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1. Abstract 

The proposed extension of the Approach Theory 
(https://doi.org/10.31219/osf.io/hwca8_v1) introduces a 
mathematical formalization of absolute space and absolute time, 
built through a structural recursion based on odd primes (including 
1), where each prime is interpreted as a vertex of a fractal triplet 
generated by a sum rule, which includes its prime predecessor plus 
two other minor primes equal to the predecessor, which will give 
rise to a unique and recursive mapping of absolute space. Absolute 
time, in this context, is not a continuous dimension but a discrete 
function of depth, linked to the sequence of prime decompositions. 
The absolute space thus defined is static, but explorable through 
topological paths, and absolute time emerges as a projection of the 
recursive activity. In this context, the theory explains the empirical 
anomaly of the RC constant observed in the tear that occurs during 
the electron's crossing of the relative space-time and traces the 
dynamics of quantum damping back to an underlying fractal 
structure, where it is shown that the electron's ascent in the relative 
space-time is guaranteed by a numerical-topological deterministic 
structure, consistent with the principles of feedback, strong 
determinism and formal non-completeness (Gödel). Therefore, this 
work is configured as a rigorous and logically compact 
compendium of the deepest articulation of the Approach Theory. 



2. Introduction 

This work was born as a formal extension of the Approach Theory 
(https://doi.org/10.31219/osf.io/hwca8_v1), already proposed in 
the experimental field to explain the quantized behavior of the 
electron and the anomalies observed in the energy decay (RC) in 
atomic systems. In the original article it was shown that the 
electron, during the orbital tear, temporarily abandons the time 
coordinate, entering a phase of relativistic suspension. The 
Approach Theory proposed a deep reading of this phenomenon, 
introducing the concept of absolute time as a non-observable but 
structuring dimension. In the present development, this conceptual 
framework is further refined and formalized through a recursive 
fractal structure generated by prime numbers. The mathematical 
construction is based on a weak conjecture of a weak conjecture 
deriving from Goldbach's strong conjecture, and defines absolute 
space as a static and self-similar set of triplets consisting of odd 
prime numbers, where each prime p is decomposed according to a 
rule that connects it to its predecessor prime pₙ and to two other 
prime numbers (b, c), thus forming a numerical-topological 
network that uniquely maps space. 

In this model: 

• absolute time is redefined as recursive depth, i.e. as the number of 
steps necessary to reach an output configuration compatible with 
the input; 

• absolute space is fractal, discrete, recursive, and free of internal 
transformations; 

• the decay observed in the physical system is reinterpreted as a 
numerical memory of the fractal graph, and the constant RC as an 
analogical reflection of the underlying recursive structure. 

Thus, the present extension is not only compatible with the original 
theory, but strengthens it by providing a formalism that allows 
connecting the experimental physical dimension with a deep 
numerical topology, in which absolute time and space, charge and 
position are emergent expressions of a single fractal network of 
prime numbers. 

 



3. Methodology 

 
 
3.1 Introduction to the method 
 
This investigation tends to interpret the primality of a natural 
number, where it will be sufficient but not necessary to say what 
makes a natural number a prime number, and the possibility of 
being able or not being able to determine an algebraic procedure of 
their succession that appears random. 
As a first definition, it can be stated that a prime number like any 
other natural number is equivalent to the sum of n units, where by 
unit is meant in set theory: the number one is constructed starting 
from the empty set obtaining {∅} whose cardinality is precisely 1. 
In standard set theory and in other impredicative theories, the set of 
natural numbers is easily constructed from some source of infinity. 
As soon as we have a set X with a zero element 𝑧, such that X is an 
injective successor function 𝑠 : 𝑋 → 𝑋 whose image does not 
contain 𝑧, then we can derive the natural numbers by taking the 
intersection of all subsets of 𝑋 closed under 𝑧 and 𝑠. However, this 
reasoning is essentially impredicative: for this definition to make 
sense (and to yield the expected induction principle), we need the 
collection of all subsets of X to form a set, namely the set of parts 
of X. 
In predicative contexts such as Martin Löf's dependent type theory, 
this reasoning is unsound (Löf, 1980). 
 
Martin-Löf's dependent type theory is a formal system combining 
logic and type theory, used both as a basis for formal mathematical 
proofs and as a functional programming language. It is an 
important theory for constructive logic and has influenced the 
development of programming languages such as Coq, Agda, and 
Idris. 
 
 
3.1.1 Dependent Types 
 
In dependent type theory, types can depend on values. For 
example, you can have a vector type of numbers of length n, where 
the type itself depends on the value n. 
This dependency allows much more information to be expressed in 
types, making it easier to formally verify the properties of 
functions and programs. For example, a vector of a definite length 
guarantees that a vector sum function will only operate on vectors 
of equal length. 



 
 
3.1.2 Relationship between Propositions and Types (Curry-  
         Howard Correspondence) 
 
In Martin-Löf constructive logic, every proposition is seen as a 
type, and proving a proposition is equivalent to constructing a 
value (or “witness”) of that type. 
For example, the type of pairs (A∧B) can be seen as a proposition 
that states: both A and B are true, and requires a witness for both A 
and B. 
This relation is also called Curry-Howard isomorphism and is 
central to the theory of dependent types. 
 
 
3.1.3 Construction and Structure of Types 
 
The theory includes several constructive types: 
 
• primitive types (e.g. numbers, booleans), 
• function types (functions from one type to another), 
• product types (pairs or tuples of types), 
• sum types (alternations between multiple types), 
• dependent types, which include for example σ types (dependent   
   pairs) and π types (dependent functions). 
 
Each type has a logical role: for example, a π type generalizes the 
concept of a universal quantifier (for every) and a σ type 
corresponds to an existential quantifier (exists). 
 
 
3.1.4 Context and Type Inference  
 
Terms are constructed in a context, a set of variables with assigned 
types. When constructing a term, each variable must have a 
specified type, and type inferences ensure that the term is valid in 
the current context. 
Contexts also allow for dependent types: since a type can depend 
on a value, the value must be present in the context. 
 
 
3.1.5 Construction and Verification of Demonstrations 
 
In Martin-Löf type theory, proving a proposition is equivalent to 
constructing a term of the type associated with the proposition. 



This construction process can be formalized and verified by a 
proof assistant, such as Coq or Agda. 
Proofs can be manipulated like mathematical objects, and 
dependent type theory allows one to construct verifiable proofs that 
remain valid within the system. 
Thus, Martin-Löf dependent type theory is the basis of many proof 
assistants, which allow theorems to be constructed and formally 
verified. 
In short, Martin-Löf dependent type theory provides a foundation 
for logic and programming that allows properties of programs and 
proofs to be formally expressed and verified, with the type itself 
guaranteeing the structural and logical correctness of what is 
constructed. 
Ergo, inductive type formers such as natural numbers cannot be 
reduced to non-inductive constructions: “…without impredicativity 
as a free source of induction principles we are stuck.” 
Therefore, natural numbers (and other inductive types) are usually 
assumed axiomatically. 
But what is impredicativity and what does it lead to in this context? 
The distinction between predicative and impredicative definitions 
is now widely regarded as an important watershed in logic and the 
philosophy of mathematics. A definition is said to be impredicative 
if it refers to a totality or set of which that entity is a part. In other 
words, the definition uses a set or class that also includes the object 
being defined. Otherwise, the definition is said to be predicative. 
An example of an impredicative definition in mathematics is a set 
defined as: the smallest set among all sets that have a certain 
property. 
If the concept of: all sets also includes that specific set we are 
trying to define, then the definition is impredicative. 
Imperdicative definitions have long been a controversial subject in 
logic and the philosophy of mathematics. Many logicians and 
philosophers such as Henri Poincaré, Bertrand Russell, and 
Hermann Weyl, have not accepted such definitions because they 
generate cyclic redundancies: since an entity is defined in terms of 
a set that, in turn, depends on the definition of that entity (Russell, 
1945). 
However, it turns out that rejecting such definitions would require 
a major revision of classical mathematics. The most common 
contemporary view is probably that of Kurt Gödel, who argued that 
impredicative definitions are legitimate provided one has a realist 
view of the entities in question (Gödel, 1986). 
The notion of predicativity has its origins in the early twentieth-
century debate between Poincaré, Russell, and others over the 
nature and source of logical paradoxes. Both Poincaré and Russell 
argued that paradoxes are caused by some form of vicious 



circularity. What goes wrong, they argued, is that an entity is 
defined, or a proposition is formulated, in a way that is 
unacceptably circular. Sometimes this circularity is transparent, as 
in the Liar paradox. But in other paradoxes there is no explicit 
circularity. For example, the definition of the Russell class makes 
no explicit reference to the class being defined. Nor does the 
definition in the Berry paradox make any explicit reference to 
itself. 
However, Poincaré and Russell argued that paradoxes such as 
Russell and Berry are guilty of an implicit form of circularity. The 
problem with the Russell class is that its definition generalizes to a 
totality to which the defined class would belong. This is because 
the Russell class is defined as the class whose members are all and 
only objects that are not self-members. So one of the objects that 
must be considered for membership in the Russell class is precisely 
this class. Similarly, the definition in Berry's paradox generalizes 
to all definitions, including the definition in question itself (in an 
absolute manner (Ruffini, 2025)). 
 

 

 

 

 

 

 

 

 

 

 

 



3.2 Discussion on the method 

In formalizing the fractal extension of the approach theory, we 
should consider the following assumption: rearrange the 
mathematical rules to accept 1 as a prime number. This would be 
theoretically possible, but it would imply a massive revision of 
many definitions, theorems, and algorithms. In particular, every 
area of mathematics that uses prime numbers, such as number 
theory, algebra, and cryptography, would have to be modified to 
retain the fundamental properties or find new ways to express 
them. 
 
 
3.2.1 New Definition of Unique Factorization 
 
The fundamental theorem of arithmetic should also be redefined to 
include exceptions for 1. This could mean establishing a version of 
factorization where 1 is included only once or where its presence is 
optional, specifying that the prime factorization of a number does 
not include 1 repeated infinitely many times. 
One possible strategy would be to consider two forms of 
factorization: a minimal factorization, which does not consider 1, 
and a complete factorization, which does include it. However, this 
would introduce considerable complexity into the numerical 
representations. 
 
 
3.2.2 Redefining Arithmetic Functions 
 
Functions like the totient function, which calculates the primes 
coprime to a given number, would have to include 1 in the set of 
primes. In that case, the totient function would be redefined to 
account for one more prime: namely 1. 
Other functions, like sum of divisors and number of divisors, could 
treat 1 as a “neutral prime” with specific properties, but this would 
require recalculations and probably more complex formulas to 
return equivalent results. 
 
 
3.2.3 Review of Fundamental Theorems 
 
Many theorems involving prime numbers should be reformulated 
to make an exception for 1. For example: Fermat's Little Theorem 
should explicitly exclude the case where p=1; Wilson's theorem 
that states that a number p is prime if and only if (p−1)!≡−1 should 
include a new formulation. 



So it would be necessary to distinguish between unit primes (like 
1) and ordinary primes to avoid confusion, and complicate the 
structure of the theorems. 
 
 
3.2.4 New Structure in Algebraic Rings 
 
In ring and field theory, prime numbers are defined as irreducible 
elements: 1 is a unit, not irreducible, since it has an inverse. One 
would therefore have to create a new category that allows one to 
treat 1 specially among the primes or redefine the idea of unity for 
number rings. 
This would imply changes in number rings and polynomials, 
complicating fundamental properties that are currently essential in 
algebra, but a surmountable problem. 
 
 
3.2.5 Changes to Cryptography and Numeric Algorithms 
 
Some cryptographic algorithms, such as RSA, rely on the 
uniqueness of prime factorizations to secure them. If 1 were prime, 
it would have to be explicitly excluded or included only in certain 
calculations, adding complexity and potential vulnerabilities. 
Similarly, algorithms for calculating the GCD (greatest common 
divisor) and for prime factorization would require new procedures 
to handle the particularities of 1. 
 
 
3.2.6 Assumption of predicability 
 
So instead of radically changing all the existing rules, it might be 
interesting to create an extended theory of prime numbers in which 
1 is considered a unitary prime. In this way, the classical 
definitions would be kept unchanged, reserving the use of 1 only 
for theorems or applications where it can actually be treated as a 
prime without problems. However, it would be possible to 
rearrange the mathematical rules to include 1 as a prime, but this 
operation would introduce considerable complexity, breaking the 
elegance and simplicity of the current structures. The traditional 
approach of excluding 1 as a prime is much more functional to 
preserve the consistency of mathematics and the simplicity of its 
applications, but if it were necessary for the expansion of theory, 
assuming one as a prime would be possible. 
 
 
 



3.3 Method 
 

3.3.1 Definition of Recursive Absolute Space 

Let p ∈ P1, a prime number (including 1 as an initial prime), and let 
P1⊂N be the set of odd prime numbers: P1 ∈ {1,3,5,7,11,… }. 
Furthermore, let a recursive decomposition function be defined: 

Φ: P1→Pଵ
ଷ con: Φ(p)=( pₙ,b,c) dove: p= pₙ+b+c  

with: pₙ, b, c ∈ P1; where the notation Pଵ
ଷ indicates the Cartesian 

triple product: 

Pଵ
ଷ=P1×P1×P1 

that is, the set of all ordered triples of odd primes (including 1), 
which represent possible recursive decompositions of a prime 
number p. 

 

Let 𝑝ₙ be the n-th prime number, then predecessor of pn+1=pn, or:  

pn=max{p ∈ P1 ∣ p<pn+1} 
where: 
 
P1 is the set of prime numbers. 
pn is the prime number that precedes its prime successor pn+1. 

with: pₙ, b, c ∈ P1, dove: b < pn, c < pn, quando: b, c > 1, 

Each point p therefore has a unique representation in the recursive 
system of triples, as a constitutive rule of absolute space. 

We can rewrite the central condition as: 

∃ p ∈ P1 : ( pn,b,c) ∈ Pଵ
ଷ, pn+b+c=p 

with: pₙ, b, c ∈ P1, where: b < pn, c < pn,  when: b, c > 1 



The electron ascent is guaranteed by the encoding only in the 
structure p ∈ P1 which maps p as a random prime integer in 
absolute space, generating a fractal structure. 
 
 
3.3.2 Static Recursive Space 

Let us define: 

• S: set of states (prime triples) in absolute space. 
• Φ: F → S: function that associates a fractal triple to each p ∈ P1. 
• d: S × S → F: fractal metric based on the recursive distance              
   between two triples. 
 
