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Abstract. This article presents an algorithm for efficiently generating all prime

numbers within the interval [m,n], where m ≥ 3. The algorithm is developed from

the demonstration that non-prime numbers in this range can be obtained from certain

points in the region between two rectangular hyperbolas and two straight lines. The

method does not perform factorization tests and does not require prior knowledge

of any prime number, which makes it easier to obtain large primes for n −m = q =

constant, when the time and memory complexities become equal to O(log n) and O(1),

respectively.
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0.1 Introduction

This article introduces a algorithm that leverages the geometric properties of rectangular
hyperbolas to generate all prime numbers within a specified interval [m,n], where m ≥ 3 and
m and n are odd integers. Unlike traditional sieves that rely on sequential divisibility tests
or precomputed prime lists, our method operates by systematically excluding composite
numbers identified within a specific region defined by these hyperbolas. This approach
distinguishes itself by its independence from prior prime knowledge and the absence of
factorization tests, thereby offering a unique perspective on prime number generation [1, 2].

The algorithm begins by constructing set A, comprising all odd numbers within the
interval [m,n], which serves as the candidate set for primes. The set S, containing all
composite odd numbers in the same interval, is then derived. The prime number set P
is obtained through the set difference P = A \ S. The core contribution of this work
lies in the geometric characterization of S, demonstrating that its elements correspond to
points within a region bounded by two rectangular hyperbolas and two straight lines in the
Cartesian plane. This geometric insight enables a highly efficient method for identifying
and excluding composite numbers.

Furthermore, we analyze the algorithmic complexity of our method, revealing that it
achieves a time complexity of O(n log n) in general cases and a remarkable O(log n) when
the interval size n − m is held constant. This efficiency, particularly for large intervals,
positions our algorithm as a promising tool for generating large prime numbers, a critical
requirement in modern cryptographic applications [3, 4].

This article is structured as follows: it presents the geometric framework, the formal
definitions and the main theorem, outlining the construction of the set of composite numbers
of S; details the proof of the theorem, elucidating the geometric foundations of the approach;
provides pseudocode and an illustrative example, demonstrating the practical application
of the algorithm; investigates algorithmic complexity analysis, highlighting the efficiency
of the method; and concludes with a summary of the results and possible paths for future
research.

1 jayme@ime.eb.br; ime.eb.mil.br/en/;
github.com/Mergener/prime-hyperbola
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0.2 Geometric Framework and Conceptual Overview

The presented sieving algorithm is based on a set-theoretic framework that unites num-
ber theory and geometric principles, as formalized by the theorem in the next section. By
mapping prime number identification onto the Cartesian plane, we leverage the inherent
symmetries and properties of rectangular hyperbolas to isolate composite numbers. This
geometric perspective offers both a visual intuition for prime distribution and a computa-
tionally efficient mechanism for their identification [1].

The fundamental point of this approach is that composite numbers within a given in-
terval [m,n] correspond to points (x, y) situated within a region limited by the rectangular
hyperbolas xy = m and xy = n, and by the lines x = 3 and y = 3. These boundaries ensure
the consideration of only relevant composite candidates, allowing the algorithm to systemat-
ically exclude non-primes without resorting to traditional divisibility tests or precomputed
prime lists [3, 4].

Capitalizing on this geometric characterization of composite numbers, the algorithm
efficiently filters out non-prime elements by exploiting the properties of hyperbolas. This
method proves particularly advantageous for large intervals, mitigating the computational
overhead inherent in conventional sieving techniques [5]. The subsequent formal definitions
and theorem provide a rigorous mathematical foundation for this approach, demonstrating
how the geometric properties of hyperbolas can be harnessed for prime number genera-
tion. The theorem not only validates the algorithm’s correctness but also underscores its
efficiency, paving the way for practical applications in cryptography and computational
number theory [6].

0.3 Definitions

Let x be a real number. We define2:

dxe∗ := min{q ∈ {2N + 1} | q ≥ x} and bxc∗ := max{q ∈ {2N + 1} | q ≤ x}.

