS( (/MaxErr, TpUmcomm/) ))

TpYcomm = MATMUL(Tp,Y) - MATMUL(Y,Tp)
MaxErr = MAXVAL(ABS( (/MaxErr, TpYcomm/) ))

TpVpcomm = MATMUL(Tp,Vp) - MATMUL(Vp,Tp)
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MaxErr = MAXVAL(ABS( (/MaxErr, TpVpcomm/) ))
TpVmcomm = MATMUL(Tp,Vm) - MATMUL(Vm,Tp) + Um
MaxErr = MAXVAL(ABS( (/MaxErr, TpVmcomm/) ))

TmUpcomm = MATMUL(Tm,Up) - MATMUL(Up,Tm)
MaxErr = MAXVAL(ABS( (/MaxErr, TmUpcomm/) ))

TmUmcomm = MATMUL(Tm,Um) - MATMUL(Um,Tm) + Vm ! 15
MaxErr = MAXVAL(ABS( (/MaxErr, TmUmcomm/) ))

TmYcomm = MATMUL(Tm,Y) - MATMUL(Y,Tm)
MaxErr = MAXVAL(ABS( (/MaxErr, TmYcomm/) ))

TmVpcomm = MATMUL(Tm,Vp) - MATMUL(Vp,Tm) - Up
MaxErr = MAXVAL(ABS( (/MaxErr, TmVpcomm/) ))

TmVmcomm = MATMUL(Tm,Vm) - MATMUL(Vm,Tm)
MaxErr = MAXVAL(ABS( (/MaxErr, TmVmcomm/) ))

!
YUpcomm = MATMUL(Y,Up) - MATMUL(Up,Y) - Up
MaxErr = MAXVAL(ABS( (/MaxErr, YUpcomm/) ))

YUmcomm = MATMUL(Y,Um) - MATMUL(Um,Y) + Um ! 20
MaxErr = MAXVAL(ABS( (/MaxErr, YUmcomm/) ))

YVpcomm = MATMUL(Y,Vp) - MATMUL(Vp,Y) - Vp
MaxErr = MAXVAL(ABS( (/MaxErr, YVpcomm/) ))

YVmcomm = MATMUL(Y,Vm) - MATMUL(Vm,Y) + Vm
MaxErr = MAXVAL(ABS( (/MaxErr, YVmcomm/) ))

UpUmcomm = MATMUL(Up,Um) - MATMUL(Um,Up) - (3._8*Y/2._8 - T3)
MaxErr = MAXVAL(ABS( (/MaxErr, UpUmcomm/) ))

UpVpcomm = MATMUL(Up,Vp) - MATMUL(Vp,Up)
MaxErr = MAXVAL(ABS( (/MaxErr, UpVpcomm/) ))

UpVmcomm = MATMUL(Up,Vm) - MATMUL(Vm,Up) - Tm ! 25
MaxErr = MAXVAL(ABS( (/MaxErr, UpVmcomm/) ))

UmVpcomm = MATMUL(Um,Vp) - MATMUL(Vp,Um) + Tp
MaxErr = MAXVAL(ABS( (/MaxErr, UmVpcomm/) ))

UmVmcomm = MATMUL(Um,Vm) - MATMUL(Vm,Um)
MaxErr = MAXVAL(ABS( (/MaxErr, UmVmcomm/) ))

VpVmcomm = MATMUL(Vp,Vm) - MATMUL(Vm,Vp) - (3._8*Y/2._8 + T3) ! 28
MaxErr = MAXVAL(ABS( (/MaxErr, VpVmcomm/) ))

! ! Main article, Eq.(7)
Casimir = (MATMUL(Tp,Tm)+MATMUL(Tm,Tp)+MATMUL(Up,Um)+ &

MATMUL(Um,Up)+MATMUL(Vp,Vm)+MATMUL(Vm,Vp))/2.+MATMUL(T3,T3) &
+3._8*MATMUL(Y,Y)/4._8 - (dble(p**2+p*q+q**2)/3._8+ &
dble(p + q))*unitMatrix ! 29

MaxErr = MAXVAL(ABS( (/MaxErr, Casimir/) ))
!