Space is static: no internal temporal transformation. However, it 
can be traveled along recursive paths. 
Therefore, the prime number p represents an access node (entry or 
exit) in absolute space. This node can be interpreted either as the 
result of the triple, or as its predecessor or successor, according to 
the following cases: 

given a prime number p ∈ P1, the immediately preceding prime is 

pn = max{q ∈ P1 ∣ q<p}, con: p, pₙ ∈ P1 

and the next one is: 

pn+1 = min{q ∈ P1 ∣ q>p}, con: p, pn+1 ∈ P1 

Possible Inputs/Outputs: 

• output by sum: p= pn+b+c, is equal to the input; 
• output preceding p:  pn=p-(b+c);  
• output following p: pn+1=p+(b+c).  

The criterion is that p is still a prime number, and the sum pn+b+c 
forms a configuration consistent with the fractal structure. 

3.3.3 Time as Recursive Depth 

Let us now define a minimum time level function: 

T(p)=min {i ∈ S : Φ(i)(pi)=(1,1,1)} 



This T(p) is the minimum counting time for the recursive iterations 
needed to bring any p back to the fundamental triplet (1,1,1) of 
absolute space. 
Where time in Approach Theory is defined as: 

T(i) = Σ [Φ(i)(pi)] 

for each transition γᵢ : sᵢ → sᵢ₊₁ between states, where 
Φ(0)(p)=(1,1,1) is the minimum unit of “tear” corresponding to the 
transition. 
Therefore, each γᵢ is generated by the inverse rule of the triplet: 
 

sᵢ₊₁ = ϛ (sᵢ) = pᵢ₊₁ = pᵢ + bᵢ + cᵢ, con: 𝑝i, pᵢ₊₁, bi, ci ∈ P1 

 

ς: S→S | ς(si)=Φ(pi+1)=pi+bi+ci 
 

where: 
 
• in absolute time, T is a discrete sequence of fractal 
transformations; 
• in relative time (emergent in relative spacetime), T manifests 
itself as a frequency of jerks, observable in the dissipation 
(feedback) of the electron. 
 
It follows that in relative spacetime the temporal coordinate exists 
only as a manifestation of recursive activity. In the absence of 
transition between fractal states, time is disjoint. 
 

3.3.4 Time as crossing frequency 

If we associate a quantized “tear” to each recursion, and define an 
average transition time τ, then: 

tfisico(p)=T(p)⋅τ 

where τ∼RC in the electrical analogue system of the observed 
decay, then: 

tfisico(p)=T(p)⋅RC 

Thus the RC term becomes a time-scale constant, but is associated 
with a dissipative memory that is not linear. 



3.3.5 Tempo relativo come proiezione dinamica dello spazio 
assoluto 
 
Let the absolute space A⊂Pଵ

ଷ be defined as in point 2, then the 
dynamics that generates the relative time is a path: 
 

Cp={Φ0(pi), 1(pi),Φ2(pi),…, ΦN(pi)} 
 
This sequence represents the evolution of the point p in the 
recursive fractal space, and the cardinality of Cp is the amount of 
time needed to reconstruct the exit path. Where each point p ∈ P1 
has a determined path: 
 

𝐶 = {𝛷(𝑝)}∊ௌ
்() 

. 
 
This path is deterministic and unrepeatable (uniqueness of the 
path) but it is also completely contained in the absolute space A. 
The dynamics is only in the reading of the path. The feedback 
effect (observed in the physical system with nonlinear damping) is 
equivalent to the logical constraint that each point Φi(pi) is 
constructed so as to bring the electron to the exit condition without 
error: 
 

∀p ∈  Pଵ, ∃! C୮:  Φ൫(୮)൯(pାଵ) = (𝑝 + 𝑏 + c) 

 
This univocal determination of the ascent, and the complete 
mapping of the space, constitute a form of strong determinism, 
where the coherent interpretation highlights that: the RC anomaly 
is the experimental evidence of the underlying recursive structure; 
while: the memory of the system (that is, the possibility of making 
the electron return to the relative space-time) exactly reflects the 
temporal depth T(p) of the explored point. 
In short, absolute time is not a continuous dimension, but a discrete 
function of depth, linked to the intrinsic structure of prime numbers 
and their natural decompositions. Physical time is then 
proportional to: 
 

t(p)=T(p)⋅RC, 
 
where RC is the constant experimentally observed in the analog 
system. The connection with the RC constant in the physical model 
is expressed, of the residual energy of an electron between orbitals 
modeled as: 
 

E(t)=E0e
−t/RC 

 



This exponential decay is reinterpreted in my framework as the 
loss of information in the ascent: 
 

μ(t)= 1−(1/N(t)) ⇒ E(t) ≈ E0(1−μ(t)) 
 
where N(t) represents the number of branches (possible triplets) 
scanned in time t. In fractal regime: 
 

N(t)∼log(t)d, 
 
with d fractal dimension of the numerical graph. 
 
 
3.3.6 Connection with Approach Theory 
 
In the model of the original paper, the electron tear is associated 
with an irreversible residual energy: 
 

RC ⋅  
ୢమ௫

ୢ୲మ +  
ୢ୶

ୢ୲
+  

ଵ

ୖେ
𝑥 =0 

 
and we observe an empirical decay constant 105 larger than 
expected that is compensated, with the adjustment of the time scale 
factor Δ𝑡, as: 
 

𝐸corretta =Δ𝑡⋅𝐸MQ 

 
where: 
 

Δ𝑡=𝐸classica/𝐸quantistica≈105 
 
The introduction of Δ𝑡 automatically corrects the energy levels 
without violating quantum mechanics. 
The final comparison with quantum theory has shown that the 
model proposed by the approach theory includes it as a limiting 
case for 𝑡→∞, where the average energy coincides with the Bohr 
quantum levels. 
Furthermore, the model correctly predicts the Heisenberg 
uncertainty principle, since: 
 

Δ𝐸⋅𝑅𝐶≥ℏ/2 
 
Now, if we interpret the tear as the entry into absolute space via a 
prime number p, then the point p can be associated with the 
quantized frequency of the tear. 
 



Assumptions: 
 

fp∼1/RC∼1/τ 
 
where:τ=recursive transition time between levels of A. 
 
F is a function associated with the recursive depth or local density 
of the fractal graph. 
In mathematical terms, if si is the recursive depth reached via the 
prime point pi, then: 
 

f(si)=α⋅log(pi)⇒T=α∑log(pi) 
 
with: α ∈ R+ scaling constant. 
 
 
3.3.7 Feedback and recovery 
 
The ascent occurs according to a principle of coherent feedback, 
linked to the construction of a triplet starting from the original 
triplet. Time is restored in the transition from absolute to relative 
as is space. 
Therefore the condition of uniqueness (or strong determinism) is 
based on the fact that: 
 
every prime can be uniquely mapped in a defined space, where all 
possible outputs have been encoded. 
 
Where the function F can be iterated, providing a trace of the 
recursion and the historical path of the electron in absolute space. 
While the time coordinate t in the original theory is connected to 
the damped oscillatory motion, emerging as a count of the 
recursive level. 
 
 
 
3.3.8 Unique entry point (strong determinism of the 
         ascent) 
 
Since the primes are fully mapped, every exit is covered. This 
provides: 
 
• strong determinism (every ascent to relative space-time is 
determined by recursive decomposition); 
• feedback (the structure itself is recursive and redundant, where 
every new entry is fed back by the number system). 



 
Since every prime is mapped by only one possible triplet 
recursively: 
 

∃ p ∈ P1 : ( pn,b,c) ∈ Pଵ
ଷ, pn+b+c=p 

 
with: pn, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1 
 
then every state of absolute space can be inverted exactly: 
 

sᵢ₊₁ = ϛ(sᵢ) = pᵢ₊₁ = pᵢ + bᵢ + cᵢ, con: pi, pᵢ₊₁, bi, ci ∈ P1 
 
and this implies no ambiguity in the ascent. 
 

3.3.9  Feedback and Gödel 

The self-similar and recursive structure prevents a total closure of 
the theory within the system itself, since each point can be 
decomposed indefinitely into primes (excluding a physical scale 
limit). This reflects Gödel's first theorem: "In every sufficiently 
complex coherent system there exist true propositions that cannot 
be proved within the system." 
In this case, the propositions are the recursive configurations 
whose physical behavior is described only in the complete system. 
This structure implies a logical self-reference: 
 
• each prime point can be decomposed into other primes, which in 
turn refer to the initial prime in their sum; 
• the non-completeness of the system (no end of the recursion, 
except at unity) is a physical reflection of Gödel's first theorem: 
every coherent system contains true statements that cannot be 
proved within it. 
 
Therefore, the electron's ascent is guaranteed, but the proof of the 
ascent is encoded only in the entire structure of absolute space. 
The ascent can occur through any other prime provided that a valid 
triple exists. In practice, absolute space is configured as a non-
Euclidean network of topological transitions in which each prime 
is a node and each arc is a possible transaction given by a valid 
triple. 
Therefore, the direction of ascent is not univocal but topologically 
conditioned: it depends on the network of possible triples; relative 
time and space are reconstructed starting from connection nodes 
between primes, and not from a minimum distance constraint, 



where the topological-numerical interpretation of time and motion 
is given with selective recursion. 
In practice, at the moment of the tear, the electron enters a state of 
temporal suspension. The time coordinate is no longer necessary to 
describe its position: it becomes a function of its recursive position 
in the topology generated by the prime numbers. Time does not 
exist in absolute space as an intrinsic coordinate, but emerges as a 
function of the recursive path. Operational definition of time: 
 

𝑇 =  𝑓(𝑠)
ே


 

 
where: 
 
• is the single tear (event); 
• is a function associated with the recursive depth or local density 
of the fractal graph. 
 
Time becomes significant again only at the moment of “ascent”, 
that is, when the electron re-enters the relative space-time. 
The sum rule also suggests that each prime can be decomposed 
into a valid triplet. Extending this decomposition to: 
 
• each coordinate can in turn be decomposed according to the same 
rule; 
• the generated chains form fractal structures; 
• the existence of natural “return points” is hypothesized: primes 
that frequently recur in the valid triplet and that could be 
considered recursive attractors. 
 
Three coordinates are sufficient to describe the structure according 
to the basic rule, but they do not exhaust the complexity. The 
system could be extended to more dimensions based on the 
recursive depth. However, the valid triplet allows the geometric 
visualization of triangular structures with the prime vertices 
arranged on three axes in coherence with the perceived three-
dimensional space. In short, the electron does not get “lost” 
because it follows the deterministic structure of prime numbers. 
The ascent is possible only if the paths are traceable, which is 
guaranteed by the choice of prime numbers. 
 

3.3.10  Geometric representation 

Every triplet can be mapped into a three-dimensional space. The 
sequence of triplets forms an increasing fractal structure. 



Fractal coordinates: 
  

𝑣ሬሬሬሬ⃗ = [𝑝, 𝑏, 𝑐]௧ 
 
with: 𝑝n, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1 
 
Each node is an event in the fractal graph, where the fractal type is 
a discrete self-similar structure, potentially modeled as a 3-ary tree 
with numerical composition rules. 
 
Where it is assumed that: 
• at the vertex of the valid triplet: 𝑝, of the topology(p) the charge 
is conserved; 
• the residual mass occurs in absolute time in the form of numerical 
density, as an unobservable recursive step: 
 

v > c ⇔ ∃ p : T(p) ≠ 0 con  𝑓(𝑠) ≠  𝑓(𝑠ାଵ). 
 
It follows: 
 

∃, p' ∈ P1 : Φ(p') = (pn, b, c),  {vicinanza topologica a } 
 
with: pn, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1 
 
where proximity is defined not by a numerical distance, but by a 
physical criterion (energy, orbital position, local quantum 
constraints, chemistry of the elements). 
The ascent therefore has an exit port conditioned on the time depth 
function T(p) that can be redefined as a count of recursive passages 
starting from an input pn, until reaching an exit condition pn+1  or 
pn-1, which can be: 
 
• a triplet compatible with the re-entry electronic orbital, 
• or a fractal configuration (pn, b, c) that satisfies a given energy 
threshold. 
 
So the exit is relative to the atomic context: it is the chemistry of 
the elements and the relative position of the remaining matter that 
decides when and where the path opens and closes. 
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3.4 Strong implications 
 
The absolute space in which an electron enters “as a prime” could 
be visualized as a network, in which each node has a genetic 
memory (the sum of its prime components) and a trajectory (how 
its recursive composition evolves). 
If we wanted to assume this model, we would then have to assume 
a series of new hypotheses that by logical-mathematical induction 
would lead to the formalization of the same method previously 
described. 
 
To undertake this path we must rise to a hypothesis, also 
abandoned by classical physics, where it is hypothesized that: the 
neutron can be born from a space-time fusion between a proton and 
an electron, not in terms of mass but as a coincidence of states of 
space at different times. 
 
The hypothesis that a neutron can form from the union of an 
electron and a proton is not new as I said, but has been historically 
surpassed by the quark model. However, from the perspective of 
the Approach Theory, this hypothesis acquires new life 
(Rutherford, 1920). This is not a material fusion in the classical 
sense, but a recomposition of absolute space-time states. 
In other words, the neutron is a space-time superposition of two 
entities, not a simple sum of mass or charge. The neutron can be 
represented as a point of the fractal graph where the time function 
is suspended or blocked, that is, a node at high depth that maintains 
coherence between electron and proton without immediate decay. 
Beta decay, in this framework, occurs when this numerical-
temporal coherence breaks, and the two states separate in 
observable time. 
In my original reasoning, I never claimed that this proton-electron 
fusion occurs systematically inside atoms, but I identified 
particular conditions, often borderline or anomalous, in which this 
transition can occur. 
In the developed model, the formation of a neutron is not a 
systematic or automatic event, but occurs only in particular space-
time conditions, such as: 
 
• when the electron and the proton are not bound in the classical 
atomic form, for example: in very high energy environments 
(electric discharges, lightning); 
• in quasi-vacuum conditions or temperatures close to zero (e.g. 
Bose-Einstein condensates); 
• or during experimentally induced forced interactions (forced 
electron capture). 



 
When the relative spatial synchronization, typical of the stable 
atom, is lost and the electron makes the tear "freely" then it can 
enter a state of temporal superposition with the proton. Therefore, 
if this tear occurs in synchrony with a free proton, the electron can 
collapse in the same space as the proton but in a different time, 
giving rise to a new stable state: the neutron. 
In isolated systems, where external feedbacks (molecular bonds, 
surrounding quantum fields) do not prevent the recursive 
reformulation of the state; in the ordinary atomic context, the 
electron does not form a neutron with the proton because the two 
are constrained by orbital configurations and stabilizing quantum 
symmetries. 
The natural formation of the neutron according to the Approach 
Theory can only occur when the atomic structure is perturbed or 
disrupted, or in environments where relative time ceases to act as a 
constraint. 
This hypothesis forces us to look at the tear mechanism in both its 
configurations — free (e.g. neutron formation) and constrained 
(e.g. stable atom) — and asks us what really unites them. 
In both cases: free electron and constrained electron in an atom, 
they share some key properties: 
 
a) Critical velocity overshoot (v > c). In both contexts, the tear 
occurs when the electron's velocity relative to the system exceeds 
the speed of light in the relative space-time framework. But be 
careful: v > c is not a physical velocity measurable in classical 
space-time, but is a critical transition condition in fractal absolute 
space, i.e. a change of topological rule. 
 
b) Both tears are associated with a moment in which the electron 
no longer has an observable temporal coordinate: 
• in the free version, the tear coincides with the entry into the same 
space of the proton, but at another time (formation of the neutron); 
• in the atomic version, the tear manifests itself as a damped 
oscillation, with residual energy and retroactive memory. 
 
c) Both generate a dissipative or feedback effect, governed by the 
RC constant, which reflects how deeply the electron has entered 
absolute space. 
 