0.4 Theorem

Let m and n be odd natural numbers such that 3 ≤ m ≤ n. Define the set A as:

A = {i | i is odd,m ≤ i ≤ n}.

Let S = B ∪ C be the set of all composite odd numbers in A, where:

B =
{
i · (dm/ie∗ + j) | i ∈ {3, 5, . . . , b

√
mc∗}, j ∈ {0, 2, . . . , (bn/ic∗ − dm/ie∗)}

}
,

and

C = {(b
√
mc∗ + i) · (b

√
mc∗ + i + j) | i ∈ {2, 4, . . . , (b

√
nc∗ − b

√
mc∗)},

j ∈ {0, 2, ..., (
⌊
n/(
⌊√

m
⌋∗

+ i)
⌋∗− ⌊√m⌋∗− i)

}
Then, P = A \ S is the set of prime numbers in A.

2It is not difficult to demonstrate that bxc∗ = 2bx/2c − (−1)bxc and dxe∗ = 2dx/2e+ (−1)dxe .
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0.5 Proof of the theorem

As mentioned above, the set A is defined as A = {m,m + 2,m + 4, ..., n}, where n and
m are odd numbers. Therefore, it remains to demonstrate that the set S is precisely as
stated in the theorem: “Let S = B ∪ C be the set of all non-prime odd numbers in A”.

In the first quadrant of the xy plane, the coordinates of the points (x, y) whose products
satisfy the condition m ≤ x · y ≤ n are delimited by the rectangular hyperbolas y = m/x
and y = n/x [7], respectively; i.e. m/x ≤ y ≤ n/x. Furthermore, since the set S must
contain only non-prime odd numbers given by x · y, x and y must both be odd numbers
greater than or equal to 3. Therefore, the elements of S are in the region delimited by:
y ≥ 3, x ≥ 3, m/x ≤ y ≤ m/x. However, for the sake of symmetry, the same values of
x · y in this quadrant are found for both y ≥ x and y ≤ x. We can then choose the region
bounded by x ≥ 3, y ≥ x and m/x ≤ y ≤ n/x to obtain the elements x · y of S (fig.[1]).

Figure 1: Points with coordinates x and y given by odd numbers that form all non-prime odd
numbers x·y in the interval [m,n] in regions B and C:RB =

{
(x, y) | 3 ≤ x ≤

√
m, m/x ≤ y ≤ n/x

}
;

RC = {(x, y) |
√
m < x ≤

√
n , x ≤ y ≤ n/x}.

To facilitate the construction of S as S = B ∪ C, we define the sets B and C, whose
associated regions are described below and illustrated in fig.[1].

The set B consists of non-prime odd numbers obtained as products x · y, where x and
y are odd coordinates within the following region:

RB =
{

(x, y) | 3 ≤ x ≤
√
m, m/x ≤ y ≤ n/x

}
(1)

Thus, the set formed by the odd coordinates x in RB is given by

{bx} = {3, 5, 7, . . . , b
√
mc∗} = {i | i = 3, 5, 7, . . . , b

√
mc∗}

and the set formed by the odd coordinates y in RB is given by

{by} = {dm/ie∗, dm/ie∗+2, . . . , bn/ic∗} = {dm/ie∗+j | j = 0, 2, . . . , (bn/ic∗−dm/ie∗)} ,
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Finally, the set B = {bx} � {by}, defined as an ordered distributive product of sets3, is
given by

B = {bx}�{by} = {i·(dm/ie∗ + j) |i = 3, 5, . . . , b
√
mc∗, j = 0, 2, . . . , (bn/ic∗−dm/ie∗)} (2)

The elements of the set C are non-prime odd numbers given by the products x ·y, where
x and y are odd numbers in the region delimited by

RC = {(x, y) |
√
m < x ≤

√
n , x ≤ y ≤ n/x} (3)

