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Abstract

In contrast to the standard Effective Field Theory (EFT), which relies on an infinite series of
unknown coefficients (c1, c2, . . .) to parameterize divergences, this paper demonstrates that gravita-
tional self-energy provides the physical mechanism for a self-renormalizing theory, where both the
divergences and the unknown coefficients required to absorb them (features inherent to the stan-
dard EFT model) are naturally eliminated. Based on the principle that the gravitational source is
the effective mass (Meff ), which includes its own self-energy, we derive a running coupling G(k),
that not only reproduces the canonical low-energy quantum corrections of EFT but also vanishes
at a critical scale, Rgs−GR−1st ≈ 1.16

GNMfr

c2 ≈ 0.58RS . This self-renormalization mechanism
eliminates divergences at their source, rendering higher-order counter-terms unnecessary and nul-
lifying all classical and quantum gravitational interactions at this critical scale. This framework
provides physical origins for two fundamental concepts in physics. First, the repulsive force that
emerges for radii smaller than Rgs−GR−1st (where G(k) < 0) offers a natural resolution to the black
hole singularity problem. Second, the Planck-scale cutoff (Λ ∼ MP c

2) is identified as a physical
boundary where the negative gravitational self-energy of a quantum fluctuation precisely balances
its positive mass-energy, yielding a total energy ET ≈ 0. This mechanism dynamically prevents
the formation of negative energy states. In conclusion, this work demonstrates that the single,
fundamental principle of gravitational self-energy (or binding energy) offers a unified framework to
consistently describe gravity from astrophysical to Planck scales. It provides a coherent solution for
the problems of gravitational divergence, renormalization, singularities, and the physical origin of
the Planck cutoff, while also offering a new perspective on cosmological phenomena such as cosmic
acceleration.

1. Introduction

Gravity is basically given by the Einstein-Hilbert action, where G is Newton’s constant and R is the scalar
curvature derived from the Riemann curvature tensor.

S =
1

16πG

∫
d4x

√
−gR (1)

The quantization of the Einstein-Hilbert action presents profound theoretical challenges, primarily stemming
from two interconnected issues. First, the gravitational coupling constant, Newton’s constant GN , possesses a
negative mass dimension ([mass]−2) [1], which causes perturbative quantum corrections to diverge uncontrol-
lably at high energies (the ultraviolet, or UV, regime). Second, this leads to the theory’s non-renormalizability;
beginning at the two-loop level, divergences appear that cannot be absorbed by a finite number of counter-terms,
rendering the theory predictively powerless at the Planck scale and beyond.

Faced with these obstacles, several major research programs have sought to formulate a consistent theory
of quantum gravity. One prominent approach is Asymptotic Safety, proposed by Weinberg [2] [3] [4], which
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postulates that gravity might be fundamentally non-perturbative. This hypothesis suggests that the renormal-
ization group flow of the gravitational coupling could possess a non-trivial fixed point at high energies, taming
the divergences and making the theory UV-complete.

An alternative, highly successful paradigm is the Effective Field Theory (EFT) approach [5]. EFT treats
general relativity as a perfectly valid, predictive quantum theory at low energies. Its core philosophy is to
systematically separate reliable low-energy quantum predictions from the unknown physics of the UV regime.

The EFT framework accomplishes this by parameterizing our ignorance of UV physics into an infinite
series of higher-derivative terms with undetermined coefficients, such as c1R

2 and c2RµνR
µν , which absorb the

divergences arising from loop calculations [5]. While this method yields robust low-energy predictions—most
notably the leading quantum correction to the Newtonian potential—it does not solve the fundamental problem
of non-renormalizability by design. Instead, it sidesteps the issue, leaving the ultimate high-energy behavior of
gravity an open question.

In this paper, we propose a different path that offers a physical resolution to these foundational issues.
Instead of postulating a fixed point or parameterizing UV physics, we argue that the solution is already embedded
within general relativity itself, through the fundamental principle of gravitational self-energy. By incorporating
this energy into the definition of the gravitational source (M → Meff ), we derive a running gravitational
coupling, G(k), that naturally vanishes at a critical scale, Rgs−GR−1st. This behavior leads to a trivial (Gaussian)
fixed point (G → 0), offering a powerful mechanism for gravity’s self-renormalization.

This framework provides a unique synthesis. At low energies, it is fully consistent with the EFT approach,
successfully reproducing its canonical quantum corrections. However, at high energies, it provides the very
physics that EFT leaves undetermined. The vanishing of the coupling, κ(k) =

√
32πG(k), at the critical scale

naturally quenches all interactions, eliminating divergences at their source and rendering the infinite tower of
counter-terms like c1 and c2 unnecessary.

The scope of our model extends beyond the divergence problem. The central idea, which originated from
resolving the black hole singularity problem [6] (Chapter 2), provides a unified foundation for several long-
standing puzzles. We will demonstrate that this single principle not only resolves the issues of singularities
and renormalization (Chapter 4) but also establishes a physical origin for the Planck-scale cutoff in quantum
field theory (Chapter 4.6). Finally, we will show how this model is formally integrated with the standard EFT
framework, creating a more complete and powerful description of quantum gravity across all scales (Chapter
5).

This investigation begins by revisiting the solution to the black hole singularity problem, the original genesis
of this work’s central idea, before extending this physical principle to address the fundamental challenge of
gravitational renormalization.

2. Solution of the singularity problem of a black hole 2

2.1. Mass defect effect due to gravitational binding energy or gravitational potential energy
When two masses m are separated by r, the total energy of the system is

ET = 2mc2 − Gmm

r
(2)

If we introduce the negative equivalent mass −mgp for the gravitational potential energy,

−Gmm

r
= −mgpc

2 (3)

2Chapter 2 is almost the same as the contents of the previous paper [6]. And, some research contents have been
added. It is cited to understand the mass defect effect due to gravitational binding energy or gravitational potential
energy, and the negative equivalent mass effect.
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ET = 2mc2 − Gmm

r
= 2mc2 −mgpc

2 = (2m−mgp)c
2 = m∗c2 (4)

The gravity of a composite particle composed of two objects acting on a mass m3 that is relatively far away
is

F = −Gm∗m3

R2
= −G(2m−mgp)m3

R2
= −G(2m)m3

R2
− G(−mgp)m3

R2
(5)

That is, when considering the gravitational action of a bound system, not only the mass in
its free state but also the binding energy term (−mgp) should be considered. The total mass or
equivalent mass m∗ of the system is less than the mass of 2m when the two objects were in a free state. The
bound objects experience a mass loss (defect) due to the gravitational binding energy. This is equivalent to
having a negative equivalent mass in the system.

In gravitationally bound systems, changes in configuration (e.g., orbital reduction) lead to a decrease in
total energy and effective mass due to energy radiation, as seen in celestial mechanics [7].

2.2. Gravitational self-energy or total gravitational potential energy of an object
The concept of gravitational self-energy (Ugs) is the total of gravitational potential energy (Ugp) possessed

by a certain object M itself. Since a certain object M itself is a binding state of infinitesimal mass dMs, it
involves the existence of gravitational potential energy among these dMs and is the value of adding up these.
M =

∑
dM . The gravitational self-energy is equal to the minus sign of the gravitational binding energy (Ugb).

Only the sign is different because it defines the gravitational binding energy as the energy that must be supplied
to the system to bring the bound object into a free state.

Figure 1: Since all mass M is a set of infinitesimal mass dMs and each dM is gravitational source,
too, there exists gravitational potential energy among each of dMs. Generally, mass of an object
measured from its outside corresponds to the value of dividing the total of all energy into c2.

In the case of a spherical uniform distribution, total gravitational potential energy or gravitational binding
energy (−Ugp) is

U = −3

5

GM2

R
(6)

In general, the above notation is used for the gravitational self-energy (potential energy) of an object, but in
this paper, there are various mass terms such as the mass M , the free state mass Mfr, and the effective mass
Meff , and the radius R of the mass distribution can also be confused with the distance R. Therefore, in order
to make the concepts of mass and distance included in the equation more clear, this paper plans to use the
following notation.

Ugs−NM = −3

5

GNMfr
2

Rm
(7)

Here, Ugs−NM means the gravitational self-energy obtained from Newtonian Mechanics, GN is Newton’s
gravitational constant, Mfr is the mass when the masses constituting the object are in a free state, and Rm

means the radius of the mass or energy distribution.
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Ugs−NM−BH(R = RS) = −3

5

GNMfr
2

Rm
≈ −3

5

GNMfr
2

(
2GNMfr

c2 )
= −0.3Mfrc

2 (8)

Strictly speaking, the mass M of a black hole is not the mass Mfr in the free state, but the equivalent mass
(or effective mass) including the binding energy. Here, Mfr is used for simple estimation.

In the general case, the value of gravitational self-energy is small enough to be negligible, compared to mass
energy Mc2. So generally, there was no need to consider gravitational self-energy. However the smaller Rm

becomes, the higher the absolute value of Ugs−NM . For this reason, we can see that Ugs−NM is likely to offset
the mass energy in a certain critical radius.

Thus, looking for the size in which gravitational self-energy becomes equal to mass energy by
comparing both,

Ugs−NM = | − 3

5

GNMfr
2

Rgs
| = Mfrc

2 (9)

Rgs−NM =
3

5

GNMfr

c2
=

3

10
(
2GNMfr

c2
) = 0.3RS (10)

RS is the Schwarzschild radius based on the free state mass Mfr. This equation means that if mass Mfr

is uniformly distributed within the radius Rgs−NM , negative gravitational potential energy for such an object
equals positive mass energy in size. So, in case of such an object, positive mass energy and negative gravitational
potential energy can be completely offset while total energy is zero. Since total energy of such an object is 0,
gravity exercised on another object outside is also 0.

Comparing Rgs−NM with RS, the radius of Schwarzschild black hole,
In the rough estimate above, since the gravitational potential energy at the event horizon is Ugs−NM ≈

−0.3Mfrc
2, the mass energy of the black hole will be approximately EBH ≈ 0.7Mfrc

2.

RS
′ =

2GM

c2
≈

2GN ( 7
10Mfr)

c2
=

7

5

GNMfr

c2
(11)

Rgs−NM =
3

5

GNMfr

c2
=

3

7
(
7GNMfr

5c2
) ≈ 3

7
RS

′ ≈ 0.43RS
′ (12)

This means that there exists the point where negative gravitational potential energy becomes equal to
positive mass energy within the radius of black hole, and that, supposing a uniform distribution, the value
exists approximately at the point 0.43RS

′.

Even if we apply the kinetic energy and virial theorem, the radius only decreases as negative energy cancels
out positive energy, but the core claim that “there is a region that cannot be compressed any further due
to negative gravitational potential energy” remains unchanged. Although potential energy changes to kinetic
energy, in order to achieve a stable bonded state, a part of the kinetic energy must be released to the outside
of the system.