WRITE(*,*) ’The 28 commutation relations plus the quadratic Casimir &
expression are obeyed: ’,(MaxErr.LE.MaxErrLimit)

WRITE(*,*) ’The largest error in the 29 equations is ’,MaxErr,’,’
WRITE(*,*) ’which should be smaller than MaxErrLimit = ’,MaxErrLimit,’ which &

is the allowed tolerance.’
WRITE(*,*) ! a blank line

!
IF(MaxErr.LE.MaxErrLimit) THEN ! Is the largest error within tolerance?

MaxErrNotTooBig = .TRUE. ! TRUE means Yes.
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ELSE IF (MaxErr >MaxErrLimit) THEN
MaxErrNotTooBig = .FALSE. ! FALSE means No, not within tolerance.

END IF
!
!----------16. Save the results to a file, end program -----------------------
!
!MaxErrNotTooBig = .FALSE. ! Use this statement to test the failure option
! MaxErrNotTooBig = .TRUE. ! Use this statement to make an output

!
!WRITE(*,*) ’p,q,MaxErrNotTooBig = ’, p0,q0,MaxErrNotTooBig

IF (MaxErrNotTooBig) THEN ! No Failure(s) found
WRITE (file_name,"(’p’,i0,’q’,i0,’SU3MatrGen.dat’)")p0,q0
OPEN(Unit=5,file=file_name)
WRITE(5,3000) p0,q0, MaxErr ! Start the data file with p0,q0,MaxErr.
CLOSE(5) ! Next, the 8*dimREP**2 components of the 8 basis matrices

OPEN(Unit=5,file=file_name,STATUS=’OLD’, POSITION=’APPEND’) !Append T,Y,U,V
WRITE(5,4000) TRANSPOSE(T3),TRANSPOSE(Y),TRANSPOSE(Tp), TRANSPOSE(Tm),&

TRANSPOSE(Up), TRANSPOSE(Um), TRANSPOSE(Vp), TRANSPOSE(Vm)
CLOSE(5)

END IF
!

3000 FORMAT(2I3,1ES16.7) !FORMAT statement for two integers and a real number
4000 FORMAT(5F16.12)!The FORMAT statement for the matrices,5 numbers per line

!
END PROGRAM Su3Generators

!
!-----------------17. External functions, end-of-file-----------------------
!
FUNCTION nSEQUENCE(p,q,a,b,alpha) RESULT (w) ! Main article, Eq.(22)

IMPLICIT NONE ! The nth place in the sequence belongs to
INTEGER :: p,q ! the T3 eigenvector with eigenvalue alpha
INTEGER :: a,b,m ! in the (a,b)-SU2 irrep
REAL(8) :: alpha,w !the eigenvector is in the mth place in the irrep,

! ! m = (a+b)/2 -alpha + 1
w = ((a+b)*(a+b+1._8)+q*b*(q+b+2._8))/2._8 + ((a+b)/2._8-alpha+1._8)
END FUNCTION

FUNCTION g(p,q,a,b) RESULT (w) ! Main article, Eq.(89)
IMPLICIT NONE ! Four of the U,V formulas have
INTEGER :: p,q ! the factor SQRT(g), where

INTEGER :: a,b !g = a*(p+a+1)*(q-a+1)/[(a+b)(a+b+1)]
REAL(8) :: w

w = a*(p+a+1._8)*(q-a+1._8)/((a+b)*(a+b+1._8))
END FUNCTION

FUNCTION h(p,q,a,b) RESULT (w) ! Main article, Eq.(89)
IMPLICIT NONE ! Four of the U,V formulas have

INTEGER :: p,q ! the factor SQRT(h), where
INTEGER :: a,b !h = b*(p-b+1)*(q+b+1)/[(a+b)(a+b+1)]
REAL(8) :: w

w = b*(p-b+1)*(q+b+1)/((a+b)*(a+b+1._8))
END FUNCTION
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! end-of-file
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