Thus, the set formed by the odd coordinates x in RC is given by

{cx} = {
⌊√

m
⌋∗

+2,
⌊√

m
⌋∗

+4, ...,
⌊√

n
⌋∗} = {

⌊√
m
⌋∗

+i | i = 2, 4, 6, ...,
(⌊√

n
⌋∗ − ⌊√m ⌋∗)}

and the set formed by the odd coordinates y in RC is given by

{cy} = {
⌊√

m
⌋∗

+ i,
⌊√

m
⌋∗

+ i + 2, ...,
⌊
n/(
⌊√

m
⌋∗

+i)
⌋∗} =

= {
⌊√

m
⌋∗

+ i + j | j = 0, 2, ..., (
⌊
n/(
⌊√

m
⌋∗

+i)
⌋∗ − ⌊√m ⌋∗ − i)}

Finally, the set C is given by ordered distributive product C = {cx} � {cy}:

C = {cx} � {cy} =
{

(
⌊√

m
⌋∗

+ i) · (
⌊√

m
⌋∗

+ i + j) |

i = 2, 4, ...,
(⌊√

n
⌋∗ − ⌊√m ⌋∗) , j = 0, 2, ..., (

⌊
n/(
⌊√

m
⌋∗

+i)
⌋∗ − ⌊√m ⌋∗ − i)

}
(4)

It is thus demonstrated that

S = B ∪ C

contain all non-prime odd numbers in the range [m,n] and therefore the set of prime numbers
in the same range is equal to

P = A \ S

End of proof

0.6 Examples

• [m,n] = [25, 81]

As an example of what was shown above, let us look at the example (fig.[2]) for m = 25
and n = 81 [9]. The first approach in this example relies on directly visualizing the geometry
of the problem, as can be seen in figure [2].

The geometric locus in the xy plane where x · y = n = 81 and x · y = n = 25 are the
rectangular hyperbolas y = 81/x and y = 25/x, respectively, shown in fig.[2]; while the set
of all non-prime odd numbers x · y in the interval [25, 81] are located in the region bounded
by y ≥ x, x ≥ 3 and 25/x ≤ y ≤ 81/x (hatched region in fig.[2]).

From fig.[2] we directly obtain the elements of the set S, given by x · y in the interval
25 ≤ x · y ≤ 81:

S = {25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81}.
3 Let P = {pi|i = 1...m} and Q = {qij |i = 1...m, j = 1...n} be two ordered sets. We define the ordered distributive

product of P and Q, denoted by P �Q, as the set: P �Q = {pi · qij | i = 1...m, j = 1...n} where each element of P
is multiplied by all elements of Q, preserving the order of P as the primary factor.
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Figure 2: Points with coordinates x and y given by odd numbers representing all non-prime odd
numbers in the interval [m,n] = [25, 81] are located in the region y ≥ x, x ≥ 3 and 25/x ≤ y ≤ 81/x.

On the other hand, the set of all odd numbers in the interval [25, 81] is given by an
arithmetic progression with a common difference of 2:

A ={25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81}.

Obviously, subtracting the above sets directly gives the set of prime numbers in the
interval [25, 81]:

P = A \ S = {29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79}

We will obtain below the set P for the interval [25, 81] from the direct application of the
theorem.

A ={25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81}

B = {i · (d25/ie∗ + j) | i ∈ {3, 5, . . . , b
√

25c∗}, j ∈ {0, 2, . . . , (b81/ic∗ − d25/ie∗)}}

= {i · (d25/ie∗ + j) | i ∈ {3, 5}, j ∈ {0, 2, . . . , (b81/ic∗ − d25/ie∗)}} =

= {3 · (9 + j) | j ∈ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}} ∪ {5 · (5 + j) | j ∈ {0, 2, 4, 6, 8, 10}}

= {27, 33, 39, 45, 51, 57, 63, 69, 75, 81} ∪ {25, 35, 45, 55, 65, 75}

= {25, 27, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 75, 81}

and

C = {(b
√

25c∗ + i) · (b
√

25c∗ + i + j) | i ∈ {2, 4, ..., (b
√

81c∗ − b
√

25c∗)},
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j ∈ {0, 2, ..., (b81/(b
√