Considering the Virial Theorem (K = −U/2),

Rgs−NM−vir =
1

2
Rgs−NM (13)

2.3. No singularity at the center of a black hole
The total energy of the system, including the gravitational potential energy or binding energy, is

ET (Rm) =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
=Mfrc

2 − 3

5

GNMfr
2

Rm
(14)

Let’s gradually reduce Rm from when Rm is infinite.
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Figure 2: The internal structure of a black hole based on the radius of the mass (or energy) distribution.
a) Existing Model. b) New Model. If Rm is less than Rgs−NM (or Rgs−NM−vir), this region becomes
negative energy(mass) state. There is a repulsive gravitational effect between the negative masses,
which causes it to expand again. This region (within Rgs−NM (or Rgs−NM−vir)) exercises anti-gravity
on all particles entering this area, and accordingly prevents all masses from gathering to r = 0. If, over
time, the black hole stabilizes, the black hole does not have a singularity in the center, but it has a zero
(total) energy zone. Since there is a repulsive gravitational effect between negative energies (masses),
the mass distribution expands, and when the mass distribution expands, the magnitude of the negative
gravitational potential energy decreases, so it enters the positive energy state again. When the system
(mass distribution) becomes a positive energy state, gravitational contraction will exist again. In this
way, gravitational contraction and expansion will be repeated until the total energy of the system
becomes 0, and finally it will stabilize at a state where the total energy is 0. The maximum size of
the Zero Energy Zone is Rgs−NM .

This is assuming that it is stationary after the orbital transition. If there is kinetic energy due to rotation
in the orbit, we can reflect only half of the negative gravitational potential energy term by using the virial
theorem. K = −1

2U

ET (Rm = ∞) = Mfrc
2 − 3

5

GNMfr
2

Rm
= Mfrc

2 (15)

ET (Rm = RS) = Mfrc
2 − 3

5

GNMfr
2

Rm
≈ Mfrc

2 − 3

5

GNMfr
2

(
2GNMfr

c2 )
= Mfrc

2 − 3

10
Mfrc

2 = 0.7Mfrc
2 (16)

ET (Rm = Rgs−NM ) = Mfrc
2 − 3

5

GNMfr
2

Rm
= Mfrc

2 − 3

5

GNMfr
2

( 35
GNMfr

c2 )
= Mfrc

2 −Mfrc
2 = 0 (17)

ET (Rm =
1

10
Rgs−NM < Rgs−NM ) = Mfrc

2 − 3

5

GNMfr
2

Rm
= Mfrc

2 − 10Mfrc
2 = −9Mfrc

2 (18)

From the equation above, even if some particle comes into the radius of black hole, it is not a fact that
it contracts itself infinitely to the point R = 0. From the point Rgs−NM (or Rgs−NM−vir), gravity is 0, and
when it enters into the area of Rgs−NM (or Rgs−NM−vir), total energy within Rgs−NM (or Rgs−NM−vir) region
corresponds to negative values enabling anti-gravity to exist. This Rgs−NM (or Rgs−NM−vir) region comes
to exert repulsive effects of gravity on the particles outside of it, therefore it interrupting the formation of
singularity at the near the area R = 0.

However, it still can perform the function as black hole because the emitted energy will exist in a region larger
than r > Rgs−NM (or Rgs−NM−vir). Since the emitted energy cannot escape the black hole, it is distributed in
the region Rgs−NM (or Rgs−NM−vir) < r < RS . Since the total energy of the entire range (0 ≤ r < RS) inside
the black hole is positive, it functions as a black hole.
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If you have only the concept of positive energy, please refer to the following explanation.
If, Rm = Rgs−NM , the total energy of the system, including the gravitational potential energy, is

ET (Rm = Rgs−NM ) = Mfrc
2 − 3

5

GNMfr
2

Rm
= Mfrc

2 − 3

5

GNMfr
2

( 35
GNMfr

c2 )
= Mfrc

2 −Mfrc
2 = 0 (19)

From the point of view of mass defect, r = Rgs−NM (or Rgs−NM−vir) is the point where the total energy of
the system is zero. For the system to compress more than this point, there must be an positive energy release
from the system. However, since the total energy of the system is zero, there is no positive energy that the
system can release. Therefore, the system cannot be more compressed than r = Rgs−NM (or Rgs−NM−vir). So
black hole doesn’t have singularity.

2.4. The gravitational singularity can be solved by gravity, not by quantum mechanics
In case of the smallest black hole with three times the solar mass [8], RS = 9km. Rgs−NM of this object is as

far as 3.87km. In other words, even in a black hole with smallest size that is made by the contraction
of a star, the distribution of internal mass can’t be reduced to at least radius 3.87km(Rgs−NM−vir =
1.94km). Even for black holes of varying sizes, from supermassive to stellar-mass, the critical radius Rgs−NM

prevents singularity formation before quantum scales are reached.
Before reaching quantum mechanical scales, the singularity problem is solved by gravity itself.

2.5. The minimal size of existence

[ Existence = the sum of infinitesimal existences composing an existence ]

A single mass M for some object means that it can be expressed as M =
∑

dM and, for energy, E =
∑

dE.
The same goes for elementary particles, which can be considered a set of dMs, the infinitesimal mass.

Rgs−NM equation means that if masses are uniformly distributed within the radius Rgs−NM , the size of
negative binding energy becomes equal to that of mass energy. This can be the same that the rest mass, which
used to be free for the mass defect effect caused by binding energy, has all disappeared. This means the total
energy value representing “some existence” coming to 0 and “extinction of the existence”. Therefore, Rgs−NM

is considered to act as “the minimal radius” or “a bottom line” of existence with some positive energy.

Gravitational self-energy can provide the concept of minimal length or minimal radius, one of the reasons
for introducing string theory.

lmin ≈ Rmin ≥ Rgs−GR−1st (20)

Looking at the Rgs−NM ≈ 3
5
GNMfr

c2 obtained from Newtonian mechanics and the Rgs−GR−1st ≈ 1.16
GNMfr

c2

value obtained from the first approximation of GR, we can see that “the minimum length or minimum
radius is proportional to the mass M or energy E, which are fundamental physical quantities of
existence.”

This resolution of the singularity problem via gravitational self-energy sets the foundation for addressing
gravitational divergences at high energies, as discussed in Section 4.

3. Extension of general relativity and new solution 3

In all existing solutions, the mass term M must be replaced by Mfr −Mbinding = Mfr − |Ubinding|
c2

3Chapter 3 is almost the same as the contents of the previous paper [6]. And, some research contents have been
added. It is cited to understand the mass defect effect due to gravitational binding energy or gravitational potential
energy, and the negative equivalent mass effect.
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As discussed in Chapter 2, binding energy becomes significant in strong gravitational fields, necessitating a
redefinition of mass as Mfr −Mbinding in solutions. We can solve the problem of singularity by separating the
equivalent mass term (−Mbinding) of gravitational potential energy (gravitational self-energy) from mass and
including it in the solutions of field equation.

M → (Mfr) + (−Mbinding), In all existing solutions (Schwarzschild, Kerr, Reissner-Nordström, ... ), the
mass term M must be replaced by (Mfr −Mbinding).

For example, Schwarzschild solution is,

ds2 = −(1− 2GM

c2r
)c2dt2 +

1

(1− 2GM
c2r )

dr2 + r2dθ2 + r2sin2θdϕ2 (21)

Schwarzschild-Choi solution is

ds2 = −(1− 2G(Mfr −Mbinding)

c2r
)c2dt2 +

1

(1− 2G(Mfr−Mbinding)
c2r )

dr2 + r2dθ2 + r2sin2θdϕ2 (22)

Meff = Mfr −Mbinding = Mfr −
|Ubinding|

c2
(23)

In the case of assuming Newtonian mechanics and a spherical uniform distribution,

−Mbinding = −|Ubinding|
c2

= −3

5

GNMfr
2

Rmc2
(24)

In the case of general relativity,

Ubinding = c2
∫ R

0

4πr2ρ(r)

[
1−

(
1− 2GM(r)

rc2

)− 1
2

]
dr (25)

−Mbinding = −Mgs−GR = −|Ubinding|
c2

(26)

−Mbinding is the equivalent mass of the negative binding energy, and −Mgs−GR is the equivalent mass of
the gravitational self-energy. Since the analytical function solution of above equation cannot be obtained, the
solution must be obtained through approximation or numerical analysis. In this process, the rotation and virial
theorem of the black hole must be taken into account.

In Chapter 4, from the first term approximation of the gravitational binding energy, Rgs−GR−1st ≈ 1.16
GNMfr

c2 ≈
0.58RS value is presented, and the Rgs−GR−vir ≈ 1.02

GNMfr

c2 ≈ 0.51RS value obtained using the rotation and
virial theorem is presented.

1) If Mfr ≫ | −Mgs−GR|, in other words if r ≫ RS , we get the Schwarzschild solution.

2) If Mfr = | −Mgs−GR|, It has a flat space-time.

3) If Mfr ≪ |−Mgs−GR|, in other words if 0 ≤ r ≪ Rgs−GR, Here, Rgs−GR is the radius obtained through
GR when the negative gravitational self-energy (binding energy) becomes equal in size to the positive mass
energy.

ds2 ≃ −(1 +
2GMgs−GR

c2r
)c2dt2 +

1

(1 +
2GMgs−GR

c2r )
dr2 + r2dθ2 + r2sin2θdϕ2 (27)

In the domain of 0 ≤ r ≪ Rgs−GR,
The area of within Rgs−GR has gravitational potential energy of negative value, which is larger than mass

energy of positive value. Negative mass has gravitational effect which is repulsive to each other [9]. So, we can
assume that −Mgs−GR is almost evenly distributed.
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4. Effective renormalization of gravity

4.1. Asymptotic Safety Method
Since Newton’s constant GN has a negative mass dimension ([GN ] = −2 in 4 dimensions), it is difficult

to renormalize because high-order infinities appear during perturbation expansion. However, the Asymptotic
Safety method is the idea that even in theories such as quantum gravity, which are difficult to renormalize using
traditional perturbation methods, a theory that can be predicted at UV (ultra-high energy) can be constructed
using a nonperturbative method [2] [3] [4].

Generally, the RG (Renormalization Group) flow for coupling gi is expressed as follows:
Beta function equation

βi(g) =
dgi
d ln k

(28)

The conventional beta function form of G(k) in nonperturbative RG flow

dG(k)

d ln k
= β(G) = (d− 2)G− cG2 (29)

d: spacetime dimension (usually d = 4 is assumed)
c: quantum correction factor, which varies depending on the details of the theory.
When solving the RG flow equation, the general solution of G(k) is expressed as follows.

G(k) =
G0

1 + cG0 ln(k/k0)
(30)

G0: Initial Newton constant (value at low energy, usually known as GN )
k0 : Initial energy scale

4.2. Find G(k) or Meff (k)
Usually, when applying RG flow, G(k) is used as follows.

F = −G(k)Mm

r2
(31)

G(k) is a function that varies with distance or energy, and k basically means energy scale (or momentum
scale). k ∼ p ∼ E

c

In Newtonian gravity, the mass M of an object is not simply its free state mass, but rather the equivalent
mass that includes all forms of energy associated with the object-such as rest mass energy, binding energy, kinetic
energy, and potential energy. Similarly, in general relativity, the energy-momentum tensor Tµν represents the
equivalent mass-energy, encompassing all energy contributions present in the system [10].