Forced electron capture is proposed as an experiment to validate 
this theory, using oscillating fields, vacuum chambers and neutron 
detectors. 



It is theorized that natural phenomena such as lightning or Bose-
Einstein condensates may facilitate the formation of neutrons 
without the nuclear force, through these space-time transitions. 
 
 
3.4.1 Summary of the fundamental connections 
 
3.4.1.1 Recursive Absolute Space as a Basic Structure 
 
Let us define: P1={1,3,5,7,11,… }set of odd prime numbers 
(including 1). 
 

Φ: P1→  Pଵ
ଷ 

 
with: Φ(p)=(pn,b,c), such that: p=pn+b+c,  
 
where: pn,b,c ∈ P1, with: b < pn, c < pn, when: b, c > 1 
 
This function represents the recursive decomposition of each prime 
number as the sum of a triple of primes. 
The absolute space A⊆Pଵ

ଷ is defined as the set of ordered triples 
obtained via Φ, constituting a fractal graph. 
 
 
3.4.1.2 Definition of Recursive Time 
 
We define the recursive time as the depth needed to find a point p 
∈ P1 corresponding to an output (pn+b+c): 
 

T(p)= {i ∈ N: Φ൫(୮)൯(pାଵ) = (𝑝ିଵ + 𝑏 + c)} 

 
The physical time associated with the point is: 
 

tfisico(p)=T(p)⋅RC 
 

where: 
 
• RC≈1.44×10−15s: time constant observed in the exponential decay 
of energy. 
• T(p): discrete recursive depth. 
 
 
3.4.1.3 Residual Energy as a Recursive Function 
 
The observed exponential decay in the electron behavior is 
expressed by: 



 
E(t)=E0e

−t/RC 
 
In the fractal context, this translates to: 
 

E(p)=E0e
−T(p) =E0(1−μ(p)) 

 
with: 
 

μ(p)= 
 ଵ

(((୮))
 ,  dove: N(t)∼log(t) 

 
• μ(p): information loss due to recursion,  
• d: fractal dimension of the graph. 
 
 
3.4.1.4 Connection with Approach Theory 
 
In the original model the electron follows a damped oscillation: 
 

RC ⋅
𝑑ଶ𝑥

𝑑𝑡ଶ
+

dx

dt
+

1

RC
𝑥 = 0 

 
Discrepancy between classical and quantum energy: 
 

Δt =
Eୡ୪ୟୱୱ୧ୡୟ

E୯୳ୟ୬୲୧ୱ୲୧ୡୟ

≈ 10ହ 

 
In this formalization: 
 
• Δt is reinterpreted as T(p)⋅RC and the factor 105 emerges from 
the depth T(p). 
• The experimentally observed time scale is then justified by a 
numerical recursive structure. 
 
The feedback is defined as the inverse function of the recursive 
path: 
 

ϛ (si)=pi+bi+ci= pᵢ₊₁=si+1, con: si ∈ Pଵ
ଷ 

 
The principle of strong determinism implies: 
 

∀ p ∈ P1, ∃! Cp: ΦT(p) (pାଵ) = (𝑝 + 𝑏 + c) 
 
That is, each electron has a unique recursive ascent path, which 
defines its transition from absolute space to relative spacetime. 



3.4.1.5 Interpretation of Time as Frequency 
 
Assuming that each tear has a frequency: 
 

fp ≈
1

RC
≈

1

τ
 

 
then: 

T(p) =  log(p୧)
ே


 

  
And therefore:  
 

t(p) = α  log(p୧) ⋅ RC

ே



 

with: α scaling constant. 
 
 
3.4.1.6 Formalization of the Inverse Atom 
 
Definition: An inverse atom is a hypothetical system in which the 
nucleus consists of electrons and neutrons, while protons orbit 
externally. 
Energy equilibrium condition: 
 

Eprotoni=Eorbita=
ଵ

ଶ
𝑚𝑣ଶ − 




 

 
The equilibrium is stable only if the fractal structure of time allows 
a symmetric distribution of the recursive transitions of the 
electrons that form the nucleus. The presence of protons in orbit 
implies an external dynamics dependent on the depth T(p) of the 
nuclear electronic centers. 
 
 
3.4.1.7 Production of Inverse Gravitational Waves 
 
Hypothesis: the electron tearing in absolute space generates a 
localized variation of the time metric, to be considered as an 
inverse gravitational wave. 
Let's define: 
 

δgμν(x,t)=κ⋅∂୲
ଶμ(p) 

 
where: 
 



• δgμν : perturbation of the metric. 
• μ(p): information loss related to the recursive depth. 
• κ: numerical-gravitational coupling constant. 
 
The propagation of δgμν in an emergent space-time is the 
equivalent of gravitational waves, but with opposite sign in the 
transported energy: 
 

E୰ୟ୴୧୲ୟ୧୭୬ୟ୪ୣ
୧୬୴ୣ୰ୱ୭ ∝ − න  (

𝑑μ

𝑑𝑡
)ଶ𝑑𝑡  

 
 
3.4.1.8 Beta Decay in the Recursive Model 
 
In the standard model, the neutron beta decay is: 
 

n → p + 𝑒ି + �̅� 
  
in the fractal model: 
 
• the neutron is a separate temporal state in which the electron and 
the proton share the same space but different times; 
• the decay occurs when the recursive coherence between the two 
components breaks: 

 
T(p)max⇒decadimento    
 

Proposed formalization: 
 
let Tn be the recursive depth associated with the stability of the 
neutron: 
 

∃ Tn: Φ
 (n)=(p,e,νe) 

 

then: 
 
• the release of the electron is the manifestation of the temporal 
synchronization between the two states; 
• the released energy is: 
ΔE=ℏ/(2RC) ⇒ according to the uncertainty principle. 
 
Transition condition: 
 
T(n)≥Tcritica ⇒ collapse of the recursive path ⇒ beta decay.    
 
 



3.4.2  The crossing of the energetic-topological threshold in the 
fractal graph of time. 
 
In other words, it is not just a question of physical speed, but of 
“numerical distance” or recursive depth reached in the fractal 
graph. 
When the electron travels through a sequence of states (prime 
triplets) that exceeds a threshold T(p), the system enters a 
transition domain, where the relative time is no longer sufficient to 
guarantee coherence. 
 

∃ p ∈ P1:T(p)⋅RC > tcritico⇒ veff>c 
 
where veff is the effective speed of crossing the recursive levels, not 
in the physical space, but in the numerical metric of the graph. 
 
The transition threshold, however, may not be related only to RC 
or T(p), but also to a recursive density factor or local compression 
of the graph. 
Let us call ρf(p), local fractal density around the point p. 
Then the generalized tear condition would be: 
 

vୣ =  
1

(RC ⋅ ρ(p))
> c 

 
Therefore, if the local density of the fractal graph is too high (i.e. 
there are too many accessible triplets in a small interval), the 
system can saturate, and the tear occurs. 
This density may depend on the local numerical structure of the 
primes, or on physical conditions such as electric field, temperature 
or quantum interference. 
 
 
3.4.3 Application of the Hypothesis: Tunneling in Absolute  
         Space by Inverse Gravitational Waves 
 
That the tunnel through which the electron moves in absolute space 
is not only a fractal logical path, but can be physically supported 
by an inverse gravitational wave, generated by the space-time tear, 
is not an idea to be underestimated. 
 
If we accept that the tear (the moment in which the electron leaves 
relative space-time) implies a localized curvature of time, it is 
natural to also think that this curvature can generate an inverse 
gravitational wave as a response to the variation in density-time. 
 



So the idea of the fractal tunnel supported by gravitational 
feedback is analogous to wormholes in general relativity, anchored 
in this case to a numerical rather than geometric topology, where 
the possible physical interpretation is realized in the fractal path 
between prime numbers, which represents a quantized path in 
absolute time. 
Therefore, the inverse gravitational wave would be the dynamic 
and reactive effect of matter upon entering absolute space, as a 
counter-deformation of the space-time structure, where this tunnel, 
instead of transporting mass, would transport temporal frequencies 
(consistent with the hypothesis that the electron has lost the time 
coordinate but retains the structure of its state). 
 
 
3.4.4 Final and Experimentable Implications 
 
Concept of residual energy as depth memory: the decay observed 
in: 
 

E(t)=E0e
−t/RC 

 
is not dissipation, but loss of traceability in absolute space. 
Strong determinism: no quantum randomness, but a unique path on 
a fractal basis. The log(p) function as a measure of depth is very 
elegant and bridges arithmetic and physics. 
The possibility of modeling these structures in quantum computers 
or recursive neural networks is concrete. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Discussione 
 
4.1 Biliardi Quantici 
 
A remarkable example of how abstract mathematical concepts, 
such as the distribution of zeros of the Riemann zeta function 
(Edwards, 2003), can find resonances in concrete physical systems, 
such as the behavior of electrons in semiconductor structures. 
In short, this study will refer to theoretical and simulation 
experiments in chaotic quantum mechanics. In particular, it will be 
noted that the shape of the space in which electrons move 
dramatically influences their energetic behavior: 
 
• when electrons are confined in rectangular regions, their standing 
waves (or energy levels) are well distributed but random. The 
system is regular; 
 
• when they are confined in a stadium shape (a figure halfway 
between a circle and a rectangle, with curved edges), the system 
becomes classically chaotic, but the energy levels of the electrons 
show regular statistics, in particular spacings between levels 
similar to those of the zeros of the Riemann zeta function. 
 
This parallelism suggests a deep connection between number 
theory and quantum mechanics, even if statistical discrepancies 
remain. 
This criterion is related to the work of: 
- Dyson, who studied the statistics of the energy spectra of atomic 
nuclei and the random matrix as a model (Dyson, 1962); 
- Montgomery, who observed (with Hardy and later with Freeman 
Dyson) that the non-trivial zeros of the Riemann zeta function 
seem to follow the same distribution as the eigenvalues of certain 
random Hermitian matrices (GUE) (Montgomery, 1973); 
- Odlyzko, who performed numerical tests on millions of zeros and 
confirmed the behavior predicted by random matrix theory 
(Odlyzko, 1987). 
 
 
Relevance to the Extended Approach Theory 
 
We can trace these results back to the extended approach theory, to 
unify the structure of prime numbers with the physical models of 
quantum mechanics, such as: 
 
a) The local structure is a fractal extension → the global behavior 
and the entire graph are determined by the structured sequences of 



prime numbers via pn, b and c. This is a quantum system strongly 
confined in a geometric domain, where the local interaction (the 
choices of pn, b and c) determines the overall behavior. 
 
b) Recursive patterns → harmonic spectrum. Pairs (b,c) such as 
(1,3), (1,5), (3,7) appear with dominant frequency. These patterns, 
which generate regular Δp, behave as stationary harmonics. 
In the case of quantum billiards, the geometric shapes determine 
the harmonics of the spectrum. 
In our case, the fractal numerical graph of primes works as a 
numerical membrane that vibrates only at certain preferred 
frequencies (Csaki et al., 1999). 
 
c) Δp = b + c as an energy level. The value Δp = b + c can be read 
as an energetic unit between states of the graph. 
Just like in the experiments on quantum billiards, where the 
distance between energy levels follows a non-random statistic, also 
here we observe that: small distances (Δp = 4, 6, 8) are more 
common; large distances (Δp > 12) are sporadic, but return 
cyclically. This is an exact manifestation of chaotic quantum 
behavior: classical chaos, quantum regularity → chaos of primes, 
local fractal regularity. 
 
d) Random Matrix Theory and P₁. The set P₁, introduced in your 
theory, represents a highly structured subspace of the set of natural 
numbers, generated by fractal compression. This is completely 
analogous to the set of eigenvalues of GUE matrices (Gaussian 
Unitary Ensemble), where the eigenvalues repel each other (none 
is too close); entropy is low; the statistics of distances follows 
universal laws. 
The Riemann zeros are immersed in this logic, and if the growth of 
p via (b, c) reflects a local harmonic regularity, then the entire 
system of prime numbers could be seen as a quantum vibration 
confined in a numerical fractal domain (Mehta, 2004). 
 
To recap, in the extended approach theory, absolute space is 
structured by a recursive network of prime numbers, which 
imposes discrete and non-Euclidean constraints on the motion of 
particles creating an analogy between the geometry of space and 
numerical constraints. 
The shape of the "quantum billiards" imposes geometric 
constraints on the space in which electrons move. Thus, one could 
hypothesize an analogy between numerical constraints (primes) 
and geometric constraints (shape of space), where both influence 
the behavior of particles in a non-classical way. While for chaos 
and recursion, the chaotic behavior of electrons in the stadium-



shaped space could find a parallel in the intrinsic recursion of the 
fractal structure of primes in the extended approach theory. 
Both systems exhibit a sort of deterministic unpredictability, where 
short-term trajectories are difficult to predict, but large-scale 
statistical regularities emerge. 
Furthermore, the quantization of electron energy levels can be 
related to the idea of a discrete space-time that emerges from the 
extended approach theory, where in both cases, energy is not a 
continuous quantity, but takes discrete values, suggesting an 
underlying non-continuous structure of space and time. 
As for the observed deviation between the statistical data of 
quantum billiards and those predicted by theoretical models, it 
could correspond to the anomalies observed in the RC constant in 
the context of the approach theory. 
 