25c∗+ i)c∗− b
√

25c∗− i)}} =

= {(5 + i) · (5 + i + j) | i ∈ {2, 4}, j ∈ {0, 2, ..., (b81/(5 + i)c∗− 5− i)}}

= {7 · (7 + j) | j ∈ {0, 2, 4}} ∪ {9 · (9 + j) | j ∈ {0}} =

= {49, 63, 77} ∪ {81} = {49, 63, 77, 81}

then

S = B ∪ C = {25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81}

and

P = A \ S =

= {25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81}−

{25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81}

P = {29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79}

• [m,n] = [3, 11]

A = {3, 5, 7, 9, 11}

B = {i · (d3/ie∗ + j) | i ∈ {3, 5, . . . , b
√

3c∗}, j ∈ {0, 2, . . . , (b11/ic∗ − d3/ie∗)}}

Since the last value of i (i =
√

3) is smaller than the first one (i = 3), the set B is
empty:

B = ∅

And the set C will be constructed as shown below:

C = {(b
√

3c∗+ i) · (b
√

3c∗+ i+ j) | i ∈ {2}, j ∈ {0, 2, ..., (b11/(b
√

3c∗+ i)c∗−b
√

3c∗− i)}}

= {(b
√

3c∗ + 2) · (b
√

3c∗ + 2 + j) | j ∈ {0}} = {9}

then

S = B ∪ C = ∅ ∪ {9} = {9}

and

P = A \ S = {3, 5, 7, 9, 11} − {9} = {3, 5, 7, 11}
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0.7 Pseudocode

The pseudocode[10] below allows one to calculate prime numbers in the range [m,n],
according to what is described in the theorem.

// Assume :
// n >= m
// m >= 3
// m and n are odd i n t e g e r s .
// f l o o r ( x )∗ i s x i f x i s odd or i s an odd number c l o s e s t to x
and below i t i f x i s non−i n t e g e r or even i n t e g e r number
// c e i l ( x )∗ i s x i f x i s odd or i s an odd number c l o s e s t to x
and above i t i f x i s non−i n t e g e r or even i n t e g e r number
// i s q r t ( x ) r e tu rn s the h i ghe s t i n t e g e r y that s a t i s f i e s y∗y <= x
//
func t i on Primes (m, n , f ) :
S <− Zero− i n i t i a l i z e d boolean array o f s i z e (n − m) / 2 + 1
P <− Set o f primes , empty− i n i t i a l i z e d

// Compute s e t B.
f o r i n t i from 3 to f l o o r ( i s q r t (m))∗ with step 2 do
f o r i n t j from 0 to f l o o r (n / i )∗ − c e i l (m / i )∗ with step 2 do
b i j <− i ∗ ( c e i l (m / i )∗ + j )
Mark S [ ( b i j − m) / 2 ] as t rue

// Compute s e t C.
f o r i n t i from 2 to f l o o r ( i s q r t (n ) )∗ − f l o o r ( i s q r t (m))∗ with step 2 do
f o r i n t j from 0 to f l o o r (n / ( f l o o r ( i s q r t (m))∗ + i ) )∗ − f l o o r ( i s q r t (m))∗ −
i with step 2 :
c i j <− ( f l o o r ( i s q r t (m))∗ + i ) ∗ ( f l o o r ( i s q r t (m))∗ + i + j )
Mark S [ ( c i j − m) / 2 ] as t rue

// Al l odd numbers between m and n that are not in S are primes .
f o r each I n t e g e r i from m to n with step 2 do
i f S [ ( i − m) / 2 ] i s f a l s e then
Add i to P

return P

0.8 Algorithmic complexity

0.8.1 Time complexity

The time complexity of iterating over set A is O(m−n), as the set contains (n−m)/2+1
elements. However, for n −m = q = constant, the complexity becomes O(1). The same
argument above leads us to conclude that the time complexity to construct the set P is also
given by O(n−m) in a general case and O(1) if n−m = q = constant.

The time complexity of the sieve developed in this article will be governed by the number
of products x · y calculated to obtain the set S [3], according to the theorem presented (see
fig.[1] and fig.[2]).