Therefore, when using the mass term in gravitational analyses, it is essential to recognize that the physically
relevant quantity is not the free mass but the equivalent mass Meff , which incorporates various energy com-
ponents. While Meff can be complex due to the inclusion of multiple energy terms, for practical analysis, we
often focus on the minimal physical quantities that must exist whenever mass or energy is present. For example,
in the case of electromagnetic energy, the presence of charge is required; if there is no charge, electromagnetic
energy does not need to be considered.

However, for any nonzero mass or energy, there always exists a minimal physical quantity that must be
included: the gravitational binding energy or gravitational self-energy. This gravitational self-energy arises
inherently from the existence of mass or energy and, being negative, has a unique and essential role.

Thus, when considering mass or energy distributions, the minimal form of the effective mass can be expressed
as

Meff = Mfr −Mbinding = Mfr −
|Ubinding|

c2
(32)

where Mbinding denotes the equivalent mass of the gravitational binding energy or gravitational self-energy.
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Existing researchers are having difficulties while focusing on G(k), but let’s think a little differently,

F = −GNMeffm

r2
= −

(GN
Meff

Mfr
)Mfrm

r2
= −G(k)Mfrm

r2
(33)

G(k) =
GNMeff

Mfr
= GN (1− |Ubinding|

Mfrc2
) (34)

In the framework of classical Newtonian mechanics and general relativity, the effective mass Meff is inher-
ently incorporated, and from this Meff , a new gravitational coupling constant G(k) naturally emerges.

Previously, when solving the singularity problem of black holes, we were able to know that the mass M
changes by including binding energy or gravitational potential energy. This is a method that utilizes that.

For a simple calculation, assuming a spherical uniform distribution

Meff = Mfr −Mbinding = Mfr −
3

5

GNMfr
2

Rmc2
(35)

Meff (k) = (1− 3

5

GNMfr

Rmc2
)Mfr = (1− 3

5

GN
E
c2

Rmc2
)Mfr = (1− 3GN

5Rmc3
k)Mfr (36)

This can be reorganized and expressed in the form of G(k).

F = −G(k)Mfrm

r2
= −GNMeffm

r2
= −

GN (1− 3GN

5Rmc3 k)Mfrm

r2
= −(1− 3GN

5Rmc3
k)GN

Mfrm

r2
(37)

G(k) = (1− 3GN

5Rmc3
k)GN = (1− 3GNMfr

5Rmc2
)GN = (1− Rgs−NM

Rm
)GN (38)

Rgs−NM =
3

5

GNMfr

c2
(39)

If B ≡ 3GN

5Rmc3 is defined,

G(k) = (1− 3GN

5Rmc3
k)GN = (1−Bk)GN (40)

If, k∗ = 1
B = 5Rmc3

3GN
or Rm = Rgs−NM , G(k∗) = 0

G(k∗) = 0 means that at that particular energy scale (for example, in the UV regime) the effective gravi-
tational coupling vanishes. In other words, rather than diverging to infinity at high energies, the gravitational
interaction actually disappears at that scale.

We want lim
r→0

Meff

r2 = 0 to eliminate divergence. That is, Meff must decrease faster than r2.

In the previous analysis, Rgs−NM = 3
5
GNMfr

c2 ≈ 3
10RS

At Rgs−NM = 3
5
GNMfr

c2 before r reaches 0, Meff goes to 0. Therefore, we can solve the gravitational
divergence problem. Also, in the low energy limit, G(k) → GN . And, in the Meff equation, when r ≫ RS , we
can see that it is consistent with the Newton equation.

4.3. New beta function

G(k) = (1− 3GN

5Rmc3
k)GN = (1−Bk)GN (41)

Differentiating both sides with respect to ln k:

dG(k)

d ln k
=

d

d ln k
(1−Bk)GN = GN (−B)

dk

d ln k
(42)
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dk

d ln k
= k (43)

β(G) = −BGNk (44)

At a specific k∗ = 1
B = 5Rmc3

3GN
, G(k∗) = 0, the value of the beta function is

β(G)|k= 1
B
= −BGNk = −GN (45)

Therefore, the new β(G) is, if we adjust the existing equation,

β(G) = (d− 2)G(k)− cG(k)
2
(1− G(k)

GN
)−GN (46)

Looking at this equation, if k = k∗ = 1
B = 5Rmc3

3GN
or Rm = Rgs−NM , G(k) = 0, and we get β(0) = −GN ,

which is consistent with the previous result.

In the Asymptotic Safety method, when the energy goes to infinity (k → ∞), we find a Non-Gaussian Fixed
Point (NGFP) where the coupling constants have a specific finite value. However, in this model, G(k) does not
simply converge to a finite value, but there is a point where G(k) → 0 at a specific scale Rm = Rgs−NM . This
solves the divergence problem of gravity in a new way.

Also, when k > 1
B = 5Rc3

3GN
or Rm < Rgs−NM , we get G(k) < 0, a repulsive force occurs. This repulsive force

prevents gravitational collapse, so that a singularity is not formed at the center of the black hole.

And, in the existing model, a quantum correction term was added to produce the Non-Gaussian Fixed Point
(NGFP) and repulsive effects. However, in this model, if k > 1

B , antigravity is generated, solving the singularity
problem. Therefore, there is no need to introduce a quantum correction term.

Therefore, If the quantum correction term is deleted, the beta function becomes a simpler form.

β(G) = (d− 2)G(k)−GN (47)

To find a fixed point, if d = 4, β(G) = 0

β(G) = 2G(k)−GN = 2(1− Rgs−NM

Rm
)GN −GN = (1− 2Rgs−NM

Rm
)GN = 0 (48)

Fixed point is

Rm = 2Rgs−NM =
6

5

GNMfr

c2

4.4. Relativistic correction to gravitational binding energy and the running gravitational
coupling4

4Here I am using several gravitational binding energy or gravitational potential energy functions. This may not be
a completely accurate value. However, the core argument remains the same: “We must consider gravitational binding
energy (or self-energy), and considering gravitational binding energy (or gravitational self-energy) will solve the problem
of gravity divergence.” And, we use approximations in many fields. If you can find a better binding energy function or
gravitational self-energy function, you can use that.

Also, if you want to consider the energy of the gravitational field, not the gravitational potential energy, then here is
the possibility: According to Shell Theorem and Birkhoff’s Theorem, in a spherically symmetric system, the gravitational
effect at a given radius is determined only by the mass or energy content surrounded within that radius, and contributions
from outside the shell do not affect the internal dynamics. Although the energy of the gravitational field is generally
considered to be a global quantity and is difficult to localize in general relativity, the application of these theorems
allows us to treat the gravitational field energy as a localized contribution within the shell (That is, the energy of the
gravitational field is considered only in the 0 ≤ r ≤ Rm part). This approach is justified by including only the energy
density, pressure, and other physical quantities inside the shell in deriving cosmological equations such as the Friedmann
equation.
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In previous sections, the gravitational binding (self) energy of a uniform sphere was described using the
Newtonian mechanics,

Ugs−NM = −3

5

GNMfr
2

Rm
(49)

which is accurate for weak gravitational fields (
GNMfr

Rmc2 ≪ 1).
However, in regimes approaching the Planck scale or inside black holes, general relativistic effects become

significant.

4.4.1. Post-Newtonian binding energy [10]

Ugs−PN = −
∫ R

0

Gm(r)

r

dm(r)[
1− 2Gm(r)

rc2

] 1
2

(50)

Ugs−PN ≈ −3GM2

5R

(
1 +

5

7

GM

Rc2
+

5

6
(
GM

Rc2
)
2

+ · · ·
)

(51)

If we approximate only the first term and change it to the notation of this paper

Ugs−PN ≈ −3GNMfr
2

5Rm

(
1 +

5

7

GNMfr

Rmc2

)
(52)

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

5

7

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

5

7

GN

Rmc3
k

)]
(53)

If we look for the Rgs−PN value that makes G(k) = 0,

Rgs−PN ≈ 1.02(
GNMfr

c2
) = 0.51RS (54)

4.4.2. Relativistic binding energy (using a first-order approximation) [10] [11]

Ugs−GR = c2
∫ R

0

4πr2ρ(r)

[
1−

(
1− 2GM(r)

rc2

)− 1
2

]
dr (55)

Ugs−GR ≈ c2
∫ R

0

4πr2ρ(r)

[
−GM(r)

rc2
− 3

2

G2M(r)
2

r2c4
− 5

2

G3M(r)
3

r3c6
· · ·

]
dr (56)

Ugs−GR ≈ −3GM2

5R

(
1 +

15

14

GM

Rc2
+

25

18
(
GM

Rc2
)
2)

(57)

If we approximate only the first term and change it to the notation of this paper

Ugs−GR−1st ≈ −3GNMfr
2

5Rm

(
1 +

15

14

GNMfr

Rmc2

)
(58)

Accordingly, the effective mass incorporating relativistic gravitational self-energy becomes

Meff = Mfr −
|Ugs−GR|

c2
≈ Mfr −

3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)
(59)

The running gravitational coupling constant G(k) is derived based on the effective mass Meff incorporating
the general relativistic (GR) correction to the gravitational self-energy. We define G(k) as proportional to the
ratio of effective mass to free mass.

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
(60)
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Using the critical radius Rgs−NM = 3
5
GNMfr

c2 , derived from the Newtonian approximation where the total
energy ET = 0, the running gravitational coupling constant G(k) can be expressed as:

G(k) = GN

[
1− Rgs−NM

Rm

(
1 +

25

14

Rgs−NM

Rm

)]
(61)

This expression incorporates both the first-order (Newtonian) and second-order (general relativistic cor-
rection) terms. At approximately Rm ≈ Rgs−NM , the gravitational coupling G(k) approaches zero under the
first-order approximation, indicating the vanishing of gravitational interaction. For smaller Rm, G(k) becomes
negative, suggesting a repulsive force.

Using the Schwarzschild radius RS =
2GNMfr

c2 , which characterizes the event horizon of a black hole for
mass Mfr(based on free state mass), the running gravitational coupling constant G(k) can beexpressed as:

G(k) = GN

[
1− 3RS

10Rm

(
1 +

15

28

RS

Rm

)]
(62)

This form incorporates both the Newtonian term and the general relativistic correction. At approximately
Rm ≈ 0.3RS , which aligns with the critical radius under first-order approximation, G(k) ≈ 0, indicating the
vanishing of gravitational interaction. For smaller Rm, G(k) < 0, suggesting a repulsive gravitational force that
prevents singularity formation.