 
Modello analogico: grafo quantico frattale 
 
Oggetti corrispondenti:  

Approach Theory Quantum physics (quantum billiards) 
Prime numbers p, 
constructed as pn + b + c 

Quantized energy states Eₙ in confined system 

Δp = b + c Energy differences ΔE = Eₙ - Eₙ₋₁ 
Pairs (b, c) Normal modes (combinations of standing 

waves) 
P₁ Harmonic subspace (selected eigenvalues) 
Recurrences (1, 3), (1, 5), 
(3, 7)… 

Stable harmonics (low energy modes) 

Compressive phases (small 
Δp) 

Low resonances, high spectral density 

Expansive phases (large 
Δp) 

Regime shifts, chaotic transitions 

FFT frequencies on b and c Energy spectra (Fourier of vibrational modes) 
Evolution p₀ → p₁ Trajectory in the graph quantum 

 
 
Analog equation: discrete dynamics 
 
The generation of primes can be written as: 
 

pn+1=pn+f(bn,cn) 
 
with: f(b,c)=b+c e (b,c) ∈ P1,  
 
where: b,c≤pn, with: b < pn, c < pn, when: b, c > 1  
 
This is equivalent, in the quantum model, to a quantized dynamics 
for discrete energy jumps: 
 



En+1=En+ΔEn 

 

with: ΔEn ∈ L 
 
where: L is a restricted set of acceptable (recurrent, low-energy) 
modes, such as the pairs (1, 3), (1, 5), (3, 7), etc. 
 
 
Numerical quantum graph 
 
Now imagine a graph where: 
 
• every node is a prime p, 
• every edge connects pn→p with weight d=b+c, 
• every pair (b, c) represents an acceptable quantum transition. 
 
This graph grows fractally, favoring paths with minimum energy 
(small b + c) → numerical compression. 
Where in areas of the graph we observe repetitions of pairs (b, c) 
that are analogous to stationary areas in a quantum system → 
preferred modes. 
 
 
General equation of the model 
 
The dynamics of the system can be written as: 
 

pn+1=pn+δn 
 
with: δn=bn+cn e (bn,cn) ∈ P1 ∩ Z,  
 
where: Z is the preferred set of transitions, empirically defined as: 
 

Z={(1,1),(1,3),(1,5),(3,5),(3,7),…} 
 
This set behaves as a numerical harmonic basis. The expansion of 
p is then given by: 
 

p୬ =  p +   𝑓(b୩, c୩)𝑝

୬

୩ୀଵ

 

 
with: (bk, ck) ∈ Z   
 
 
 



Global behavior: harmonic vs chaotic regime 
 
• Constant Δp zones → numerical harmonies: δ (Dirac delta 
singularities: some Δp take on a “harmonic” role, because they 
recur much more often); 
• variable Δp zones and large fractal expansions with phase 
changes → quantum drum effect; 
• recurring patterns → local resonances, can be treated as “normal 
modes” of the graph; 
• fluctuations of (b, c) → peaks in the spectrum → harmonic 
signals interrupted by “quantum jumps”. 
 
 
The distribution of Δp = b + c follows a law other than the 
Wigner-Dyson type 
 
The distribution of Δp = b + c shows a tendency to cluster toward 
smaller values. There are many occurrences of low values of Δp, 
and the frequency decreases rapidly as Δp increases. 
The histogram of the distribution does not resemble a symmetric 
Gaussian (normal) curve. It is skewed, with a long tail to the right 
(toward higher values). This type of distribution is called: right-
skewed. 
The distribution has a very pronounced peak (or mode) at low 
values. This indicates that the sum of b and c is more often equal at 
these low values. 
There may be secondary peaks, but they are much less pronounced 
than the main peak. These secondary peaks may indicate some 
quantization or preference for certain values of Δp. 
The values of Δp lie in a specific range, with a minimum value and 
a maximum value. It is important to note this range to understand 
the physical or mathematical limits of the system 
 
 
Qualitative Comparison with Wigner-Dyson Distribution 
 
The Δp distribution, as noted, is asymmetric, while the Wigner-
Dyson distribution is typically symmetric (at least for the most 
common cases). This is a fundamental difference in form. 
The Wigner-Dyson distribution has a specific behavior near zero 
(or the mean value), which is related to the repulsion of energy 
levels in chaotic quantum systems. The Δp distribution does not 
clearly show this same behavior. 
The tails of the distribution (the behavior at extreme values) are 
different. The Wigner-Dyson distribution has tails that decay in a 
specific way, while the Δp distribution has a long, asymmetric tail. 



The fact that the Δp = b + c distribution does not follow a Wigner-
Dyson law, but rather an asymmetric distribution with a long tail to 
the right, has significant implications for the extension of the 
approach theory and for the fractal and local view of spacetime that 
it proposes. 
 
 
Non-chaotic but compressive model 
 
The Wigner-Dyson law is typical of chaotic quantum systems with 
repulsion between energy levels. The fact that the distribution of 
Δp does not follow this trend suggests that: 
 
• the numerical system described by b + c is not governed by 
traditional quantum chaos, 
• but by a principle of local optimization and compression, 
consistent with a non-random, but deterministic and recursive 
dynamics. 
 
The theory of approach, based on the idea that time and space are 
built by local fractal recursion on energetically minimal couplings, 
is strengthened. The preferred Δp values are not randomly 
distributed, but follow minimal recurrent structures, such as (1+3), 
(1+5), (3+5), etc. 
 
 
Existence of dominant numerical archetypes 
 
The presence of highly localized peaks (Δp = 4, 6, 8, 12...) shows 
that the system evolves around a few recurrent numerical 
archetypes, which we could define as "logical nodes" of the 
evolutionary graph. 
The growth graph is neither isotropic nor random, but condensed 
on privileged numerical structures. This reinforces the view of 
space-time as an adaptive network that prefers energetically 
minimal configurations and familiar numerical patterns. 
 
 
Distribution with Long Tail: signs of fractality 
 
The long tails to the right in the distribution indicate that larger 
jumps (Δp > 10) are rare but possible, and occur non-randomly. 
This is a typical behavior in fractal systems, where regions of high 
density (compression) are interspersed with jumps (expansion) that 
re-establish new recursive patterns. 



The growth of the prime graph follows an intermittent dynamic, 
alternating stable (compressive) and exploratory (expansive) 
phases, very similar to what is observed in multi-fractal growth 
models or neural networks. 
 
 
Bio-mimetic evolutionary dynamics 
 
The fact that there is no repulsion between Δp (as in the chaotic 
quantum model) but rather a convergence towards recurrent local 
minima, suggests that the behavior is closer to an adaptive 
evolutionary process, as in biological networks or learning models. 
The fractal absolute space could not only structure itself through 
numerical recursion, but also learn and stabilize optimal 
configurations in absolute time. The recursion of the pairs (b, c) 
and the preference for certain Δp are a key indication of this. 
The lack of alignment with the Wigner-Dyson distribution is not a 
weakness but a strength for the approach theory, indicating that we 
are faced with a self-regulating, adaptive system with a recursive 
local structure, which does not follow the laws of chaos but those 
of fractal equilibrium. 
 
 
Qualitative Comparison with Energy Spectra of Quantum 
Billiards 
 
At a cursory glance, the cumulative spectrum of Δp does not show 
obvious similarity to typical energy spectra of quantum billiards, 
especially those with chaotic dynamics, where specific statistical 
regularities in the spacings between energy levels are observed 
(Wigner-Dyson distribution). 
Energy spectra of quantum billiards are often characterized by 
specific statistical properties in the spacings between levels, which 
are not directly evident in a cumulative spectrum. 
The shape of the cumulative spectrum of Δp mainly reflects the 
overall distribution of Δp values, with a concentration at low 
values and a decrease in frequency for higher values. 
Thus, the cumulative spectrum of Δp provides a useful 
representation of the overall distribution of Δp values, but does not 
reveal direct similarities to the energy spectra of quantum billiards. 
The fact that the cumulative spectrum of Δp = b + c does not show 
obvious similarities with the energy spacings of quantum billiards, 
and in particular does not follow the Wigner-Dyson distribution, 
has profound consequences for the extension of the approach 
theory. 
 



 
Meaning of the failed comparison 
 
Δp = b + c shows strong recurrences (1+3, 1+5, 3+5...), preferential 
couplings and local compressions. 
The distribution is not repulsive as in the quantum levels: on the 
contrary, small values are attractive, they recur with cyclic 
frequencies and this violates the quantum repulsion statistics. 
The number system generated by (b, c) is not chaotic in the 
quantum sense, but recursive and fractal. 
The theory of approach in its fractal extension, therefore, 
hypothesizes that: absolute space and time are structured by 
recursive approach between energy (or numerical) minima, and 
the sequences of primes are the numerical manifestation of this 
logic. 
 
If Δp follows a strongly non-random, asymmetric and compressed 
distribution, this means that: 
 
a) Space is not isotropic. If there were a Wigner-Dyson type 
distribution, we could think of a statistically uniform space in 
which the jumps (Δp) between primes are randomly distributed. 
But the asymmetry shows that there are preferential directions in 
numerical evolution, therefore also “logical directions” in absolute 
space. 
 
b) Time is oriented by compressions. The recurrences of pairs (1, 
3), (1, 5), etc. suggest that the evolution of primes follows cycles, 
compressions, broken periodicities, that is, absolute time is not 
only continuous, but recursive. 
This reinforces the idea that local entropy is minimized according 
to energetically advantageous micro-patterns. 
 
c) The system learns. The presence of recurrent patterns suggests a 
form of memory. Unlike chaotic quantum systems that do not 
retain local information, here we have a structure that cyclically 
recalls itself. 
 
Formalizing: 
 

f(b,c) = p − pn= Δp ∉ WD 
 

(does not follow the Wigner-Dyson law) but instead follows a 
compressive and recursive distribution, of the type: 
 



 P(Δp) ∝  eି୮ +   δ(Δp − d୧)





 

 
where: 

 
• λ is a rate of decay of the frequency (exponential law), 
• and δ(Δp−di) are peaks localized at the archetypal nodes such as   
  4, 6, 8, 12... 
 
This reinforces the idea that the universe of prime numbers, and by 
extension the absolute space and time described in the theory is not 
governed by classical random mechanics or thermodynamics, but 
by low entropy, high local recursion models. 
 
(In the context of the approach theory, it is defined as: 
 

Δp= p − pn= b+c 
 
This quantity represents the “jump” between two consecutive 
primes, but not as a pure arithmetic gap, but as the result of a 
preferential combination (b, c) within a logical approach system as 
a compressive and recursive structure. 
In the probabilistic or statistical formalization: 
 

P(Δp) ∝  eି୮ +   δ(Δp − d୧)





 

 
Here too, Δp = b + c, consider the statistical density of its 
occurrences, with exponential decay: 
 
• high values of Δp are rare; 
• Dirac delta singularities (some Δp take on a “harmonic” role),   
   because they occur much more often.) 
 
 
4.2 Mathematical formalizations of models for space-time   
      feedback  
 
 
4.2.1 Delayed Differential Equation (DDE) Model 
 
Delayed differential equations (DDEs) are equations in which the 
derivative of the unknown function at a given instant depends on 
the values of the function at previous instants (Hale, et al., 1993). 



Let r(t) be a vector function describing the position of the electron 
in space as a function of time. 
A general DDE equation for space-time feedback might have the 
form: 
 

d²r/dt² = F(r(t), dr/dt(t), r(t - τ(t)), dr/dt(t - τ(t)), t) 
 

where F is a function describing the forces acting on the electron. 
τ(t) is a function representing the time delay, which could depend 
on time itself or on other variables in the system. 
Relatively simple to implement and simulate, where mathematical 
tools exist to analyze the stability and behavior of these equations, 
where the choice of functions F and τ(t) is crucial and requires a 
deep understanding of the physical system. 
However, it may be difficult to capture the complexity of the 
space-time feedback with a single DDE equation. 
 
 
4.2.2 Dynamic System Model with State Variables Extended                      
      
Instead of a simple position and velocity vector, it is useful to 
introduce additional state variables that represent the memory of 
spacetime. 
Therefore, an extended state vector is defined:: 
 

x(t) = [r(t), dr/dt(t), m₁(t), m₂(t), ...]ᵀ 
 
where mᵢ(t) represent the memory variables of absolute spacetime 
and […] ᵀ indicates the transpose of the vector. 
The evolution of the model is described by a system of ordinary 
differential equations (ODE): 
 

dx/dt = G(x(t), t) 
 
where G is a vector function that specifies how all state variables 
change in time. 
The variables mᵢ(t) can be defined in various ways, for example: 
Time integrals of past quantities:  
 

mᵢ(t) =  න[t −  Tᵢ, t] fᵢ(r(s), dr/ds(s)) ds  

 
Discrete values of past quantities: 
 

mᵢ(t) = r(t - Tᵢ) 
 



which provide greater flexibility in modeling the dependence on 
past events, where standard tools for the analysis of dynamic 
systems can be used, thus increasing the dimensionality of the 
system, making it more complex to analyze. 
The choice of memory variables and their evolutionary equations is 
critical for the model. 
 
 
4.2.3 Non-Commutative Geometry Model 
 
Noncommutative geometry is a branch of mathematics that 
generalizes ordinary geometry to describe spaces in which 
coordinates do not commute (i.e., xy ≠ yx) (Connes, 1994). 
Instead of working with functions on a commutative space, one 
works with noncommutative algebras of operators. 
The commutation relations between the coordinate operators x̂ and 
t̂ can be modified to include memory terms: 
 

[x̂, t̂] = iħ + M̂ 
 
where M̂ is an operator representing space-time feedback effects 
and ħ is the reduced Planck constant. 
Particle dynamics are described by equations involving these 
noncommutative operators. 
Potentially capable of capturing the deepest properties of an 
absolute space and time with memory. 
Provides an elegant and consistent mathematical framework that is 
mathematically very complex and difficult to relate directly to 
experimental observations. 
 
 
4.2.4 Non-Markov Stochastic Process Model 
 
Stochastic processes are random processes that evolve over time. A 
non-Markovian process has memory, and the motion of the 
electron is described as a stochastic process, where its position r(t) 
is a random variable (if λ, μ, or σ include memory or dependence 
on past states, the process is non-Markovian) (Ruffini, 2025). 
The generalized Langevin equation is an example of an equation 
describing a non-Markovian process suitable for describing 
systems with fluctuations and noise: 
 

m d²r/dt² =  −∇V(r(t)) − න[0, t] K(t −  s) dr/ds(s) ds +  η(t) 

 
where:  



 
• m is the mass of the electron and V(r) is the potential; 
• the kernel function K(t - s) is a function that represents the system 
memory and allows to model a variety of memory behaviors. It 
may be difficult to determine the appropriate form of the kernel 
function; 
• η(t) is a random force and represents the physical interpretation 
of the random force η(t). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Risultati 
 
 
5.1 Objective of the analysis 
 
 
5.1.1 Theoretical suggestions 
 
The logical structure of the analysis is based on the method 
proposed in this paper, where the goal of the analysis is to identify 
regions of high fractal (recursive) density of the graph generated 
by the triples (pn,b,c), where b and c are not consecutive primes. 
This could indicate compressed nodes of the graph, i.e. points 
where the space-time tear is more likely or where topological 
density accumulates. 
 
 
5.1.2 Cosa aspettarsi 
 
If the local density p(b,c) exceeds a certain threshold (which we 
can define as arbitrary), then we can hypothesize that: in that 
region the graph is more compressed; the system could have a 
higher probability of a tear; or there could be fractal cyclic patterns 
to verify. 
 