The calculation of the number of products x · y will be performed in two ways; the first,
done by the exact count of the number of products using the functions bxc∗ e dxe∗, and
the second uses the density of points on the plane and on the line, giving an approximate
value, but easier to apply.
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Exact calculation

Initially, we will calculate the number of points (x, y) with 9 ≤ x · y ≤ n in the region
x ≥ 3, y ≥ 3 and y ≤ n/x (fig.[3]). It can be observed that for each y = j = 3, 5, 7, ..., bn/ic∗,
there are x = i = 3, 5, 7, ..., bn/3c∗ values of x. Therefore, the number of points in this region
will be given by the double sum below:

Figure 3: Points with coordinates x and y given by odd numbers representing all non-prime odd
numbers in the interval [9, n] are located in the region y ≥ x, x ≥ 3 and 9/x ≤ y ≤ n/x.

• Approximate calculation

Considering (fig.[1], fig.[3]) that each square with side 2 and area 4 in the plane xy can
be associated with 1 product x · y, that the lines x = 3 and y = x can be associated with
1/2 product x · y at each interval ∆y = 2 and ∆x = 2, respectively, we can calculate the
approximate total number of computed values as follows.

N1 is the number of points inside the surface delimited by the hyperbolas y = m/x and
y = n/x and the lines x = 3 and y = x (fig.[1]):

N1 ≈
1

4

∫ √m
3

(n
x
− m

x

)
dx+

1

4

∫ √n
√
m

(n
x
− x
)
dx =

n

8
log(n/9)−m

8
log(m/9)− 1

8
(n−m)

On the straight line x = 3, the length to be considered is equal to n/3−m/3, therefore,
we will have ((n/3−m/3)/2 + 1) points separated by 2 units of length on this straight line
segment. Considering that we must associate (1/2) point to each interval (fig.[1]):

N2 ≈
n−m

12
+

1

2

The abscissa of interest on the line y = x goes from
√
m to

√
n, resulting in (

√
n −√

m)/2 + 1 points along the line (fig.[1]), then:

N3 ≈
√
n−
√
m

4
+

1

2
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The sum of N1, N2 and N3 gives the total number of computed values:

N ≈ n

8
log(n/9)− m

8
log(m/9) +

1

4
(
√
n−
√
m)− 1

24
(n−m) + 1 (5)

From the above equation it can be concluded that the time complexity is given by
O(n log n) when the difference n−m is not fixed.

Writing m as m = n− q, we have:

N ≈ q

8
log((n− q)/9)− n

8
log(1− q/n) +

1

4

q√
n +
√
n− q

− q

24
+ 1 (6)

Consequently, when n−m=q is a constant, the time complexity reduces to O(log n).
In comparison, the Sieve of Eratosthenes [11] and the Sieve of Atkin [4] have time com-

plexities of O(n log logn) and O(n/ log logn), respectively, which makes the sieve presented
in this article promising for finding large prime numbers.

0.8.2 Memory complexity

The sieve uses a Boolean matrix [12] S to mark the composite numbers [13]. Knowing
that |S| ≤ |A| = ((n−m)/2 + 1), where n and m are the limits of the range, the memory
complexity of the sieve is O(n −m). If (n −m) = q = constant, the memory complexity
becomes O(1).

0.9 Conclusion

This article presented a novel algorithm for the efficient generation of prime numbers
within an interval [m,n] based on the geometric properties of rectangular hyperbolas. The
method stands out for not performing factorization tests and for not requiring prior knowl-
edge of prime numbers, which differentiates it from traditional sieves. The proof of the
theorem demonstrated the correctness of the algorithm by establishing a correspondence
between composite numbers in the interval and points in specific regions bounded by hy-
perbolas and straight lines in the Cartesian plane.

The analysis of the algorithmic complexity revealed that the algorithm has a time com-
plexity of O(n log n) in the general case. More significantly, when the interval size n−m is
constant, the time complexity is reduced to O(log n), and the memory complexity to O(1).
This efficiency for constant-size intervals makes the algorithm particularly promising for the
generation of large prime numbers, relevant in cryptographic applications.

Future research may explore additional optimizations in the implementation of the al-
gorithm, as well as its adaptation for the generation of primes in even larger intervals or
with specific characteristics. The investigation of possible parallelizations of the algorithm
could also be an interesting path to further improve its performance.
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