If we look for the Rgs−GR−1st value that makes G(k) = 0,

Rgs−GR−1st ≈ 1.93Rgs−NM ≈ 1.16
GNMfr

c2
≈ 0.58RS (63)

This result indicates that the GR correction increases the magnitude of the gravitational self-energy, resulting
in a critical radius approximately 1.93 times larger than the Newtonian approximation and about half of the
Schwarzschild radius RS . At this critical radius Rgs−GR−1st, the effective mass approaches zero, leading to
G(k) = 0, which signifies the vanishing of gravitational interaction and resolves divergences at high energy
scales. If the radius is less than Rgs−GR−1st, G(k) < 0, suggesting a repulsive gravitational force that prevents
singularity formation in black holes.

[ Implications and physical interpretation ]
The relativistic corrections make the critical radius at which the total energy disappears approximately 1.93

times larger.
For Rm ≫ Rgs−GR−1st ≈ 0.58RS , the gravitational self-energy term is negligible, and the running gravita-

tional coupling G(k) returns to the gravitational coupling constant GN .
As the radius approaches the critical value Rm = Rgs−GR−1st ≈ 0.58RS , the coupling G(k) smoothly goes

to zero, ensuring that gravitational self-energy does not diverge. Remarkably, this mechanism allows gravity to
undergo self-renormalization, naturally circumventing the issue of infinite divergences without invoking quantum
modifications.

For Rm < Rgs−GR−1st ≈ 0.58RS , the gravitational coupling becomes negative (G(k) < 0), indicating
a repulsive or antigravitational regime. This provides a natural mechanism preventing further gravitational
collapse and singularity formation, consistent with the arguments in Section 2.

In summary, replacing the Newtonian gravitational self-energy term with the relativistically corrected form
throughout our framework leads to an effective running gravitational coupling that remains finite-indeed,
vanishes-at high energies or small length scales, thus providing a robust solution to the problem of gravita-
tional divergences without recourse to quantum corrections. This strengthens the key claim of this work: that
gravity can renormalize itself by including the full (relativistic) gravitational binding energy.

This approximation, leading to a critical radius of Rgs−GR−1st ≈ 0.58RS , provides a clear analytical form
for G(k) and captures the essential physics of self-renormalization. It demonstrates the core principle that a
critical radius exists where gravitational interactions vanish.

In the following section, we will conduct a more rigorous analysis using the full integral form of the binding
energy and consider additional physical effects, such as rotation, to verify that this conclusion holds under more
realistic conditions.

12



4.4.3. Relativistic binding energy and when considering the rotation of the mass distribution
In this study, the point where G(k) = 0 was determined using the first-term approximation in Equation

(58), rather than by directly solving the full Equation (55). A direct numerical analysis of Equation (55), reveals
the zero of G(k) to be at:

Rgs−GR−full ≈ 2.039
GNMfr

c2
≈ 1.02RS (64)

However, the calculated value of Rgs−GR−full in the equation above is larger than the Schwarzschild radius
RS . A direct interpretation of this result could lead to the assertion that black holes cannot exist, as the negative
gravitational binding energy would completely offset the positive mass-energy before the object collapses to form
a black hole. This analysis, however, relies on several simplifying assumptions. For this calculation, we have
assumed a uniform, spherical, and non-rotating mass distribution. In a realistic gravitational collapse, most
celestial bodies possess rotation. In such cases, the Virial Theorem must be taken into account. In addition, it
becomes more complicated when considering differential rotation.

The Virial Theorem suggests that roughly half of the change in binding energy is converted into kinetic
energy. This implies that the entirety of the binding energy change does not contribute to the reduction of the
system’s mass-energy. Therefore, for a rotating mass distribution, the Virial Theorem must be incorporated.
When this is applied, the point where G(k) = 0 could be reduced by approximately half.

Rgs−GR−vir ≈ 1

2
Rgs−GR−full ≈ 0.51RS (65)

This value is an estimate, as the dynamics of a realistic rotating collapse involve complex processes, such
as differential rotation, which could alter the precise factor.

Thus, when considering rotation, a point where G(k) = 0 can still exist inside the event horizon, which
resolves the apparent conflict with the observed existence of black holes. Furthermore, it is important to note
that other factors may also play a role in the process of gravitational collapse.

The location of the point where G(k) = 0 may vary depending on the chosen gravitational binding energy
function or approach method. However, this does not affect the core claim that there exists a point where
G(k) = 0 when the gravitational binding energy is taken into account. Therefore, the core principle of solving
the gravitational divergence problem remains the same.

Throughout this analysis, we have derived several critical radii based on models of increasing
complexity

1) Newtonian model (Rgs−NM ≈ 0.30RS): Establishes the foundational concept of a critical radius where
total energy vanishes.

2) Post-Newtonian approximation (Rgs−PN ≈ 0.51RS): The first relativistic correction.

3) First-order GR approximation (Rgs−GR−1st ≈ 0.58RS): The central analytical model of this paper,
providing an explicit form for G(k) and demonstrating the core principle of self-renormalization.

4) Full GR, non-rotating model (Rgs−GR−full ≈ 1.02RS ): A numerically exact calculation that reveals the
paradox inherent in simplified relativistic models (i.e., neglecting rotation).

5) Full GR, rotating model (Rgs−GR−vir ≈ 0.51RS): The most physically realistic scenario, which resolves
the paradox and robustly confirms that the G(k) = 0 point exists well within the event horizon.

It is crucial to recognize that the models presented above, from the non-rotating sphere (Rgs−GR−full)
to the virialized rotating body (Rgs−GR−vir), represent idealized physical scenarios. In reality, astrophysical
gravitational collapse is a far more complex and dynamic process, often involving phenomena such as differential
rotation, fragmentation, and mass ejection that are not captured by these simplified models.

13



Therefore, instead of a single precise value, it is more physically accurate to consider a range for the true
critical radius Rgs−GR, where the G(k) = 0 condition is met. The non-rotating Rgs−GR−full value, which
assumes all binding energy contributes to mass reduction, can be seen as a theoretical upper bound for the
critical radius. Conversely, the Rgs−GR−vir value, representing a stable, virialized rotating system, serves as a
plausible lower bound.

This establishes a physically motivated range for the actual critical radius:

Rgs−GR−vir ≤ Rgs−GR ≤ Rgs−GR−full (66)

The precise value of Rgs−GR for any specific collapsing object would depend on the intricate details of its
rotational profile and collapse dynamics. This nuanced perspective reinforces that while the exact location of
the G(k)=0 point may vary, its existence within a well-defined physical range inside the event horizon is a robust
prediction of our framework.

In the following analysis, the analysis is based on the first term approximation of general relativity. First, for
the overall integral of Ugs−GR, it is difficult to present the G(k) function because there is no analytic functional
solution. Second, the value of Rgs−GR−vir ≈ 0.51RS , which applies the rotation and virial theorem, is almost
the same as that of Rgs−GR−1st ≈ 0.58RS . Third, what is important in this paper is not the exact value of Rgs,
but the fact that there exists a radius Rgs where the negative gravitational self-energy and the positive mass
energy are equal.

4.4.4. Determination of momentum or energy scale k at which G(k)=0
In the context of the running gravitational coupling constant G(k), the parameter k represents the mo-

mentum scale, which carries the dimension of momentum and is related to both momentum P and energy via
k ∼ P ∼ E/c. This relationship reflects the characteristic energy or momentum scale associated with the physi-
cal system under consideration, often tied to the inverse of the spatial extent of the mass or energy distribution
(Rm), as k ∼ c/Rm.

We solve for the critical momentum scale k at which G(k) = 0, indicating the vanishing of gravitational
coupling, using the expression:

G(k) = GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
= 0 (67)

Solving the above equation for k, we obtain the positive root corresponding to a physically meaningful scale:

k ≈ 0.865
Rmc3

GN
(68)

For example, if Rm is on the Planck scale,

k ≈ 0.865(
Rmc3

GN
) = 0.865(

lP c
3

GN
) = 0.865(

√
h̄c

GN
c) ≈ MP c (69)

This value of k represents the momentum or energy scale at which G(k) = 0, signifying the point where
gravitational coupling vanishes. The result depends on the radius Rm, suggesting that the critical scale varies
with the size of the mass or energy distribution. For instance, if Rm is on the Planck scale, i.e., Rm ∼
lP =

√
h̄GN

c3 , the critical k corresponds to a momentum scale near the Planck momentum, k ∼ MP c, where

MP =
√

h̄c
GN

is the Planck mass. This alignment with the Planck scale further supports the notion that

gravitational interactions are suppressed at ultra-high energies, providing a natural mechanism to eliminate
divergences without quantum corrections.

4.5. Solving the problem of gravitational divergence at high energy: Gravity’s Self-Renormalization
Mechanism

At low energy scales (E ≪ MP c
2,∆t ≫ tP ), the divergence problem in gravity is addressed through effective

field theory (EFT) [12] [13]. However, at high energy scales (E ∼ MP c
2,∆t ∼ tP ), EFT breaks down due to

non-renormalizable divergences, leaving the divergence problem unresolved [13].
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Since the mass M is an equivalent mass including the binding energy, this study proposes the running cou-
pling constant G(k) that reflects the gravitational binding energy. At the Planck scale (Rm ∼ Rgs−GR−1st ≈
1.16(

GNMfr

c2 ) ≈ lP ), G(k) = 0 eliminates divergences, and on higher energy scales than Planck’s
(Rm < Rgs−GR−ast), a repulsion occurs as G(k) < 0, solving the divergence problem in the entire
energy range.This implies that gravity achieves self-renormalization without the need for quantum corrections.

With the relativistic correction, the running gravitational constant G(k) can be equivalently written as:

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
(70)

where k ∼ P ∼ E/c

If Rm > Rgs−GR−1st ≈ lP , G(k) > 0, yielding an attractive force.
If Rm = Rgs−GR−1st ≈ lP , G(k) = 0, the gravitational coupling vanishes. Gravity is also zero.
If Rm < Rgs−GR−1st ≈ lP , G(k) < 0, yielding a repulsive force or antigravity.

This repulsive force prevents gravitational collapse and prevents the formation of a singularity at the center
of the black hole. Since the point where Rm < Rgs−GR−1st exists inside the event horizon of the black hole, it
solves the singularity problem without colliding with observations.

4.5.1. At Planck scale

If, M ∼ MP =
√

h̄c
GN

Rgs−GR−1st ≈ 1.16(
GNMP

c2
) = 1.16

√
h̄GN

c3
= 1.16lP (71)

This means that Rgs−GR−1st, where G(k) = 0, i.e. gravity is zero, is the same size as the Planck scale.
At Rm = Rgs−GR−1st,

G(k) = 0 ⇒ Πdiv ∼ G(k)
ε R2 = 0

This means that divergence is eliminated at the Planck scale.