The given sample is formed by four columns of prime numbers, in 
order from left to right, representing the fields: p, pn, b, c. 
 

3 1 1 1 
5 3 1 1 
7 5 1 1 
11 7 1 3 
13 11 1 1 
17 13 1 3 
19 17 1 1 
23             19 1 3 
29             23 1 5 
31             29 1 1 
37 31       1 5 
41             37 1 3 
43             41 1 1 
… … … … 
100003       99991 1 11 

 
 



5.1.3 Distribution of b and c values 
 
Looking at the sample, the following significant recurrences 
emerge: 
• most frequent values: b=1 is extremely frequent (almost always 
used), and evidently represents a constant in the equation 
p=pn+b+c; 
 
• c takes values between 1 and about 31 in this sample, but with a 
strong concentration in the values: 

3, 5, 7, 11, 13 → most frequent 
23, 17, 19, 29 → less frequent but present; 

 
This suggests a local behavior that favors minimum sums, 
compatible with a model of energy optimization or minimum 
approach. 
 
 
5.1.4 Cumulative distribution of c 
 
The frequency decreases exponentially as the value of c increases. 
This is consistent with a compressive fractal mechanism, where 
small jumps are much more common than large ones. 
 
 
5.1.5 Recursion or repetitions over time 
 
Identification of cyclic sequences of the type: 
 
(b, c) = (1, 3) 
(b, c) = (1, 5) 
(b, c) = (3, 7) 
 
recur frequently in the context of the data provided, even at 
increasing distances between them in terms of p. 
These recurrences suggest a local recursive structure, as if the 
evolutionary graph of the first ones followed phase hooks that 
cyclically reactivate. 
 
 
5.1.6 Variations and density of b+c  
 
Defining: 
 

d=b+c, 
 



we have approximately: 
 

d ∈ [2,34], 
 
with obvious peaks in: 
 
d = 4 = (1+3) 
d = 6 = (1+5) 
d = 8 = (1+7 or 3+5) 
d = 12 = (1+11) 
 
These values are preferential: we can think of them as numerical 
harmonics where the coupling of b and c produces a logical or 
topological snap in the graph. 
This seems to support the hypothesis of local compression in 
fractal growth, where a region where the distance between p and 
pn is explainable by a few numerical archetypes. 
 
 
5.1.7 Growth rate in incremental analysis of p 
 
If we consider:  
 

Δp=p−pn=b+c, 
 
the growth rate is not linear, but fluctuates with apparent density, 
with areas where Δp is frequently small (such as 4, 6, 8) indicating 
compression. While areas with Δp > 10 indicate rare jumps, often 
preceded or followed by repetitions of the same pairs (e.g. (1, 3), 
(1, 5)). 
This is strongly compatible with the idea of a fractal topology: 
compression phases alternate with expansion phases, where jumps 
are larger but familiar patterns return. 
 
 
5.1.8 Global Frequency of Pairs (b, c) 
 
This section shows how many times each unique pair (b, c) appears 
in the entire given sample. This gives us an idea of the overall 
distribution of pairs: 
 
Pair (1, 1): 1134 times; 
Pair (1, 3): 1129 times; 
Pair (1, 5): 1805 times; 
Pair (3, 7): 838 times; 
Pair (1, 11): 901 times … 



Interpretation of the data: Pairs (1, 1), (1, 3) and (1, 5) are the most 
frequent, suggesting that these combinations of small primes tend 
to appear more often in the prime decomposition p; pairs with 
larger primes (e.g., (3, 43), (1, 47)) are less frequent, suggesting 
that these decompositions are less common. 
 
 
5.1.9 Local Density of Pairs (b, c) in Windows 
 
Here, the data has been divided into windows of 100 rows, and the 
frequency of pairs (b, c) has been calculated for each window. This 
allows us to see how the distribution of pairs varies locally within 
the given sample. 
 
Window 0 to 100: 
Pair (1, 1): 26 times; 
Pair (1, 3): 26 times; 
Pair (1, 5): 26 times; 
Pair (1, 7): 7 times; 
Pair (1, 13): 3 times; 
Pair (3, 7): 7 times; 
Pair (1, 11): 4 times; 
Pair (1, 17): 1 time; 
 
Window 100 to 200: 
Pair (3, 7): 14 times; 
Pair (1, 5): 29 times; 
Pair (1, 1): 16 times; 
Pair (1, 3): 18 times; 
Pair (1, 11): 5 times; 
Pair (1, 7): 11 times; 
Pair (1, 13): 4 times; 
Pair (1, 19): 1 times; 
Pair (1, 17): 1 times; 
Pair (3, 19): 1 times… 
 
The density of pairs varies from window to window. For example, 
the pair (1, 3) may be more frequent in one window than in 
another, suggesting local fluctuations in the structure of the prime 
decomposition. 
These local variations may indicate that there are regions in the 
given sample where certain decomposition patterns (represented by 
the pairs b, c) are more prevalent. 
 
 
 



5.1.10  Correlazione tra Distanza dei Primi e b/c 

The correlation between the distance (p - pn) between consecutive 
primes p and pn, and the values of b divided by c was also 
calculated. This gives us an idea of whether the “width” between 
the primes is related to the values of the pairs that compose them. 

Correlazioni calcolate: 
[[1                  1                 1              ... 0.55866082       0.67855114       0.5694948 ] 
 [1                   1                 1              ... 0.55866082       0.67855114       0.5694948 ] 
 [1                   1                 1              ... 0.55866082       0.67855114       0.5694948 ] 

 ... 
 [0.55866082 0.55866082 0.55866082       ... 1              0.98831555       0.99991392] 
 [0.67855114 0.67855114 0.67855114      ... 0.98831555               1       0.99023032] 
 [0.5694948   0.5694948   0.5694948        ... 0.99991392 0.99023032            1        ]] 
 
 
Correlation values range between -1 and 1, where values close to 1 
or -1 indicate a strong correlation, while values close to 0 indicate 
a weak correlation. 
In the sample, there is a weak positive correlation between the 
prime distance and the values of b and c. This suggests that, on 
average, as the prime distance increases, the values of b and c also 
tend to increase slightly. However, the correlation is weak, so this 
trend is not very pronounced. 
Preliminary conclusions: the distribution of pairs (b, c) is not 
uniform, with some small pairs appearing much more frequently 
than others; the density of pairs varies locally, suggesting that the 
prime decomposition structure may have regional patterns. 
There is a weak correlation between the prime distance and the 
values of b and c, indicating a possible, but not strong, influence of 
prime spacing on pair composition. 
 
 
5.1.11  Frequency Identification 
 
The distribution of the values of b and c clearly shows that they are 
not uniformly distributed, but some values do occur with frequency 
peaks, which suggests some regularity in their occurrence. 
These frequency peaks can be interpreted as frequencies in the 
sense of how often certain values tend to repeat within the 
sequence of decompositions. 
 
Going deeper with the Fourier Transform analysis to examine the 
frequency components in columns b and c, I extracted columns b 
and c from the given sample and treated them as separate 
sequences of data. 



I applied the Fast Fourier Transform (FFT) to each of the 
sequences (b and c). The FFT decomposes a sequence into 
different frequency components. 
The result of the FFT is a set of coefficients in the frequency 
domain, where each coefficient represents the amplitude and phase 
of a particular sinusoidal component in the original sequence. 
I then calculated the power spectrum for each sequence. The power 
spectrum is the square of the absolute value of the FFT coefficients 
and represents the energy (or power) of each frequency 
component. 
I identified the dominant frequencies by finding the peaks in the 
power spectrum. The frequencies with the highest peaks are the 
most prominent sinusoidal components in the original sequence, 
resulting in the following results: 
 
• Dominant Frequencies in b. The most dominant frequency 
corresponds to a very high peak at low frequency. This indicates a 
constant component or long-term trend in the data for b. 
There are secondary peaks at higher frequencies, but their 
amplitudes are significantly lower, suggesting that these 
components are less pronounced. 
 
• Dominant Frequencies in c. In c, the dominant frequency is also 
at low frequency, similar to b. This suggests a correlation in the 
long-term trends between b and c. 
However, the power spectrum of c shows more secondary peaks 
than b, indicating that c has a richer frequency composition and 
possibly more oscillatory behavior. 
 
Frequency of values in b: 
Value: 1, Frequency: 7214 
Value: 3, Frequency: 1496 
Value: 5, Frequency: 141 
 
Frequency of values in c: 
Value: 1, Frequency: 1134 
Value: 3, Frequency: 1129 
Value: 5, Frequency: 1805 
Value: 7, Frequency: 1551 
Value: 13, Frequency: 769 
Value: 11, Frequency: 901 
Value: 17, Frequency: 474 
Value: 19, Frequency: 419 
Value: 31, Frequency: 102 
Value: 23, Frequency: 336 
Value: 29, Frequency: 137 



Value: 43, Frequency: 6 
Value: 41, Frequency: 17 
Value: 37, Frequency: 44 
Value: 47, Frequency: 14 
Value: 71, Frequency: 1 
Value: 61, Frequency: 2 
Value: 53, Frequency: 9 
Value: 59, Frequency: 1 
 

 
5.1.12  Reconducibility to Sinusoidal Rhythms 
 
Graphs that show a delta at 0 and a concentrated power there 
indicate that the signals (the data sequences you have analyzed) 
have a strong zero-frequency component. In simpler terms, this 
means that there is a strong constant (or mean) component in the 
proposed data. 
A delta (or very narrow peak) at zero frequency means that there is 
a predominant constant frequency. The zero frequency corresponds 
to the mean value of the signal in the time domain. 
The high power at that zero frequency confirms that this constant 
component is very significant compared to the other frequencies (if 
any). 
The data (columns b and c) have a mean value that is much larger 
than the variations around that mean value. In other words, the data 
does not fluctuate much around the mean; it is relatively flat or has 
a constant trend. 
This may reflect intrinsic characteristics of the phenomena being 
measured. For example, if b and c represent energies or distances, 
there may be baseline or equilibrium values around which the 
fluctuations are small. 
If these data are related to electron motion, the strong zero-
frequency component could indicate that there are stable average 
values for the electron properties (energy, position) during the 
observation period. 
Fluctuations around this average, which would be represented by 
other frequencies in the spectrum, could correspond to oscillations 
or transitions described in the theory. 
In the theory, the constant component could represent a base level 
or equilibrium state in the fractal structure of absolute space and 
time. 
The fluctuations (other frequencies) could correspond to jumps or 
transitions between levels of the fractal structure. Again, the 
predominance of the zero frequency suggests that these jumps are 
small compared to the base state. 
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5.1.13 Possible predictive models 
 
Based on the explored data, we can formulate a heuristic model: 
 

p=pn+f(b,c), 
 
with: f(b,c) ∈ P1   
 
minimized under constraints of: 
 
• maximum recurrence; 
• low entropy (use of numbers already appeared); 
• limited b+c. 
 
In other words, the selection of b and c follows a logic of entropic 
and recursive minimization, not random. 
Therefore, the analysis of the sample confirms and strengthens the 
hypothesis of the theory: there are recurrent micro-patterns in the 
values b, c suggesting local fractal compression. 
The values are not uniformly distributed, but repeat with cyclical 
and predictable trends. 
The entire system shows a non-linear but structured behavior, like 
an adaptive network that expands with compressed and relaxed 
phases 
 
 
 
 



5.2 Support Code 
 
Prime triplets are developed in Microsoft Access using VBA 
(Visual Basic for Applications), with the aim of verifying primality 
by adding previously found prime numbers using a custom 
algorithm. In addition to simple generation, the system tracks the 
logical details of the verification process, storing the intermediate 
steps and combinations used to validate each new prime number. 
 
 
Main features 
 
Automatic prime generation: the user can specify how many 
primes he wants to generate. 
The system starts from the first generated number (3=1+1+1) and 
continues according to defined rules. 
Composite primality check, where each candidate number is 
checked by divisibility with respect to the previous primes; 
absence of unrecorded smaller primes; composition by sums of 
primes. 
As for historical and analytical recording, the primes found are 
stored in the Primes table. The details of the combination (e.g. 
Last_Prime, NP_1, NP_2) are recorded in the LastPrimes table to 
trace the logical process of the discovery. 
If a list of generated primes already exists, the user can decide 
whether to continue from where he left off or start over. 
 
 
Database Structure 
 
• Prime Table: Contains the list of prime numbers generated. 
• UltimiPrimi Table: Keeps track of the last prime number found 
and the two prime numbers (NP_1, NP_2) used to determine it. 
 
 
Algorithm Logic 
 
The algorithm is cyclic and composed of two nested loops that add 
pairs of prime numbers to generate a new candidate prime. 
Each new candidate number is verified: against all previous prime 
numbers (divisibility); against any "holes" between the last known 
prime and the new one (avoiding omissions); through 
combinations of sums with other prime numbers (logical 
confirmation via Verifica_Dispari module). 



This code can be useful in different contexts: to teach the logic of 
primality and sums of primes; as a basis for building advanced 
verification or generation algorithms of prime numbers. 
 
 
5.2.1 DataBase Microsoft Access 

 

Table: 
CREATE TABLE Primi ( 

    primo DOUBLE PRECISION DEFAULT 0 

); 

 

CREATE TABLE UltimiPrimi ( 

    Primo_Trovato DOUBLE PRECISION DEFAULT 0, 

    Ultimo_Primo  DOUBLE PRECISION DEFAULT 0, 

    NP_1          DOUBLE PRECISION DEFAULT 0, 

    NP_2          DOUBLE PRECISION DEFAULT 0 

); 

 

 

Query: 
SELECT UltimiPrimi.Primo_Trovato, UltimiPrimi.UltimoPrimo, 

UltimiPrimi.NP_1, UltimiPrimi.NP_2 

FROM UltimiPrimi 

ORDER BY Primo_Trovato; 

 

 

Code VB: 
 

Option Compare Database 

 

Private Sub Comando1_Click() 

    On Error GoTo Err_Comando1_Click 

 

    Dim dbs As DAO.Database 

    Set dbs = CurrentDb 

    Dim Record_set As DAO.Recordset 

    Dim I As Long 

    Dim msg As String, style As Integer, Response As Integer, title As String 

 

    If Me.Testo1 > 0 Then 

        Set Record_set = dbs.OpenRecordset("SELECT primo FROM Primi _ 

                ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic) 



 

        If Record_set.RecordCount = 0 Then 

            Record_set.Close 

            dbs.Execute "DELETE * FROM Primi" 

            dbs.Execute "DELETE * FROM UltimiPrimi" 

            dbs.Execute "INSERT INTO Primi (Primo) VALUES (1)", dbSeeChanges 

            dbs.Execute "INSERT INTO Primi (Primo) VALUES (3)", dbSeeChanges 

            dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, Ultimo_Primo, _     

                                   NP_1, NP_2) VALUES (3, 1, 1, 1)", dbSeeChanges 

        Else 

            Record_set.MoveLast 

            If Record_set!Primo > 3 Then 

                msg = "Do you want to continue adding primes from the last prime _ 

                                 found '" & Record_set!Primo & "'?" 

                style = vbYesNo + vbQuestion + vbDefaultButton2 

                title = "Confirm" 

                Response = MsgBox(msg, style, title) 

                If Response = vbNo Then 

                    dbs.Execute "DELETE * FROM Primi" 

                    dbs.Execute "DELETE * FROM UltimiPrimi" 

                    dbs.Execute "INSERT INTO Primi (Primo) _  

                                                  VALUES (1)", dbSeeChanges 

                    dbs.Execute "INSERT INTO Primi (Primo) _  

                                                  VALUES (3)", dbSeeChanges 

                    dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, _            

                          Ultimo_Primo, NP_1, NP_2) VALUES (3, 1, 1, 1)", dbSeeChanges 

                End If 

            End If 

            Record_set.Close 

        End If 

 

        For I = 3 To Me.Testo1 

            ContatorePrimi 

        Next 

 

        MsgBox "Operation completed!", vbInformation 

    Else 

        MsgBox "Enter the number of prime numbers you want to find!" 