4.5.2. At high energy scales larger than the Planck scale
If Rm < Rgs−GR−1st ≈ lP (That is, roughly E > MP c

2)

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
< 0 (72)

In energy regimes beyond the Planck scale (Rm < Rgs−GP−1st), where G(k) < 0, the gravitational cou-
pling becomes negative, inducing a repulsive force or antigravity effect. This anti-gravitational effect prevents
gravitational collapse and singularity formation while maintaining uniform density properties, thus mitigating
UV divergences across the entire energy spectrum by ensuring that curvature terms remain finite. While this
repulsive force is a novel prediction of our model and may be regarded as unverified due to the lack of direct
experimental evidence for antigravity in other research frameworks, we propose that this mechanism is not
only a theoretical construct for resolving gravitational divergences but also manifests in observable cosmological
phenomena.

Specifically, we argue that the accelerated expansion of the observable universe provides indirect evidence
of antigravity effects related to G(k) < 0. The observable universe, with a radius of approximately 46.5 billion
light-years, has a total mass-energy that would correspond to an event horizon of roughly 475.3 billion light-years
5. if calculated based on standard general relativity. However, the critical radius Rgs−GR−1st, where negative
gravitational self-energy balances positive mass-energy, is estimated at approximately 275.7 billion light-years
(Rgs−GR−1st = 0.58RS) for the observable universe’s mass-energy content [6]. Since the current radius of the
observable universe (Rm ≈ 46.5 billion light-years) is less than Rgs−GR−1st ≈ 275.7 billion light-years, the

5Rm = 46.5BLY , ρ = ρc = 8.50× 10−27kgm−3, RS = 2GNMfr/c
2, Rgs−GR−1st = 0.58RS
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universe itself resides in a regime where Rm < Rgs−GR−1st, implying G(k) < 0. Consequently, there exists a
repulsive gravitational effect that promotes the accelerated expansion of the observable universe, which is the
cause of the accelerated expansion and the source of dark energy [14]. This contrasts with conventional dark
energy models by attributing cosmic acceleration to a fundamental gravitational mechanism rather than an
additional energy component.

This interpretation suggests that the mechanism introduced to resolve gravitational divergences at high
energies is actively at play on cosmological scales, providing a unified explanation for both the theoretical issue
of UV divergences and the empirical phenomenon of cosmic acceleration. Thus, the anti-gravitational effects
predicted by our model are not simply unverified claims, but is potentially verifiable by comparing the observed
dark energy value with the dark energy value calculated by this model. Direct experimental verification of anti-
gravity remains challenging, but it can also be verified by calculating the Rgs(inflection point) of the observable
universe and comparing it to the inflection point of the observed acceleration expansion [14].

While the concept of negative mass and energy states associated with G(k) < 0 may face skepticism due
to historical biases in mainstream physics favoring positive energy conditions (e.g., Strong and Weak Energy
Conditions), such conditions are not fundamental laws but rather analytical tools used for categorizing systems
and simplifying validations. In physics, the ultimate standard for judgment is not human perception but the
reality of nature and the universe itself. The discovery of the universe’s accelerated expansion, driven by dark
energy with negative pressure [15] [16], illustrates that deviations from positive energy conditions do not result
in physical inconsistencies.

Similarly, in our model, the negative mass state that generates a repulsive gravitational effect does not
breach causality, as it does not entail superluminal propagation [9]. Superluminal propagation is linked to
tachyons with imaginary mass, not negative mass.

The objections frequently raised against negative mass, such as the vacuum instability problem, runaway
motion, and perpetual motion issues, arise from misconceptions about the characteristics of negative mass, and
these assertions are flawed [17].

4.5.3. Resolution of the two-loop divergence in perturbative quantum gravity via the effective
mass framework

In perturbative quantum gravity, the Einstein-Hilbert action is expanded around flat spacetime using a
small perturbation hµν , with the gravitational field expressed as gµν = ηµν + κhµν , where κ =

√
32πG(k) and

GN is Newton’s constant. Through this expansion, interaction terms such as L(3), L(4), etc., emerge, and
Feynman diagrams with graviton loops can be computed accordingly.

gµν = ηµν + κhµν (73)

S =

∫
d4x(L(2) + κL(3) + κ2L(4) + · · ·) (74)

κ =
√
32πGN (75)

where L(2) represents the free graviton Lagrangian, and L(3), L(4), . . . denote higher-order interaction terms
(e.g. 3-point and 4-point graviton interactions). At the 2-loop level, Goroff and Sagnotti (1986) [13] demon-
strated that the perturbative quantization of gravity leads to a divergence term of the form:

Γ
(2)
div ∝ κ4R3 (76)

This divergence is non-renormalizable, as it introduces terms not present in the original Einstein-Hilbert
action, thus requiring an infinite number of counterterms and destroying the predictive power of the theory.

However, this divergence occurs by treating the mass M involved in gravitational interactions as a constant
quantity. The concept of invariant mass pertains to the rest mass remaining unchanged under coordinate
transformations; this does not imply that the rest mass of a system is intrinsically immutable. For instance, a
hydrogen atom possesses different rest masses corresponding to the varying energy levels of its electrons. Both
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Newtonian gravity and general relativity dictate that the physically relevant source term is the equivalent mass,
which includes not only rest mass energy but also binding energy, kinetic energy, and potential energy. When
gravitational binding energy is included, the total energy of a system is reduced, yielding an effective mass.

Based on this, a running gravitational coupling G(k) can be derived:

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
(77)

At this point Rm = Rgs−GR−1st ≈ 1.16(
GNMfr

c2 ), G(k) = 0, implying that the gravitational interaction
vanishes.

Since the perturbative expansion uses κ =
√

32πG(k), it follows that:

κ(k) =
√
32πG(k) → 0 as Rm → Rgs−GR−1st

Building upon the resolution of the 2-loop divergence identified by Goroff and Sagnotti (1986), our model
extends to address divergences across all loop orders in perturbative gravity through the running gravitational
coupling constant G(k). At the Planck scale (Rm = Rgs−GR−1st), G(k) = 0, nullifying the coupling parameter

κ(k) =
√
32πG(k). If G(k) → 0, κ → 0.

As a result, all interaction terms involving κ, including the divergent 2-loop terms proportional
to κ4R3, vanish at this scale. This naturally eliminates the divergence without requiring quantum corrections,
rendering the theory effectively finite at high energies. Here, R3 refers to the third-order term of the Riemann
curvature tensor, specifically of the form Rρσ

µνR
λτ
ρσR

µν
λτ , which arises in the 2-loop divergence as computed by

Goroff and Sagnotti (1986) [13]. This mechanism effectively removes divergences, such as the 2-loop
R3 term, as well as higher-order divergences (e.g., R4, R5, . . .) at 3-loop and beyond, which are
characteristic of gravity’s non-renormalizability.

In addition, in the energy regime above the Planck scale (Rm < Rgs−GR−1st ≈ lP ), G(k) < 0, and the
corresponding energy distribution becomes a negative mass and negative energy state in the presence of an
anti-gravitational effect. This anti-gravitational effect prevents gravitational collapse and singularity formation
while maintaining uniform density properties, thus mitigating UV divergences across the entire energy spectrum
by ensuring that curvature terms remain finite.

However, due to the repulsive gravitational effect between negative masses, the mass distribution expands
over time, passing through the point where G(k) = 0 due to the expansion speed, and reaching a state where
G(k) > 0. This occurs because the gravitational self-energy decreases as the radius Rm of the mass distribution
increases, whereas the mass-energy remains constant at Mc2. When G(k) > 0, the state of attractive gravity
acts, causing the mass distribution to contract again. As this process repeats, the mass and energy distributions
eventually stabilize at G(k) = 0 [6], with no net force acting on them.

Unlike traditional renormalization approaches that attempt to absorb divergences via counterterms, this
method circumvents the issue by nullifying the gravitational coupling at high energies, thus providing a resolution
to the divergence problem across all energy scales. This effect arises because there exists a scale at which negative
gravitational self-energy equals positive mass-energy.

Furthermore, in the low-energy (infrared) regime where Rm ≫ Rgs−GR−1st ≈ 1.16(
GNMfr

c2 ), we find G(k) ≈
GN . In this domain, gravitational interactions behave classically, and gravitational self-energy is negligible.
Although divergences formally persist, they are well-controlled within the effective field theory (EFT) framework
and do not affect physical observables.

Thus, by treating mass M as the equivalent mass Meff and deriving the scale-dependent coupling G(k),
we introduce a self-consistent mechanism that suppresses ultraviolet divergences dynamically, without invok-
ing additional fields or symmetry principles. This approach provides a viable resolution to the gravitational
divergence problem and aligns naturally with both general relativity and renormalization group flow.
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Einstein-Hilbert action is

S =

∫
dx4

√
−g

16πG(k)
R (78)

4.6. The physical origin of the cut-off energy at the Planck scale
In quantum field theory (QFT), the cut-off energy Λ or cut-off momentum is introduced to address the

infinite divergence problem inherent in loop integrals, a cornerstone of the renormalization process [18]. However,
this cut-off has traditionally been viewed as a mathematical convenience, with its physical origin or justification
remaining poorly understood [18].

This work proposes that Λ represents a physical boundary determined by the scale where the sum of positive
mass-energy and negative gravitational self-energy equals zero, preventing negative energy states at the Planck
scale. This mechanism, rooted in the negative gravitational self-energy of positive mass or energy, provides a
physical explanation for the Planck-scale cut-off.

4.6.1. G(k) = 0 and Planck scale

At Rm = Rgs−GR−1st ≈ 1.16(
GNMfr

c2 ), the running coupling constant G(k) = 0,

For a mass Mfr ∼ MP =
√

h̄c
GN

, the characteristic radius is:

Rgs−GR−1st ≈ 1.16(
GNMP

c2
) = 1.16

√
h̄GN

c3
= 1.16lP (79)

At Rm = Rgs−GR−1st, G(k) = 0, marking the Planck scale where divergences vanish.

If Rm < Rgs−GR−1st, then G(k) < 0, which means that the system is in a negative mass state. Therefore,
the Planck scale acts as a boundary energy where an object is converted to a negative energy state by the
gravitational self-energy of the object. In a theoretical analysis, a negative mass state may be allowed, although
the system can temporarily enter a negative mass state, the mass distribution expands again because there is
a repulsive gravitational effect between the negative masses. Thus, the Planck scale (lP ) serves as a boundary
preventing negative energy states driven by gravitational self-energy.

4.6.2. Uncertainty principle and total energy with gravitational self-energy
To elucidate the interplay between quantum fluctuations and gravitational effects, we apply the energy-time

uncertainty principle (∆E∆t ≥ h̄
2 ) to the total energy of a system, incorporating gravitational self-energy.

The energy-time uncertainty principle provides:

∆E∆t ≥ h̄

2
(80)

At the Planck time, ∆t = tP , energy fluctuation is:

∆E ≥ h̄

2tP
=

1

2
MP c

2 (81)

During Planck time, let’s suppose that quantum fluctuations of 5
6MP mass have occurred. Since all mass

or energy is combinations of infinitesimal masses or energies, positive mass or positive energy has a negative
gravitational self-energy. The total energy of the system, including the gravitational self-energy, is

ET =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
= Mc2 − 3

5

GM2

R
(82)

Here, the factor 3
5 arises from the gravitational self-energy of a uniform mass distribution. Substituting

5
6MP and R = ctP

2 (where c∆t represents the diameter of the energy distribution, constrained by the speed of
light (or the speed of gravitational transfer). Thus, ∆x = 2R = c∆t.
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When calculated using the Newtonian mechanical binding energy equation, (tP ,
5
6MP )

ET = Mc2 − 3

5

GM2

R
≃ 5

6
MP c

2 − 3

5

G( 56MP )
2

ctP
2

=
5

6
MP c

2 − 5

6
MP c

2 = 0 (83)

This demonstrates that at the Planck scale, the negative gravitational self-energy balances
(or can be offset) the positive mass-energy, defining a cut-off energy Λ ∼ MP c

2. For energies
E > Λ, the system enters a negative energy state (ET < 0), which is generally prohibited due to
the repulsive gravitational effects of negative mass states. Repulsive gravity prevents further collapse,
dynamically enforcing the Planck scale as a minimal length.

[ Quantum fluctuations at different mass scales ]

We evaluate ∆t, R, and ET for three representative masses: the Planck mass (MP =
√

h̄c
G ≈ 2.17×10−8kg),

the proton mass (Mproton ≈ 1.67× 10−27kg), and the electron mass (Melectron ≈ 9.10× 10−31kg).

1) Planck mass & Planck time
If Rm = c∆t

2 = ctP
2 = 1

2 lP

ET ≈ MP c
2 − 3GNMP

2

5( 12 lP )

(
1 +

15

14

GNMP

( 12 lP )c
2

)
= MP c

2 − 3.77MP c
2 = −2.77MP c

2 (84)

If Rm = lP

ET ≈ MP c
2 − 3GNMP

2

5(lP )

(
1 +

15

14

GNMP

(lP )c2

)
≈ MP c

2 − 1.24MP c
2 = −0.24MP c

2 (85)

This negative ET indicates that Rm(= 1
2 lP ) < Rgs−GR−1st(= 1.16lP ), where Rgp−GR−1st ∼ lp is the critical

radius at which ET = 0. Increasing ∆t ∼ tp, Rm → Rgs−GR, and ET → 0, suggesting that the Planck scale is
where gravitational self-energy can balance the mass-energy, supporting a physical cut-off at Λ ∼ MP c

2.

2) Proton mass
For M = Mproton, ∆E ≈ 938MeV , and ∆t ≈ 3.5× 10−25s ∼ 6.5× 1018tP , Rm ≈ 5.254× 10−17m ∼ 1018lp
The total energy is

ET ≈ Mprotonc
2 − 3

5

GM2
proton

Rm
≈ Mprotonc

2 (86)

Here, Rm ≫ Rgs−GR−ist ≈ 7.450 × 10−55m, and the gravitational self-energy (∼ 10−48J) is negligible
compared to Mprotonc

2 ≈ 1.504× 10−10J .

3) Electron mass
For M = Melectron, ∆E ≈ 0.511MeV , and ∆t ≈ 6.439× 10−22s ∼ 1022tp, Rm ≈ 9.652× 10−14m ∼ 1021lp

ET ≈ Melectronc
2 − 3

5

GM2
electron

Rm
≈ Melectronc

2 (87)

Here, Rm ≫ Rgs−GR−1st ≈ 4.058 × 10−58m, and the gravitational self-energy (∼ 10−58J)) is negligible
compared to Melectronc

2 ≈ 8.187 × 10−14J . For protons and electrons, since the gravitational self-energy is
negligibly small compared to the mass energy, the gravitational self-energy calculations obtained from Newtonian
mechanics are sufficient.

The Planck scale exhibits a unique characteristic: only for M ∼ MP , t ∼ tp, and R ∼ lp does the
gravitational self-energy (Ugp−GR) approach the mass-energy, enabling ET ≈ 0. This balance (or offset) suggests
that the QFT cut-off Λ ∼ MP c

2 acts as a physical boundary where quantum and gravitational effects converge.
In contrast, for proton or electron masses, Rm ≫ Rgs−GR − 1st, rendering gravitational effects negligible and
aligning with QED/QCD cut-offs (Λ ∼ GeV ).
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4.6.3. Generalization and exceptions
The mechanism of balancing (or offset) positive mass-energy with negative gravitational self-energy applies

primarily to systems dominated by gravitational effects, such as gravitational effective field theories or quantum
gravity scenarios [5]. In non-gravitational theories like QED or ϕ4, where binding energies are positive (e.g.,
electrostatic self-energy, Ues > 0), cut-offs are unrelated to the Planck scale and are determined by other physical
scales. Thus, a Planck scale cut-off emerges only when quantum gravitational effects are significant.

While negative energy states are generally avoided in localized systems, different situations exist on cos-
mological scales. The observable universe is estimated to have a negative total energy, potentially due to
mechanisms like cosmic inflation or dark energy [14] [19]. In the universe, as time progresses, surrounding
matter and energy also become involved in gravitational interactions. In such scenarios, positive mass-energy
scales proportionally to M , whereas negative gravitational potential energy scales as −M2/R. Consequently,
a mechanism exists whereby the absolute value of gravitational potential energy increases more rapidly than
mass-energy [14]. As a result, negative mass states may persist unresolved for extended periods.

4.6.4. In gravitational problems, the physical meaning of cut-off energy
The cut-off energy Λ ∼ MP c

2 is not merely a mathematical artifact but a physical boundary driven by the
balance (or offset) between positive mass-energy and negative gravitational self-energy. This mechanism offers a
novel perspective on the Planck scale as the natural cut-off in gravitational systems, addressing the long-standing
question of the physical origin of QFT cut-offs and providing a unified understanding of quantum-gravitational
interactions.

5.Quantum gravity combining Effective Field Theory and the run-
ning coupling constant G(k)

The Effective Field Theory (EFT) approach, pioneered by John F. Donoghue [5], provides a robust and
consistent framework for calculating low-energy quantum corrections to general relativity. The foundational
principle of EFT is that the Einstein-Hilbert action is merely the lowest-order term in a more general action,
organized as an expansion in powers of the curvature. The most general action consistent with general coordinate
invariance is given by :

S =

∫
d4x

√
−g

{
2

κ2
R+ c1R

2 + c2RµνR
µν +O(R3)

}
(88)

(This is adapted from Eq.(46) in Donoghue [5])
Here, the R term is the familiar Einstein-Hilbert action, while the higher-derivative terms, parameterized by

unknown coefficients c1 and c2, encapsulate the effects of high-energy (UV) physics. Crucially, these higher-order
terms are not merely theoretical possibilities; they are required to renormalize the theory. In their landmark
1974 paper [20], ’t Hooft and Veltman demonstrated that one-loop quantum calculations in gravity, involving
graviton and ghost loops, produce UV divergences that are not proportional to the original R term. Their result
for the divergent part of the one-loop effective action is:

L
(div)
1loop =

1

8π2ε

{
1

120
R̄2 +

7

20
R̄µνR̄

µν

}
(89)

(This is adapted from Eq.(49) in Donoghue [5])
This divergence must be absorbed by renormalizing the coefficients c1 and c2. Thus, these coefficients act

as necessary counter-terms, parameterizing our ignorance of the physics that would ultimately render these
calculations finite in a UV-complete theory. The standard EFT, by design, does not predict the values of c1
and c2; it accepts them as empirical inputs and proceeds to make reliable low-energy predictions.

Our work builds upon this powerful framework but proposes a physical resolution to the very problem
that EFT parameterizes. We argue that by incorporating gravitational self-energy via an effective mass (M →
Meff ), the gravitational coupling G(k) itself vanishes at a critical scale. This self-renormalization mechanism
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eliminates divergences at their source, thereby rendering the infinite tower of counter-terms, including c1 and
c2, unnecessary.

The concept of effective mass (Meff ), which inherently includes binding energy, is a core principle embedded
within both Newtonian mechanics and general relativity. From a differential calculus perspective, any entity
possessing spatial extent is an aggregation of infinitesimal elements. A point mass is merely a theoretical
idealization; virtually all massive entities are, in fact, bound states of constituent micro-masses.

Consequently, any entity with mass or energy inherently possesses gravitational self-energy (binding energy)
due to its own existence. This gravitational self-energy is exclusively a function of its mass (or energy) and its
distribution radius Rm. Furthermore, this gravitational self-energy becomes critically important at the Planck
scale. Thus, it is imperative for the advancement of quantum gravity that alternative models also integrate, at
the very least, the concept of gravitational binding energy or self-energy into their theoretical framework.

By integrating this principle, we can construct a unified model that not only aligns with the
predictions of EFT at low energies but also resolves its high-energy limitations, leading to a
UV-complete theory of gravity.

5.1. The standard EFT prediction for the gravitational potential
Donoghue’s seminal work on gravitational EFT culminates in the calculation of the leading quantum cor-

rections to the Newtonian potential between two heavy masses. The result, expressed in momentum space,
elegantly separates the different physical contributions: (Donoghue’s (54) [5])

V (q) ∼ GNm1m2

q2

(
1 + aGNq2

√
m2

−q2
+ bGN h̄q2 ln(−q2) + cGNq2 + · · ·

)
(90)

1)Classical Newtonian potential: The leading term, GNm1m2

q2 , is the Fourier transform of the standard 1
r

Newtonian potential.

2)Classical general relativistic correction: The non-analytic term ∼
√

m2

−q2 corresponds to the leading clas-

sical correction from general relativity. In coordinate space, this term gives rise to the 1
r2 correction.

3)Leading quantum correction: The non-analytic term ∼ ln(−q2) is the most significant result. It is the
genuine, unambiguous quantum prediction of the theory, independent of the unknown high-energy physics. It
contains h̄ explicitly and corresponds to a 1

r3 correction to the potential in coordinate space.
4)Local/analytic term: The term ∼ q2 is a local, analytic term. Contributions to this term can arise

from both the low-energy loop calculation and the unknown coefficients of high-derivative terms in the original
Lagrangian. As these two sources cannot be disentangled, this term is not a prediction of the effective theory.

This result brilliantly demonstrates that even a non-renormalizable theory like gravity can yield concrete,
finite quantum predictions at low energies.

5.2. A Unified Model: Integrating by renormalizing the gravitational source
Our model is built upon the physical principle that the gravitational source is not the free mass (mfr)

but the effective mass (meff ), which includes the gravitational self-energy (or binding energy). While this
principle can be conceptualized as leading to a running gravitational coupling G(k) in a single-body context,
its application to a multi-body interaction, such as that described by Donoghue, requires a more fundamental
approach: the renormalization of the source masses themselves.

We designate this mechanism as “Gravitational Mass Renormalization”. This refers to the phenomenon
where gravity itself renormalizes its source mass through its own gravitational self-energy. For the sake of
discussion, we may also refer to it more broadly as “Gravitational Source Renormalization” or simply “Source
Renormalization”.