    End If 

 

    dbs.Close 

 

Exit_Comando1_Click: 

    Exit Sub 

 



Err_Comando1_Click: 

    MsgBox Err.Description 

    Resume Exit_Comando1_Click 

End Sub 

 

 
Option Compare Database 

 

Public Sub ContatorePrimi() 

    On Error GoTo Err_ContatorePrimi 

 

    Dim dbs As DAO.Database 

    Set dbs = CurrentDb 

    Dim Record_set1 As DAO.Recordset 

    Dim Record_set2 As DAO.Recordset 

    Dim Record_set3 As DAO.Recordset 

    Dim Primo As Long 

    Dim UP As Long 

    Dim NP_2 As Long 

    Dim Controllo As Double 

 

    UP = 0 

    Primo = 0 

 

    Set Record_set1 = dbs.OpenRecordset("SELECT primo FROM Primi _  

               ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic) 

 

    If Record_set1.RecordCount > 0 Then 

        Record_set1.MoveLast 

        UP = Record_set1!Primo 

        Record_set1.MoveFirst 

 

        Set Record_set2 = dbs.OpenRecordset("SELECT primo FROM Primi _   

                ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic) 

        Record_set2.MoveFirst 

        NP_2 = Record_set2!Primo 

 

        Do Until Record_set2.EOF 

            Do Until Record_set1.EOF 

                Primo = UP + (NP_2 + Record_set1!Primo) 

 

                Set Record_set3 = dbs.OpenRecordset("SELECT primo FROM Primi _    

                                WHERE primo <> 1 ORDER BY primo;", dbOpenDynaset, _  

                                                                                   dbSeeChanges, dbOptimistic) 



 

                If Record_set3.RecordCount > 0 Then 

                    Record_set3.MoveFirst 

                    Do Until Record_set3.EOF 

                        Controllo = Primo Mod Record_set3!Primo 

                        If Controllo = 0 Then 

                            GoTo SaltaPrimo 

                        End If 

                        Record_set3.MoveNext 

                    Loop 

                    Record_set3.Close 

 

                    If Not Controlla_Primo_Minore(Primo, UP) Then 

                        dbs.Execute "INSERT INTO Primi (Primo) VALUES _  

                                                                 (" & Primo & ")", dbSeeChanges 

                        dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, _   

                                                       Ultimo_Primo, NP_1, NP_2) VALUES _ 

                                              (" & Primo & ", " & UP & ", " & NP_2 & ", " _  

                                                    & Record_set1!Primo & ")", dbSeeChanges 

                    End If 

                    GoTo esci 

                End If 

SaltaPrimo: 

                Record_set1.MoveNext 

            Loop 

            Record_set1.MoveFirst 

            Record_set2.MoveNext 

            If Not Record_set2.EOF Then NP_2 = Record_set2!Primo 

        Loop 

 

        Record_set2.Close 

        Record_set1.Close 

    End If 

 

esci: 

    dbs.Close 

Exit_ContatorePrimi: 

    Exit Sub 

 

Err_ContatorePrimi: 

    MsgBox Err.Description 

    Resume Exit_ContatorePrimi 

End Sub 

 
 



Public Function Controlla_Primo_Minore(ByVal Primo As Long, ByVal UP As 

Long) As Boolean 

    On Error GoTo Err_Controlla_Primo_Minore 

 

    Dim dbs As DAO.Database 

    Set dbs = CurrentDb 

    Dim Record_set_4 As DAO.Recordset 

    Dim Controllo As Double 

    Dim I As Long 

    Dim K As Long 

 

    Controlla_Primo_Minore = False 

    K = UP + 2 

 

    If K = Primo Then GoTo esci_Controlla_Primo_Minore 

 

    For I = K To Primo Step 2 

        Set Record_set_4 = dbs.OpenRecordset("SELECT primo _  

          FROM Primi WHERE primo <> 1 ORDER BY primo;", _  

            dbOpenDynaset, dbSeeChanges, dbOptimistic) 

 

        If Record_set_4.RecordCount > 0 Then 

            Record_set_4.MoveFirst 

            Do Until Record_set_4.EOF 

                Controllo = I Mod Record_set_4!Primo 

                If Controllo = 0 Then 

                    GoTo SaltaControllo 

                End If 

                Record_set_4.MoveNext 

            Loop 

 

            If I = Primo Then GoTo esci_Controlla_Primo_Minore 

 

            If Not Verifica_Dispari(I, UP) Then 

                Controlla_Primo_Minore = True 

                GoTo esci_Controlla_Primo_Minore 

            End If 

SaltaControllo: 

            Record_set_4.Close 

        End If 

    Next 

 

esci_Controlla_Primo_Minore: 

    dbs.Close 

Exit_Controlla_Primo_Minore: 



    Exit Function 

 

Err_Controlla_Primo_Minore: 

    MsgBox Err.Description 

    Resume Exit_Controlla_Primo_Minore 

End Function 

 

Public Function Verifica_Dispari(ByVal Primo As Long, _ 

                                                                   ByVal UP As Long) As Boolean 

    On Error GoTo Err_Verifica_Dispari 

 

    Dim dbs As DAO.Database 

    Set dbs = CurrentDb 

    Dim Record_set_5 As DAO.Recordset 

    Dim Record_set_6 As DAO.Recordset 

    Dim N_pari As Long 

    Dim NP As Long 

    Dim ND As Long 

 

    Verifica_Dispari = True 

    N_pari = Primo - UP 

 

    Set Record_set_5 = dbs.OpenRecordset("SELECT primo FROM Primi _    

                 ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic) 

    Set Record_set_6 = dbs.OpenRecordset("SELECT primo FROM Primi _   

                ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic) 

 

    If Record_set_5.RecordCount > 0 Then 

        Record_set_5.MoveFirst 

        Record_set_6.MoveFirst 

        NP = Record_set_6!Primo 

 

        Do Until Record_set_6.EOF 

            Do Until Record_set_5.EOF 

                ND = N_pari - (NP + Record_set_5!Primo) 

                If ND = 0 Then 

                    Verifica_Dispari = False 

                    dbs.Execute "INSERT INTO Primi (Primo) VALUES _  

                                                                      (" & Primo & ")", dbSeeChanges 

                    dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, _   

                                                        Ultimo_Primo, NP_1, NP_2) VALUES _ 

                                                    (" & Primo & ", " & UP & ", " & NP & ", " _ 

                                                     & Record_set_5!Primo & ")", dbSeeChanges 

                    GoTo esci_Verifica_Dispari 

                End If 



                Record_set_5.MoveNext 

            Loop 

            Record_set_5.MoveFirst 

            Record_set_6.MoveNext 

            If Not Record_set_6.EOF Then NP = Record_set_6!Primo 

        Loop 

 

        Record_set_6.Close 

        Record_set_5.Close 

    End If 

 

esci_Verifica_Dispari: 

    dbs.Close 

Exit_Verifica_Dispari: 

    Exit Function 

 

Err_Verifica_Dispari: 

    MsgBox Err.Description 

    Resume Exit_Verifica_Dispari 

End Function 
 
 
5.2.2 Python code for data sample analysis 
 
For each result obtained, the corresponding code is shown below. 
 
 
Global Frequency of Pairs (b, c) 
 
This code reads the file, extracts columns b and c, combines them 
into pairs, and counts how many times each pair appears. 
 
#From promp: pip install fsspec 
import pandas as pd 
from collections import Counter 
 
def frequenza_coppie(file_path="testFile.txt"): 
    try: 
        df = pd.read_csv(file_path, sep='\s+', header=None) 
        b = df.iloc[:, 2].tolist() 
        c = df.iloc[:, 3].tolist() 
        coppie = list(zip(b, c)) 
        conteggio_coppie = Counter(coppie) 
        return conteggio_coppie 
    except FileNotFoundError: 
        return "Error: File not found." 
 
conteggio_coppie = frequenza_coppie() 
if isinstance(conteggio_coppie, Counter): 



    print("Frequenza Globale delle Coppie (b, c):") 
    for coppia, frequenza in conteggio_coppie.items(): 
        print(f"  pair {coppia}: {frequenza} frequency ") 
else: 
    print(conteggio_coppie) 
 
 
Local Density of Pairs (b, c) in Windows 
 
This code divides the data into windows of 100 rows and calculates 
the frequency of pairs within each window. 
 
#From promp: pip install fsspec 
import pandas as pd 
from collections import Counter 
 
 
def densita_coppie_finestre(file_path="testFile.txt", dimensione_finestra=100): 
    try: 
        df = pd.read_csv(file_path, sep='\s+', header=None) 
        b = df.iloc[:, 2].tolist() 
        c = df.iloc[:, 3].tolist() 
        coppie = list(zip(b, c)) 
        risultati_finestre = [] 
        for i in range(0, len(coppie), dimensione_finestra): 
            finestra = coppie[i:i + dimensione_finestra] 
            conteggio_finestra = Counter(finestra) 
            risultati_finestre.append(conteggio_finestra) 
        return risultati_finestre 
    except FileNotFoundError: 
        return "Error: File Not Found." 
 
risultati_finestre = densita_coppie_finestre() 
 
if isinstance(risultati_finestre, list): 
    print("\nLocal the pair density (b, c) in window:") 
    for i, conteggio_finestra in enumerate(risultati_finestre): 
        print(f"  Finestra da {i * 100} a {(i + 1) * 100}:") 
        for coppia, frequenza in conteggio_finestra.items(): 
            print(f"  pair {coppia}: {frequenza} frequency ") 
else: 
    print(risultati_finestre) 
 
 
Correlation between Prime Distance and b/c 
 
This code calculates the distance between consecutive prime 
numbers and then the correlation between this distance and the 
values of b and c. 
 
#From promp: pip install fsspec 
import pandas as pd 
import numpy as np 
 



def preparaArray(file_content): 
    array = [] 
    s = file_content.split("\n") 
 
    for riga in s: 
        if riga != '': 
            vector = riga.split(" ") 
            if len(vector) >= 4: 
                p = vector[1].replace(',', '.') 
                b = vector[2].replace(',', '.') 
                c = vector[3].replace(',', '.') 
                array.append([float(p), float(b), float(c)]) 
            else: 
                print(f"Ignored line (less than 4 items):{riga}")   
    return array 
 
def calcola_distanza(p_values): 
    return [p_values[i+1] - p_values[i] for i in range(len(p_values) - 1)] 
 
def calcola_correlazione(distanze, b_values, c_values): 
    if len(distanze) < 1 or len(b_values) < 1 or len(c_values) < 1 or \ 
       np.var(distanze) == 0 or np.var(b_values) == 0 or np.var(c_values) == 0: 
        return None   
    return np.corrcoef([distanze, b_values, c_values], rowvar=False)   
# rowvar=False! 
 
def elabora_dati(file_path="testFile.txt"): 
 
    try: 
        with open(file_path, 'r') as file: 
            file_content = file.read() 
 
        data_array = preparaArray(file_content) 
 
        df = pd.DataFrame(data_array) 
 
        p_values = df.iloc[:, 0].tolist()  # Colonna 0 (b) come p (??) 
        b_values = df.iloc[:, 1].tolist()  # Colonna 1 (c) come b (??) 
        c_values = df.iloc[:, 2].tolist()  # Colonna 2 (d) come c (??) 
 
        tutte_le_correlazioni = [] 
 
        distanze = calcola_distanza(p_values) 
 
        if len(distanze) > 0: 
            correlazione = calcola_correlazione(distanze, b_values[:-1], c_values[:-1]) 
            if correlazione is not None: 
                tutte_le_correlazioni.append(correlazione) 
 
        return tutte_le_correlazioni 
 
    except FileNotFoundError: 
        return "Error: File Not Found." 
    except Exception as e: 
        return f"Error while processing: {e}" 
 
risultati_correlazione = elabora_dati() 
 



if isinstance(risultati_correlazione, list): 
    print("\nCalculated correlations:") 
    for correlazione in risultati_correlazione: 
        print(correlazione) 
else: 
    print(risultati_correlazione) 
 
 
Recursion and Frequency Analysis 
 
This code counts the frequency of each value in columns b and c to 
identify recursion. 
 
# From prompt: pip install fsspec 
import pandas as pd 
import numpy as np 
from collections import Counter  # Importa la classe Counter 
 
def analisi_ricorsione_frequenze(file_path="testFile.txt"): 
    try: 
        df = pd.read_csv(file_path, sep='\s+', header=None) 
        b_values = df.iloc[:, 2].tolist() 
        c_values = df.iloc[:, 3].tolist() 
 
        conteggio_b = Counter(b_values) 
        conteggio_c = Counter(c_values) 
        return conteggio_b, conteggio_c 
    except FileNotFoundError: 
        return "Error: File Not Found" 
 
conteggio_b, conteggio_c = analisi_ricorsione_frequenze() 
 
print("Frequency of values in b:") 
for valore, frequenza in conteggio_b.items(): 
    print(f"Value: {valore}, Frequency: {frequenza}") 
 
print("\n Frequency of values in c:") 
for valore, frequenza in conteggio_c.items(): 
    print(f"Value: {valore}, Frequency: {frequenza}") 
 
 
 
Sinusoidal Rhythm Reconducibility (Fourier Transform) 
 
This code performs the Fourier Transform on columns b and c to 
analyze their frequency components and displays the power 
spectra. 
 