The logical and powerful next step is to incorporate this principle into the standard EFT framework by
replacing the free mass of each interacting particle with its corresponding effective mass. This reflects the
physical reality that the gravitational field couples to the total energy content of the source, which is inherently
modified by its own self-interaction.
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For each interacting particle i (where i=1,2), the effective mass is defined as:

mi,eff = mi,fr(1−
Ugp,i

mi,frc2
) ≈ mi,fr(1−

Rgs−GR−1st,i

Rm,i
) (91)

Here, Ugp,i is the gravitational self-energy of particle i, mi,fr is its mass in a free state, and Rm,i is the
radius of its mass distribution.

Applying this “gravitational source renormalization” principle to Donoghue’s EFT potential, we replace
every instance of the source masses (m1,m2) with their effective counterparts (m1,eff ,m2,eff ). The Newtonian
constant GN itself, particularly within the mass-independent quantum correction term, remains unchanged.
Donoghue’s original potential in momentum space, representing the physical interactions, is given by:

V (q) ∼ GNm1,effm2,eff

q2

(
1 + aGNq2

√
m2

−q2
+ bGN h̄q2 ln(−q2) + · · ·

)
(92)

V (q) ∼
GNm1,fr(1− Rgs−GR−1st,1

Rm,1
)m2,fr(1− Rgs−GR−1st,2

Rm,2
)

q2

(
1 + aGNq2

√
m2

−q2
+ bGN h̄q2 ln(−q2) + · · ·

)
(93)

If we apply the method we derived earlier, we can also define GN (1− Rgs−GR−1st,1

Rm,1
) as G(km1

) and use it.

GN (1− Rgs−GR−1st,1

Rm,1
) = G(km1

) (94)

V (q) ∼
G(km1)m1,frm2,fr(1− Rgs−GR−1st,2

Rm,2
)

q2

(
1 + aGNq2

√
m2

−q2
+ bGN h̄q2 ln(−q2) + · · ·

)
(95)

5.3. Physical implications of the Unified Model
The unified potential derived from the principle of source renormalization or running coupling G(k), not

only preserves the successes of the framework and standard EFT but also provides new and powerful insights
into the nature of gravitational interactions at all scales.

5.3.1. Consistency at low energies
In the low-energy limit, corresponding to large interaction distances (r) or small momentum transfers (k),

the physical radius of any macroscopic object Rm is vastly larger than its critical radius Rgs−GR−1st. In this
regime, the ratio Rgs−GR−1st/Rm approaches zero. Consequently, the effective mass reduces to the free mass:

mi,eff ≈ mi,fr(1−
Rgp−GR−1st,i

Rm,i
) → mi, fr (96)

As a result, our unified potential, Eq. (93) , seamlessly reduces to Donoghue’s original EFT potential. This
demonstrates that our model is fully consistent with the standard, experimentally tested predictions of quantum
gravity at low energies. The effects of gravitational source renormalization are naturally suppressed and become
negligible for non-compact objects, ensuring perfect agreement with established physics.

5.3.2. Suppression of all interactions at high energies
This is the most remarkable feature of the unified model, revealing a profound departure from standard

EFT. As the energy scale k approaches the critical scale (i.e., as Rm → Rgs−GR−1st), the effective mass meff

of the particle approaches zero. The consequences are profound, as they are governed by the global pre-factor
m1,effm2,eff in our unified potential.

Vunified(q) → 0 as meff → 0

1) The Classical Interaction: The leading Newtonian term (∼ GNm1,effm2,eff/q
2) vanishes.

2) The GR Correction: As GNm1,effm2,eff term goes to zero, the contribution of classical relativistic
corrections also vanishes.
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3)The quantum correction: Crucially, even the mass-independent quantum correction term (∼ bGN h̄q2 ln(−q2))
is rendered inert. It does not vanish on its own, but the interaction it modifies is turned off by the global meff

factor.

This leads to a beautiful and self-consistent physical picture. The problem is not how to make each term
vanish individually, but rather that the source of the interaction itself disappears. As the gravitational source
strength is quenched, all of its associated field interactions—classical, relativistic, and quantum—are naturally
suppressed in unison.

5.3.3. Resolution of fundamental problems
- Divergence Problem: Standard EFT requires an infinite tower of unknown higher-derivative coefficients

(c1, c2, ...) to absorb UV divergences. Our model renders this entire structure unnecessary. The problematic
local terms (∼ cGNq2) are driven to zero by the vanishing of the overall interaction. More fundamentally, the
perturbative expansion parameter itself, κ =

√
32πGN , is effectively replaced by a scale-dependent κ(k) that

couples to meff , which goes to zero at the critical scale. This eliminates divergences at their very source.

- Singularity Problem: As established in previous chapters, for scales smaller than the critical radius
(Rm < Rgs−GR−1st), the effective mass meff becomes negative. This induces a repulsive force (GNmeff < 0)
that naturally halts gravitational collapse and prevents the formation of a physical singularity.

In summary, by integrating the physical principle of gravitational self-energy via gravitational mass renor-
malization (m → meff ), we have constructed a more complete and powerful description of quantum gravity.
This unified model not only reproduces the confirmed low-energy predictions of the standard approach but
also provides a compelling physical mechanism for resolving the long-standing problems of divergences and
singularities, all while offering new predictions about the behavior of quantum effects at high energy scales.

5.4. Application to the quantum corrections of the gravitational potential
The true predictive power of the Effective Field Theory (EFT) framework is most brilliantly demonstrated

in the calculation of quantum corrections to the gravitational potential. By systematically separating the
predictable long-range (non-local) quantum effects from the unknown short-range (local) physics, Donoghue
and his collaborators derived the leading-order quantum correction to the Newtonian potential between two
heavy masses, m1 and m2 [5].

5.4.1. The standard EFT prediction: A landmark result
The calculation in standard gravitational EFT yields a potential that includes not only the classical New-

tonian term but also the leading corrections from both general relativity (classical) and quantum mechanics.
The final result, in coordinate space, is (Donoghue’s (64) adapted [5])

V (r) = −GNm1m2

r

(
1− CGR

GN (m1 +m2)

rc2
− CQ

GN h̄

r2c3

)
(97)

Here, the coefficients are unambiguously predicted by the theory to be CGR = 1 (from the non-analytic

∼
√

m2

−q2 term in momentum space) and CQ = 127
30π2 (from the ∼ ln(−q2) term).

This equation is a landmark achievement, as it proves that concrete, finite quantum predictions can be
extracted from a non-renormalizable theory. The physical meaning of each term is clear:

1) The first term is the standard Newtonian potential.
2) The second term is the leading classical correction from general relativity’s non-linear nature.
3) The third term, proportional to h̄, is the leading quantum gravity correction.

5.4.2. A unified gravitational potential: Renormalizing the gravitational mass
The central tenet of our work is that the physical source of gravity is not the free state mass (mfr) but the

effective mass (meff ), which includes self-energy. This naturally leads to a running coupling G(k). To apply
this principle to the two-body problem described by Donoghue, we must renormalize the source masses (m1,
m2) themselves, rather than applying a distance-dependent G(r) to the interaction.
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1)Effective Mass as the Gravitational Source: Each interacting particle i (where i = 1, 2) has its bare mass
mi,fr modified by its own gravitational self-energy, resulting in an effective mass:

mi,eff = mi,fr(1−
Ugp,i

mi,frc2
) ≈ mi,fr(1−

Rgs−GR−1st,i

Rm,i
) (98)

where Rm,i is the radius of the mass distribution for particle i, and Rgs−GR−1st,i ≈ 1.16(
GNmi,fr

c2 ).

2)The Unified Potential: The interaction potential between these two “dressed” particles is then given by
the standard EFT result, with the bare masses replaced by their effective counterparts.

Vunified(r) ≈ −GNm1,effm2,eff

r

(
1− GN (m1,eff +m2,eff )

rc2
− 127

30π2

GN h̄

r2c3

)
(99)

This formula is more physically robust and leads to profound new insights.

5.4.3. Physical implications of the gravitational mass renormalization
This model perfectly separates the physics of the source from the physics of the interaction, yielding a clear

and consistent picture across all scales.

1) Case 1: Interaction between macroscopic objects (e.g., stars, planets)
For any macroscopic object, its physical radius Rm is vastly larger than its critical radius Rgs−GR−1st. For

the Earth, REarth ≈ 6.37 × 106m while Rgs−GR−1st,Earth ≈ 5.15 × 10−3m. Therefore, Rm,i ≫ Rgs−GR−1st,i,
which leads to mi,eff ≈ mi,fr

In this limit, our unified potential exactly reduces to Donoghue’s original equation (64). This confirms that
for all astrophysical and everyday scenarios, our model is in perfect agreement with the established predictions
of general relativity and its quantum corrections. The running coupling effect is negligible because the objects
are not compact enough.

2) Case 2: Interaction between Planck-scale particles
Now consider two particles whose mass mfr is the Planck mass (MP ) and whose size Rm is on the order of

the Planck length (lP ). As shown previously, for these particles, Rm ≈ Rgs−GR−1st. This leads to a dramatic
consequence: meff ≈ 0 for both particles.

Substituting this into our unified potential, we find

Vunified(r) ≈ −GN (0) · (0)
r

(
1− GN (0 + 0)

rc2
− 127

30π2

GN h̄

r2c3

)
= 0 (100)

The entire interaction, including the classical potential and all quantum corrections, vanishes completely!

5.4.4. Dominance of quantum corrections near the critical radius
The preceding analysis has established the behavior of the unified potential at two extremes: for macroscopic

objects, where Rm ≫ Rgs−GR−1st, our model seamlessly reduces to the standard EFT prediction, and at the
critical scale Rm ≈ Rgs−GR−1st, the effective mass meff vanishes, causing the entire gravitational interaction to
be nullified. This raises a crucial question regarding the nature of gravitational interactions in the intermediate,
or transition, region. This regime is where the predictions of our model diverge most dramatically from standard
EFT, revealing novel physical phenomena.

To demonstrate the robustness of our predictions, we will now analyze this transition region under two
distinct and physically significant models for the critical radius: the non-rotating, spherically symmetric model
(Rgs−GR−full ≈ 1.02RS), and the more physically realistic virialized rotating model (Rgs−GR−vir ≈ 0.51RS).
The key to this analysis lies in the distinct dependencies of the classical and quantum correction terms within our
unified potential. The general relativistic (GR) correction term is proportional to meff and is thus suppressed
as Rm approaches Rgs−GR. In stark contrast, the leading quantum correction term, being independent of meff ,
is not suppressed. This differential behavior leads to a remarkable inversion in the relative importance of the
correction terms, a phenomenon we will show is robust across different physical assumptions.

[ Analysis of the transition region ]
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We analyze the interaction between two particles of Planck mass (mfr = MP ), assuming the interaction
distance r equals the particle radius Rm.

Case 1: Non-Rotating Model (Rcritical = Rgs−GR−full ≈ 2.04GNMP

c2 = 2.04lP )
This model represents a theoretical upper bound for the critical radius.

1) Large Distance (r = Rm = 10Rgs−GR−full ≈ 20.4lP ):
Effective mass: meff = MP (1− 1

10 ) = 0.9MP

GR Correction Rate:
GN (2meff )

rc2 ≈ GN (1.8MP )
20.4lP c2 ≈ 1.8

20.4 ≈ 0.88

Quantum Correction Rate: 127
30π2

GN h̄
r2c3 ≈ 0.429lP

2

(20.4lP )2
≈ 0.429

416.16 ≈ 0.001

Result: At this range, the classical GR correction is approximately 88 times stronger than the quantum
correction, aligning with standard expectations.

2) Near-Critical Distance (r = Rm = 1.1Rgs−GR−full ≈ 2.24lP ):
Effective mass: meff = MP (1− 1

1.1 ) ≈ 0.091MP

GR Correction Rate:
GN (2meff )

rc2 ≈ GN (0.182MP )
2.24lP c2 ≈ 0.182

2.24 ≈ 0.081

Quantum Correction Rate: 127
30π2

GN h̄
r2c3 ≈ 0.429lP

2

(2.24lP )2
≈ 0.429

5.0176 ≈ 0.085

Result: An inversion has occurred. The quantum correction (0.085) now slightly exceeds the classical GR
correction (0.081), becoming the leading correction term in the potential.

Case 2: Rotating Virialized Model (Rcritical = Rgs−GR−vir ≈ 1.02GNMP

c2 = 1.02lP )
This model represents the most physically plausible scenario and serves as a lower bound for the critical

radius.

1) Large Distance (r = Rm = 10Rgs−GR−vir ≈ 10.2lP ):
Effective mass: meff = MP (1− 1

10 ) = 0.9MP

GR Correction Rate:
GN (2meff )

rc2 ≈ GN (1.8MP )
10.2lP c2 ≈ 1.8

10.2 ≈ 0.176

Quantum Correction Rate: 127
30π2

GN h̄
r2c3 ≈ 0.429lP

2

(10.2lP )2
≈ 0.429

104.04 ≈ 0.004

Result: Again, the classical GR correction is clearly dominant, being about 43 times stronger.

2) Near-Critical Distance (r = Rm = 1.1Rgs−GR−vir ≈ 1.12lP ):
Effective mass: meff = MP (1− 1

1.1 ) ≈ 0.091MP

GR Correction Rate:
GN (2meff )

rc2 ≈ GN (0.182MP )
1.12lP c2 ≈ 0.182

1.12 ≈ 0.163

Quantum Correction Rate: 127
30π2

GN h̄
r2c3 ≈ 0.429lP

2

(1.12lP )2
≈ 0.429

1.2544 ≈ 0.342

Result: The inversion is now far more pronounced. The quantum correction (0.342) becomes
the clear dominant effect, with a magnitude more than double that of the suppressed classical
correction (0.163).

[ Physical Implications and New Prediction ]
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This comparative analysis reveals a novel and robust prediction of our model: a “quantum-dominant
regime” that exists just before the gravitational interaction is completely quenched. Crucially, this phenomenon
is not an artifact of a specific approximation but a general feature of the meff mechanism, appearing in both
the non-rotating and the more realistic rotating models.

This is fundamentally different from standard EFT, where the magnitudes of both classical and
quantum corrections grow monotonically as r decreases. In our framework, the meff mechanism
actively suppresses the classical correction, creating a window where the pure quantum effect
(∼ h̄/r3 in the potential) becomes the leading correction to the Newtonian force.

The existence of this quantum-dominant regime is a direct consequence of treating the source mass as
a dynamic entity that includes its own self-energy. It suggests that just before gravity ’turns itself off,’ it
passes through a phase where its quantum nature is maximally exposed relative to its classical non-linearities.
This provides, in principle, a unique experimental signature that could distinguish this self-
renormalization model from standard EFT, should technology ever allow for probing physics at
this scale.

5.5. A Response to the critique of running couplings in gravitational EFT
In a comprehensive 2015 review, John F. Donoghue, a pioneer in establishing the modern Effective Field

Theory (EFT) framework for gravity, concluded with a noteworthy critique regarding the concept of a running
gravitational coupling constant G(E). This critique, rooted in the structure of standard EFT, represents a
crucial point of comparison for our model. Donoghue states:

Although we have not highlighted this in the discussion above, one can also see from these results that
there is not a form of a “running” coupling G(E) in the effective theory. There is no universality
of the quantum corrections which could have been absorbed into a running coupling. This result is
totally expected in the effective field theory. However it is worth stating, as there are many attempts
in the literature to define such a running G. [21]

This conclusion is entirely valid within the standard EFT framework. Donoghue’s analysis correctly identi-
fies that the various perturbative corrections—classical, quantum, and local—possess different physical origins
and mathematical forms. For instance, the leading quantum correction (∼ GN h̄ ln(−q2)) is fundamentally
mass-independent, whereas the classical GR correction (∼ G2

Nm/|q|) is mass-dependent. It is conceptually in-
consistent to “absorb” these structurally diverse, additive terms into a single, universal running coupling G(E).
This highlights an intrinsic limitation of the standard EFT approach: its additive correction structure does not
naturally accommodate a multiplicative running coupling.

Our model, however, does not attempt such an absorption. Instead, it addresses the problem from a more
fundamental physical principle: the gravitational mass renormalization (or source renormalization), where the
source of gravity itself (mfr) is renormalized by its own gravitational self-energy (m → meff ).

This approach fundamentally shifts the paradigm from an additive framework to a multiplicative one.
1) The Master Switch Mechanism: Our unified potential is not a sum of independent terms but is governed

by a global pre-factor, m1,effm2,eff or G(k). This factor acts as a “master switch” for the entire interaction.

2) Bypassing the Absorption Problem: As the system approaches the critical scale (Rm → Rgs−GR), the

effective massmeff or G(k) =
GNMeff

Mfr
approaches zero. This causes the master switch—the globalm1,effm2,eff

factor—to turn off the entire interaction. The problem of how to handle the mass-independent quantum term
is elegantly sidestepped; the interaction it would have corrected is already being nullified at its source.

Therefore, Donoghue’s argument does not serve as a refutation of our model but, rather, as powerful
evidence for why a new approach is necessary. His critique illuminates the precise limitations of the additive
EFT framework. The structural diversity of the correction terms, which makes a running G(E) seem unnatural
in standard EFT, is the very reason why a more fundamental, multiplicative mechanism like gravitational mass
renormalization is required. Our model provides this mechanism, demonstrating that a running coupling emerges
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not from absorbing quantum corrections, but from a deeper physical principle governing the gravitational source
itself.

6. Conclusion

In this study, we have proposed a new framework for gravity based on the fundamental physical principle
of gravitational self-energy. By incorporating this energy into an effective mass, Meff , we derived a running
gravitational coupling constant G(k), that dynamically regulates the strength of the gravitational interaction.

Our analysis, progressing through models of increasing complexity −from Newtonian to Post-Newtonian
and full General Relativity including rotation− has robustly demonstrated the existence of a critical radius
Rgs−GR−1sr ≈ 1.16(

GNMfr

c2 ), where G(k) vanishes. This mechanism provides an intrinsic solution to the long-
standing problem of gravitational divergences, achieving self-renormalization without the need for external
quantum corrections. Furthermore, for scales smaller than this critical radius, the emergence of a repulsive
force (G(k) < 0) naturally resolves the singularity problem within black holes.

In addition, at the Planck scale, the balance between positive mass-energy and negative gravitational self-
energy establishes a physical cut-off (Λ ∼ MP c

2), providing a novel perspective on the origin of quantum field
theory cut-offs.

Furthermore, we have successfully unified this framework with the standard Effective Field Theory (EFT)
of gravity. By applying our principle to the gravitational source itself (renormalizing the mass, M → Meff ),
our model not only reproduces the canonical low-energy quantum corrections predicted by EFT but also offers
a profound new insight: the complete suppression of all gravitational interactions, both classical and quantum,
as the system approaches the critical scale. This demonstrates that our model is not only consistent with
established low-energy quantum predictions but also completes the picture by providing a physical mechanism
that governs the theory’s behavior at the high energies.

In conclusion, the single principle of gravitational self-energy provides a unified solution to some of the most
profound problems in physics. It resolves the issues of singularities and divergences, establishes the physical
origin of the Planck-scale cutoff, and offers a novel perspective on cosmological phenomena such as cosmic
acceleration. This work presents a compelling case for a self-consistent, complete theory of gravity, valid across
all energy scales.

The concept of effective mass (Meff ), which inherently includes binding energy, is a core principle embedded
within both Newtonian mechanics and general relativity. From a differential calculus perspective, any entity
possessing spatial extent is an aggregation of infinitesimal elements. A point mass is merely a theoretical
idealization. Consequently, any entity possessing mass or energy inherently has gravitational self-energy (or
binding energy) due to the presence of that mass or energy. Furthermore, this gravitational self-energy becomes
critically important at the Planck scale. Thus, it is imperative for the advancement of quantum gravity that
alternative models also integrate, at the very least, the concept of gravitational binding energy or self-energy
into their theoretical framework.

[ Important problems related to gravity in the fields of physics and astronomy ]
1) Black hole singularity problem
2) Dark energy problem
3) Problem with the cause and mechanism of inflation
4) Gravitational divergence problem and gravity renormalization problem

The mainstream recognizes all four problems as different problems, and therefore presents as-hoc hypotheses
for each of them. But these four problems may actually be different aspects of one problem. That is, problems
that can be explained by the existence of repulsion or antigravity in the gravitational problem.

27



The singularity problem, inflation problem, divergence problem, and dark energy seem to be on different
scales, right? So it seems like multiple sources are needed?

The only thing we need is a mechanism that creates repulsion or anti-gravity in the problem of gravity.
And, this anti-gravity effect can be achieved by gravitational binding energy or gravitational self-energy with a
negative value.

For a simple analysis, let’s assume a spherical uniform distribution, and look at the gravitational potential
energy or gravitational self-energy.

Ugp = −3

5

GM2

R
(101)

The total energy, including the gravitational potential energy or gravitational self-energy, is

ET =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
=Mc2 − 3

5

GM2

R
(102)

When the energy distribution radius R is very small and the mass M is large, the negative gravitational
potential energy term can be larger than the positive mass energy. This applies to the singularity problem [6],
inflation problem [19] [21], and divergence problem.( [6] & this paper).

The negative gravitational potential energy term can be larger than the positive mass energy when M is
very large. It applies to the dark energy problem, which accelerates the expansion of the universe [15] [16].
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Poincaré A 20, 69 (1974).

[21] Donoghue, J. F., Holstein B. R., Low Energy Theorems of Quantum Gravity from Effective Field Theory,
arXiv:gr-qc/1506.00946 (2015).

[22] Hyoyoung, Choi, Problems and Solutions of Black Hole Cosmology. (2022). Available at:
https://www.researchgate.net/publication/359192496.

29