# From prompt: pip install fsspec 
import pandas as pd 
import numpy as np 
from collections import Counter  # Importa la classe Counter 
 
from scipy.fft import fft, fftfreq 



import matplotlib.pyplot as plt 
 
def preparaArray(file_content): 
    array = [] 
    s = file_content.split("\n") 
 
    for riga in s: 
        if riga != '': 
            vector = riga.split(" ") 
            if len(vector) >= 4: 
                p = vector[1].replace(',', '.') 
                b = vector[2].replace(',', '.') 
                c = vector[3].replace(',', '.') 
                array.append([float(p), float(b), float(c)]) 
            else: 
                print(f"Ignored line (less than 4 items): {riga}")  # Messaggio di debug 
    return array 
 
 
def analisi_fourier(file_path="testFile.txt"): 
    try: 
        with open(file_path, 'r') as file: 
            file_content = file.read() 
 
        data_array = preparaArray(file_content) 
 
        df = pd.DataFrame(data_array) 
 
        b_values = df.iloc[:, 1].tolist() 
        c_values = df.iloc[:, 2].tolist() 
 
        fft_b = fft(b_values) 
        fft_c = fft(c_values) 
 
        freq_b = fftfreq(len(fft_b)) 
        freq_c = fftfreq(len(fft_c)) 
 
        potenza_b = np.abs(fft_b)**2 
        potenza_c = np.abs(fft_c)**2 
 
        return freq_b, potenza_b, freq_c, potenza_c 
 
    except FileNotFoundError: 
        return "Error: File Not Found!" 
    except Exception as e: 
        return f"Error while processing: {e}" 
 
freq_b, potenza_b, freq_c, potenza_c = analisi_fourier() 
 
plt.figure(figsize=(12, 6)) 
 
plt.subplot(1, 2, 1) 
plt.plot(freq_b, potenza_b) 
plt.title('Spettro di Potenza di b') 
plt.xlabel('Frequenza') 
plt.ylabel('Potenza') 
 
plt.subplot(1, 2, 2) 



plt.plot(freq_c, potenza_c) 
plt.title('Spettro di Potenza di c') 
plt.xlabel('Frequenza') 
plt.ylabel('Potenza') 
 
plt.tight_layout() 
plt.show() 
 
 
Analysis of the distribution Δp = b + c compared with the 
Wigner-Dyson law 
 
For a real comparison with the Wigner-Dyson distribution, an 
appropriate theoretical distribution must be generated. The 
Wigner-Dyson distribution is specific to Hermitian random 
matrices and depends on parameters such as the symmetry of the 
system. 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.stats import rv_histogram 
from collections import Counter  # Importa la classe Counter 
 
 
def preparaArray(file_content): 
    array = [] 
    s = file_content.split("\n") 
 
    for riga in s: 
        if riga != '': 
            vector = riga.split(" ") 
            if len(vector) >= 4: 
                p = vector[1].replace(',', '.') 
                b = vector[2].replace(',', '.') 
                c = vector[3].replace(',', '.') 
                array.append([float(p), float(b), float(c)]) 
            else: 
                print(f"Ignored line (less than 4 items): {riga}")   
    return array 
 
 
def analizza_distribuzione_differenze(file_path="testFile.txt"):   
 
    try: 
        with open(file_path, 'r') as file: 
            file_content = file.read() 
 
        data_array = preparaArray(file_content) 
 
        df = pd.DataFrame(data_array) 
 
        b = df.iloc[:, 1].values 
        c = df.iloc[:, 2].values 
        delta_p = b + c 



 
        hist, bin_edges = np.histogram(delta_p, bins='auto', density=True) 
 
        bin_mids = (bin_edges[:-1] + bin_edges[1:]) / 2 
 
        return hist, bin_mids, bin_edges   
 
    except FileNotFoundError: 
        return None, None, None   
 
 
hist, bin_mids, bin_edges = analizza_distribuzione_differenze() 
 
if hist is None: 
    print("Error: Cannot find file or error while parsing.") 
    exit()   
 
print("Valore di hist:", hist) 
print("Valore di bin_mids:", bin_mids) 
print("Valore di bin_edges:", bin_edges) 
 
if isinstance(hist, np.ndarray) and len(hist) > 0: 
    if len(bin_edges) > 1: 
        bar_width = bin_edges[1] - bin_edges[0] 
    else: 
        bar_width = 1.0 
 
    plt.figure(figsize=(10, 6)) 
    plt.bar(bin_mids, hist, width=bar_width) 
    plt.title('Distribuzione di Δp = b + c') 
    plt.xlabel('Valore di Δp') 
    plt.ylabel('Densità di Probabilità') 
    plt.show() 
 
    rng = np.random.default_rng() 
    wigner_dyson_sample = rng.normal(size=1000) 
    wd_hist, wd_bin_edges = np.histogram(wigner_dyson_sample, bins='auto',     
                                                                                            density=True) 
    wd_bin_mids = (wd_bin_edges[:-1] + wd_bin_edges[1:]) / 2 
 
    # Visualizza la distribuzione di confronto 
    plt.figure(figsize=(10, 6)) 
    if len(wd_bin_edges) > 1: 
        wd_bar_width = wd_bin_edges[1] - wd_bin_edges[0] 
    else: 
        wd_bar_width = 1.0 
    plt.bar(wd_bin_mids, wd_hist, width=wd_bar_width, alpha=0.5,  
                                                          label='Wigner-Dyson (Esempio)') 
    plt.title('Confronto con Wigner-Dyson') 
    plt.xlabel('Valore') 
    plt.ylabel('Densità di Probabilità') 
    plt.legend() 
    plt.show() 
 
else: 
    print("Errore durante l'analisi della distribuzione. “ + 
                                           ”Impossibile visualizzare  l'istogramma.") 
    print(delta_p)  # Stampa l'errore o i dati grezzi, se disponibili 



Construction of the Cumulative Spectrum 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
 
def calcola_spettro_cumulativo(file_path="testFile.txt"): 
    try: 
        df = pd.read_csv(file_path, sep='\s+', header=None) 
        b = df.iloc[:, 2].values 
        c = df.iloc[:, 3].values 
        delta_p = b + c 
 
        delta_p_ordinato = np.sort(delta_p) 
 
        cumulativa = np.arange(1, len(delta_p_ordinato) + 1) 
 
        return delta_p_ordinato, cumulativa 
 
    except FileNotFoundError: 
        return "Error: File Not Found." 
 
delta_p_ordinato, cumulativa = calcola_spettro_cumulativo() 
 
if isinstance(delta_p_ordinato, np.ndarray): 
    plt.figure(figsize=(10, 6)) 
    plt.plot(delta_p_ordinato, cumulativa) 
    plt.title('Spettro Cumulativo di Δp = b + c') 
    plt.xlabel('Valore di Δp') 
    plt.ylabel('Numero Cumulativo di Occorrenze') 
    plt.grid(True) 
    plt.show() 
else: 
    print(delta_p_ordinato) 
 
 
5.2.3 Python Application Prime Numbers Plugin for Blender 
 
This addon for Blender 4.0+, titled: "Python Application Prime 
Numbers", is designed to import and visualize numerical data, 
especially related to numerical sequences (such as prime numbers), 
and transform them into dynamic 3D meshes. The main goal is to 
provide an interactive interface that allows the user to explore, 
connect and analyze numerical data through three-dimensional 
geometric structures. 
 
 
How It Works Technically 
 
• The code defines a main class ultimoPrimo that handles all 
operations. 



• Numerical data is read from a .txt file, processed and converted 
into lists of vertices, edges and faces. 
• Meshes are dynamically created using bpy.data.meshes.new() and 
linked to the active scene. 
• Some functions perform operations on local files, such as 
os.path.exists() and os.remove(), ensuring a clean working 
environment. 
 
 
Periodic Function Visualization 
 
Two options ("Periodic function NP1" and "NP2") analyze selected 
columns of data through the Fourier transform to highlight periodic 
behaviors. 
A plot of the sequence is also automatically generated with 
matplotlib. Furthermore, the plugin includes a context pie menu 
and a series of buttons accessible from the UI, making the user 
experience smoother and faster. 
 
 
Code Python per Blender: 
 

bl_info = { 
    "name": "Python Application Numeri Primi", 
    "author": "Douglas Ruffini", 
    "version": (1, 0), 
    "blender": (4, 0, 0), 
    "location": "View3D > Python Application Numeri Primi", 
    "category": "Add Mesh", 
} 
 
 
import bpy 
from bpy.props import BoolProperty 
 
 
class EditorSwitcherMenu(bpy.types.Menu): 
    #Shortcut menu 
    #Menu a scelta rapida 
    bl_idname = "editor_switcher_pie_menu" 
    bl_label = "Numeri Primi" 
     
    def draw(self, context): 
        pie = self.layout.menu_pie() 
        pie.operator("object.import_numeri_primi", 
        text="Import vertex",icon="VIEW3D").activate ="1"        
        pie.operator("object.import_numeri_primi", 
        text="Join vertex to edges",icon="NODETREE").activate ="2"        
        pie.operator("object.import_numeri_primi", 
        text="Join vertex to faces",icon="ACTION").activate ="3" 
        pie.operator("object.import_numeri_primi", 
        text="Vertex y & x long",icon="ACTION").activate ="5" 
        pie.operator("object.import_numeri_primi", 



        text="Vertex y & xz long",icon="ACTION").activate ="6" 
        pie.operator("object.import_numeri_primi", 
        text="Remuve vertex",icon="ACTION").activate ="4" 
        pie.operator("object.import_numeri_primi", 
        text="Periodic function  NP1",icon="ACTION").activate ="7" 
        pie.operator("object.import_numeri_primi", 
        text="Periodic function NP2",icon="ACTION").activate ="8" 
 
class ultimoPrimo(bpy.types.Operator): 
 
    bl_idname = "object.import_numeri_primi"  
 
    bl_label = "Import vertex" 
    bl_label_two = "Join vertex to edges" 
    bl_label_three = "Join vertex to faces" 
    bl_label_four = "Remuve vertex" 
    bl_label_five = "Vertex y & x long" 
    bl_label_six = "Vertex y & xz long" 
    bl_label_seven = "Periodic function NP1" 
    bl_label_eight = "Periodic function NP2" 
 
    hl_label = "Import vertex" 
    hl_label_two = "Join vertex to edges" 
    hl_label_three = "Join vertex to faces" 
    hl_label_four = "Remuve vertex" 
    hl_label_five = "Vertex y & x long" 
    hl_label_six = "Vertex y & xz long" 
    hl_label_seven = "Periodic function NP1" 
    hl_label_eight = "Periodic function NP2" 
 
    bl_space_type = 'VIEW_3D' 
    bl_region_type = 'UI' 
    bl_category = "Scalar or Vector Panel" 
    bl_options = {'REGISTER', 'UNDO'} 
     
 
    global verts_b 
    verts_b = [] 
  
    global verts 
    verts = [] 
 
    global edges 
    edges = [] 
 
    global faces   
    faces = [] 
 
    global mesh 
    mesh = None 
   
    global obj 
    obj = None 
 
    global file_name 
    file_name = ""   
 
    global ind 



    ind =0 
 
    global index 
    index =0 
     
    global array 
    array= [] 
 
    #Set restrictions on the file dialog  
    #Impostare le restrizioni alla finestra di dialogo file 
    filter_glob: bpy.props.StringProperty(default="*.txt", options = {'HIDDEN'}) 
    filepath: bpy.props.StringProperty(subtype="FILE_PATH") 
    some_boolean: BoolProperty( name='Do a thing',  
    description='Do a thing with the file you\'ve selected', default=True, ) 
     
    #Variable linked to the click of the object menu buttons 
    #Variabile legata al click dei pulsanti menu oggetto 
    activate: bpy.props.StringProperty(name="activate", description="activate")    
 
 
    #------------------------ 
    #Start your code function 
    #Inizio delle tue funzioni  
 
    #Apri 
    def apri_file(nome_file, s): 
        f = open(nome_file, s)  
        return f 
 
    #Leggi 
    def leggi_file(f): 
        return f.read() 
 
    def leggi_parte_file(f, n): 
        return f.read(n) 
     
    def leggi_una_riga(f): 
        return f.readline() 
 
    #Esiste  
    def esiste(path, os): 
        try:     
            return os.path.exists(path) 
 
        except Exception as e: 
            print("L'errore e' : ", e) 
 
    def esiste_file(sorgente, os):       
        try: 
            #Verifica la registrazione del path file 
            #nomefile = os.environ.get(sorgente) 
            #if nomefile and os.path.isfile(nomefile): 
            return os.path.isfile(sorgente) 
 
        except Exception as e: 
            print("L'errore e' : ", e) 
 
    def esiste_dir(direc, os): 



        try: 
            #Verifica la registrazione della directory 
            #nomedir = os.environ.get(direc) 
            #if nomedir and os.path.isdir(nomedir): 
            return os.path.isdir(direc) 
 
        except Exception as e: 
            print("L'errore e' : ", e) 
 
    #Elimina 
    def elimina_file(f, os): 
        bool_=False 
        try: 
            os.remove(f)  
            bool_ = True 
            return bool_     
 
        except Exception as e: 
            print("L'errore e' : ", e) 
            return bool_  
 
    def elimina_dir(c, os): 
        bool_=False 
        try: 
            os.rmdir(c)   
            return bool_     
 
        except Exception as e: 
            print("L'errore e' : ", e) 
            return bool_        
 
    #Stampa 
    def stampa_file(t): 
        print(t) 
 
    #Chiudi  
    def chiudi_file(f): 
        try: 
            f.close()  
             
        except Exception as e: 
            print("L'errore e' : ", e) 
 
    def preparaArray(f): 
 
        global array 
        array=[] 
        s =f.split("\n") 
  
        for riga in s: 
            if riga !='': 
                vector = riga.split(" ") 
                a = ((vector[0]).replace(',', '.')) 
                b = ((vector[1]).replace(',', '.')) 
                c = ((vector[2]).replace(',', '.'))   
                d = ((vector[3]).replace(',', '.')) 
                # Consider columns 2, 3, 4 
                array.append([float(b), float(c), float(d)]) 



          
        return array 
 
    def vertici(array): 
        v = [] 
        
        for x in (array): 
            v.append(x)   
 
        return v 
 
    def lati(array): 
        global edges 
        edges = [] 
        edges = [[i, i+1] for i in range(len(array)-1)] 
 
        return edges 
 
    def facce_C(array, k): 
        global verts_b 
        global faces 
 
        verts_b = [] 
        faces = []   
        h=0 
        indice = 0 
        linea = 0 
         
        for i in array: 
            if h<=k: 
                linea = linea + i[1] 
                 
                verts_b.append( (linea, 0, 0) )  
                verts_b.append( (0, i[1], 0) ) 
                verts_b.append( (0, 0, linea) ) 
                 
                faces.append([indice, indice+1, indice+2]) 
                indice = indice + 3 
 
            h = h+1 
 
        return faces        
 
    def facce_B(array, k): 
        global verts_b 
        global faces 
 
        verts_b = [] 
        faces = []   
        h=0 
        indice = 0 
        linea = 0 
         
        for i in array: 
            if h<=k: 
                linea = linea + i[1] 
                 
                verts_b.append( (linea, 0, 0) )  



                verts_b.append( (0, i[1], 0) ) 
                verts_b.append( (0, 0, 0) ) 
                 
                faces.append([indice, indice+1, indice+2]) 
                indice = indice + 3 
 
            h = h+1 
 
        return faces        
 
    def facce(array, k): 
        global verts_b 
        global faces 
 
        verts_b = [] 
        faces = []   
        h=0 
        indice = 0 
         
        for i in array: 
            if h<=k: 
                verts_b.append( (i[0], 0, 0) )  
                verts_b.append( (0, i[1], 0) ) 
                verts_b.append( (0, 0, i[2]) )                    
                 
            faces.append([indice, indice+1, indice+2]) 
            indice = indice + 3 
 
            h = h+1 
 
        return faces        
     
    def rimuoviMesh(bpy): 
        #Removes the produced mesh 
        #Rimuove la mesh prodotta 
        global obj 
        global file_name 
        global array 
        array=[] 
     
   
        #if obj is not None:      
        #obj_data = obj.data 
            #Remuve object 
            #Rimuovo l'oggetto             
        #bpy.data.objects.remove(obj) 
            #Then its data 
            #Anche i suoi dati 
        #bpy.data.meshes.remove(obj_data)    
             
        for o in bpy.data.objects:  
            if o.type == 'MESH': 
                str=o.name 
                if str.find("Primi")!= -1: 
                    obj_data = o.data 
                    bpy.data.objects.remove(o) 
                    bpy.data.meshes.remove(obj_data)   
                     



        if bpy.data.collections.get("Collection"): 
            collection_to_remove = bpy.data.collections.get('Collection') 
            for object in collection_to_remove.objects: 
                if (object.name !='Camera') or (object.name !='Light'): 
                    str=object.name 
                    if str.find("Primi")!= -1: 
                        obj_data = object.data 
                        bpy.data.objects.remove(object) 
                        bpy.data.meshes.remove(obj_data) 
                         
        obj=None 
        file_name="" 
         
 
        return obj 
 
    #Find the periodic function 
    #Trova la funzioni periodica 
    def caricaFunzionePeriodica(bpy, array, os, k): 
        import numpy as np 
        import matplotlib.pyplot as plt 
 
        global edges   
        global verts_b 
        global faces 
 
        edges = [] 
        verts_b = [] 
        faces = []   
 
        # We only use the 'Np1' column for simplicity in detecting the 
        # periodicity. 
        y_values = [item[k] for item in array]  # Colonna Np1 
 
        if len(y_values) < 2: 
            print("Dataset insufficiente per analizzare la periodicità.") 
            return False 
 
        # Fourier transform to analyze periodicity. 
        y_fft = np.fft.fft(y_values) 
        frequencies = np.fft.fftfreq(len(y_values)) 
        magnitudes = np.abs(y_fft) 
 
        # Determine the dominant frequency (ignore the zero frequency) 
        dominant_freq_idx = np.argmax(magnitudes[1:]) + 1 
        dominant_freq = frequencies[dominant_freq_idx] 
 
        # Checking the periodicity based on the dominant frequency. 
        if dominant_freq != 0: 
            period = abs(1 / dominant_freq) 
            print(f"Frequenza dominante trovata: {dominant_freq:.4f},” +  
            “ periodo stimato: {period:.4f}") 
            print("I dati mostrano un comportamento periodico.") 
        else: 
            print("Non è stata rilevata periodicità nei dati.") 
     
        # Step 1: Generazione del Grafico e Salvataggio 
        #image_path = '/tmp/sequenza_np1_grafico.png'   



        # Specify a path for the image 
        # Replace with your preferred path 
        output_dir = "C:/path/to/output/" 
        # Create directory if it doesn't exist 
        os.makedirs(output_dir, exist_ok=True)   
        image_path = os.path.join(output_dir, "sequenza_np1_grafico.png") 
 
        plt.figure(figsize=(12, 6)) 
        plt.plot(y_values, marker='o', linestyle='-', color='b') 
        plt.title("Sequenza di valori in 'y'") 
        plt.xlabel("Indice") 
        plt.ylabel("Valore") 
        plt.grid() 
        plt.savefig(image_path) 
        plt.close() 
  
  
        verts_b = [(i, y, 0) for i, y in enumerate(y_values)]  # (x, y, z) 
        edges = [(i, i + 1) for i in range(len(verts_b) - 1)] 
         
        return True    
 
    #These four functions are used by the dictionary      
    #Queste quattro funzioni servono al dizionario 
     
    def azioneUno(self, bpy, os): 
        global obj         
       
        if(ind=='1'):     
            if (file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 
                ultimoPrimo.associaArray(self, os) 
             
            obj=ultimoPrimo.caricaMesh(bpy, ultimoPrimo.vertici(array), [], [])    
 
        return True 
         
 
    def azioneDue(self, bpy, os): 
        global obj         
         
        if (ind == '2'):  
            if(file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 
                ultimoPrimo.associaArray(self, os) 
 
            obj=ultimoPrimo.caricaMesh(bpy, ultimoPrimo.vertici(array),  
            ultimoPrimo.lati(array), [])  
 
        return True 
         
 
    def azioneTre(self, bpy, os): 
        global obj         
 
        if (ind == '3'): 
            if (file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 



                ultimoPrimo.associaArray(self, os) 
             
            ultimoPrimo.facce(array, index) 
            obj=ultimoPrimo.caricaMesh(bpy, verts_b, [], faces)  
 
        return True 
         
 
    def azioneQuattro(bpy): 
        global file_name 
         
        if (ind == '4'): 
            #If it exists then I remove object 
            #Se esiste allora rimuovo oggetto 
            if obj is not None: 
                ultimoPrimo.rimuoviMesh(bpy) 
            else: 
                file_name=""  
             
             
    def azioneCinque(self, bpy, os): 
        global obj         
 
        if (ind == '5'): 
            if (file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 
                ultimoPrimo.associaArray(self, os) 
             
            ultimoPrimo.facce_B(array, index) 
            obj=ultimoPrimo.caricaMesh(bpy, verts_b, [], faces)  
 
        return True 
 
 
    def azioneSei(self, bpy, os): 
        global obj         
 
        if (ind == '6'): 
            if (file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 
                ultimoPrimo.associaArray(self, os) 
             
            ultimoPrimo.facce_C(array, index) 
            obj=ultimoPrimo.caricaMesh(bpy, verts_b, [], faces)  
 
        return True 
     
    def azioneSette(self, bpy, os): 
        global obj         
         
        if (ind == '7'):  
            if(file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 
                ultimoPrimo.associaArray(self, os) 
 
            ultimoPrimo.caricaFunzionePeriodica(bpy, array, os, 1)  
            obj=ultimoPrimo.caricaMesh(bpy, verts_b, edges, [])  
 



        return True 
 
    def azioneOtto(self, bpy, os): 
        global obj         
         
        if (ind == '8'):  
            if(file_name == ""): 
                ultimoPrimo.rimuoviMesh(bpy) 
                ultimoPrimo.associaArray(self, os) 
 
            ultimoPrimo.caricaFunzionePeriodica(bpy, array, os, 2)  
            obj=ultimoPrimo.caricaMesh(bpy, verts_b, edges, [])  
 
        return True 
 
    def caricaMesh(bpy, verts_, edges_, faces_ ): 
        global mash 
        mesh = None      
        global obj 
        obj = None 
 
        #Associa la mesh all'oggetto 
         
        mesh = bpy.data.meshes.new("Primi") 
        obj = bpy.data.objects.new("Primi",mesh) 
        mat = bpy.data.materials.new(name="NewMaterial")  
 
        #Associa al materiale il colore Rosso  
        mat.diffuse_color = (1.0, 0.0, 0.0, 1.0)  
 
        #Aggiungi la proprietà all'oggetto 
        obj.data.materials.append(mat) 
 
        #Posiziona l'oggetto 
        obj.location = (0,0,0)  
 
        #Ritorna la collezione dell'oggetto 
        col = bpy.data.collections.get("Collection") 
        col.objects.link(obj) 
 
        #Associa la collezione alla scena 
        bpy.context.view_layer.objects.active = obj 
 
        #Proietta facce e vertici  
        mesh.from_pydata(verts_, edges_, faces_) 
 
        return obj 
                
 
    def associaArray(self, os): 
        global index 
        global array 
        global file_name 
         
        index = 0 
        array = [] 
 
        file_name = self.filepath 



        if file_name!="" or file_name!='': 
            #il file e' nella directory del progetto 
            if  ultimoPrimo.esiste(file_name, os): 
 
                f=ultimoPrimo.apri_file(file_name, "r")  
 
                array= ultimoPrimo.preparaArray(ultimoPrimo.leggi_file( f ) ) 
 
                index = len(array)-1 
 
                ultimoPrimo.chiudi_file(f) 
 
    #End your code function 
    #Fine delle tue funzioni 
    #These two functions (execute, ivoke) are part of the plugin structure  
    #Queste due funzioni (execute, ivoke) fanno parte della struttura del plugin    
     
    @classmethod 
    def poll(cls, context): 
        return True 
      
    def execute(self, context): 
        import bpy 
        import os 
        global ind 
             
        azione ={'1' : ultimoPrimo.azioneUno(self, bpy, os),  
        '2' : ultimoPrimo.azioneDue(self, bpy, os),  
        '3' : ultimoPrimo.azioneTre(self, bpy, os),  
        '4' : ultimoPrimo.azioneQuattro(bpy),  
        '5' : ultimoPrimo.azioneCinque(self, bpy, os) ,  
        '6' : ultimoPrimo.azioneSei(self, bpy, os),  
        '7' : ultimoPrimo.azioneSette(self, bpy, os),  
        '8' : ultimoPrimo.azioneOtto(self, bpy, os)}      
           
        azione.get(ind) 
 
        return {'FINISHED'} 
 
    def invoke(self, context, event):         
        global file_name 
        global ind 
 
        #Check button number 
        #Assegno numero pulsante   
           
        ind = self.activate 
         
                                 
        if (ind=='1' and  file_name == "") or (ind=='2' and file_name == "") \ 
        or (ind=='3' and file_name == "")  \ 
        or (ind=='5' and file_name == "") or (ind=='6' and file_name == "") \ 
        or (ind=='7' and file_name == "") or (ind=='8' and file_name == "") :   
            #Opens the file dialog 
            #Apre la finestra di dialogo file 
            context.window_manager.fileselect_add(self) 
        else: 
            return self.execute(context) 



                                             
        return {'RUNNING_MODAL'} 
 
 
def menu_func(self, context): 
    #This function create the voices in the menu object   
    #Questa funzione crea il menu oggetti e aggiunta di pulsanti sull'interfaccia 
utente 
    self.layout.operator_context = 'INVOKE_DEFAULT' 
    #Buttons present in the object menu  object   
    #Pulsanti presenti nel menu oggetto   
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label,  
    icon="VIEW3D").activate = "1" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_two,  
    icon="NODETREE").activate="2" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_three,  
    icon="ACTION").activate="3" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_five,  
    icon="ACTION").activate="5" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_six,  
    icon="ACTION").activate="6" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_four,  
    icon="ACTION").activate="4" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_seven,  
    icon="ACTION").activate="7" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_eight,  
    icon="ACTION").activate="8" 
 
def menu_header(self, context): 
    #This function create the buttons in the ui 
    #Questa funzione crea i pulsanti sull'interfaccia utente 
    #Buttons present in the in the UI 
    #Pulsanti presenti presenti nella UI  
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label,  
    icon="VIEW3D").activate = "1" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_two,  
    icon="NODETREE").activate="2" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_three,  
    icon="ACTION").activate="3" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_five,  
    icon="ACTION").activate="5" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_six,  
    icon="ACTION").activate="6" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_four,  
    icon="ACTION").activate="4" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_seven,  
    icon="ACTION").activate="7" 
    self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_eight,  
    icon="ACTION").activate="8" 
 
#Store keymaps  
#Memorizza le mappe dei tasti  
addon_keymaps = [] 
             
  
def register(): 
    #This function register the class 
    #Questa funzione registra la classe  



    #Handle the keymap 
    #Gestisci la mappa dei tasti 
    wm = bpy.context.window_manager 
     
    #Note that in background mode (no GUI available), keyconfigs are not available  
    #either, 
    #so we have to check this to avoid nasty errors in background case. 
    #Tieni presente che in modalità background (nessuna GUI disponibile),  
    #nemmeno i keyconfig sono disponibili, 
    #quindi dobbiamo verificarlo per evitare errori spiacevoli nel caso in background. 
    kc = wm.keyconfigs.addon 
     
    if kc: 
        km = wm.keyconfigs.addon.keymaps.new(name =  
        "Window",space_type='EMPTY', region_type='WINDOW') 
        kmi = km.keymap_items.new("wm.call_menu_pie", 
        type = "E",alt=True, value = "PRESS") 
        kmi.properties.name = "editor_switcher_pie_menu"  
        addon_keymaps.append(km) 
     
    bpy.utils.register_class(ultimoPrimo) 
    bpy.utils.register_class(EditorSwitcherMenu) 
    #Append 
    #Aggiungi dopo 
    bpy.types.VIEW3D_MT_object.append(menu_func) 
    #Prepend 
    #Aggiungi prima 
    bpy.types.VIEW3D_HT_header.prepend(menu_header) 
     
 
def unregister(): 
    #This function unregister the class 
    #Questa funzione deregistra la classe 
    #Note: when unregistering, it's usually good practice to do it in reverse order you  
    #registered. 
    #Can avoid strange issues like keymap still referring to operators already  
    #unregistered... 
    #Nota: quando si annulla la registrazione, di solito è buona norma farlo  
    #nell'ordine inverso a quello della registrazione. 
    #Puù evitare problemi strani come la mappatura dei tasti che si riferisce ancora a  
    #operatori giù non registrati... 
    #Handle the keymap 
    #Gestisci la mappa dei tasti 
    wm = bpy.context.window_manager 
    for km in addon_keymaps: 
        for kmi in km.keymap_items: 
            km.keymap_items.remove(kmi) 
        wm.keyconfigs.addon.keymaps.remove(km) 
    addon_keymaps.clear() 
     
    bpy.types.VIEW3D_MT_object.remove(menu_func) 
    bpy.types.VIEW3D_HT_header.remove(menu_header) 
    bpy.utils.unregister_class(EditorSwitcherMenu) 
    bpy.utils.unregister_class(ultimoPrimo) 
      
 
if __name__ == "__main__": 
    register()     
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