
Title:

Electron Approach Theory Fractal Extension.
Mathematical formalization of absolute space
and absolute time as a recursive projection, by

means of a weak conjecture of a weak
conjecture deriving from Goldbach's strong

conjecture.

Author:

Dott. Ing. Douglas Ruffini

Email:dou.ruffini@stud.uniroma3.it

1. Abstract

The proposed extension of the Approach Theory
(https://doi.org/10.31219/osf.io/hwca8_v1) introduces a
mathematical formalization of absolute space and absolute time,
built through a structural recursion based on odd primes (including
1), where each prime is interpreted as a vertex of a fractal triplet
generated by a sum rule, which includes its prime predecessor plus
two other minor primes equal to the predecessor, which will give
rise to a unique and recursive mapping of absolute space. Absolute
time, in this context, is not a continuous dimension but a discrete
function of depth, linked to the sequence of prime decompositions.
The absolute space thus defined is static, but explorable through
topological paths, and absolute time emerges as a projection of the
recursive activity. In this context, the theory explains the empirical
anomaly of the RC constant observed in the tear that occurs during
the electron's crossing of the relative space-time and traces the
dynamics of quantum damping back to an underlying fractal
structure, where it is shown that the electron's ascent in the relative
space-time is guaranteed by a numerical-topological deterministic
structure, consistent with the principles of feedback, strong
determinism and formal non-completeness (Gödel). Therefore, this
work is configured as a rigorous and logically compact
compendium of the deepest articulation of the Approach Theory.

2. Introduction

This work was born as a formal extension of the Approach Theory
(https://doi.org/10.31219/osf.io/hwca8_v1), already proposed in
the experimental field to explain the quantized behavior of the
electron and the anomalies observed in the energy decay (RC) in
atomic systems. In the original article it was shown that the
electron, during the orbital tear, temporarily abandons the time
coordinate, entering a phase of relativistic suspension. The
Approach Theory proposed a deep reading of this phenomenon,
introducing the concept of absolute time as a non-observable but
structuring dimension. In the present development, this conceptual
framework is further refined and formalized through a recursive
fractal structure generated by prime numbers. The mathematical
construction is based on a weak conjecture of a weak conjecture
deriving from Goldbach's strong conjecture, and defines absolute
space as a static and self-similar set of triplets consisting of odd
prime numbers, where each prime p is decomposed according to a
rule that connects it to its predecessor prime pₙ and to two other
prime numbers (b, c), thus forming a numerical-topological
network that uniquely maps space.

In this model:

• absolute time is redefined as recursive depth, i.e. as the number of
steps necessary to reach an output configuration compatible with
the input;

• absolute space is fractal, discrete, recursive, and free of internal
transformations;

• the decay observed in the physical system is reinterpreted as a
numerical memory of the fractal graph, and the constant RC as an
analogical reflection of the underlying recursive structure.

Thus, the present extension is not only compatible with the original
theory, but strengthens it by providing a formalism that allows
connecting the experimental physical dimension with a deep
numerical topology, in which absolute time and space, charge and
position are emergent expressions of a single fractal network of
prime numbers.

3. Methodology

3.1 Introduction to the method

This investigation tends to interpret the primality of a natural
number, where it will be sufficient but not necessary to say what
makes a natural number a prime number, and the possibility of
being able or not being able to determine an algebraic procedure of
their succession that appears random.
As a first definition, it can be stated that a prime number like any
other natural number is equivalent to the sum of n units, where by
unit is meant in set theory: the number one is constructed starting
from the empty set obtaining {∅} whose cardinality is precisely 1.
In standard set theory and in other impredicative theories, the set of
natural numbers is easily constructed from some source of infinity.
As soon as we have a set X with a zero element 𝑧, such that X is an
injective successor function 𝑠 : 𝑋 → 𝑋 whose image does not
contain 𝑧, then we can derive the natural numbers by taking the
intersection of all subsets of 𝑋 closed under 𝑧 and 𝑠. However, this
reasoning is essentially impredicative: for this definition to make
sense (and to yield the expected induction principle), we need the
collection of all subsets of X to form a set, namely the set of parts
of X.
In predicative contexts such as Martin Löf's dependent type theory,
this reasoning is unsound (Löf, 1980).

Martin-Löf's dependent type theory is a formal system combining
logic and type theory, used both as a basis for formal mathematical
proofs and as a functional programming language. It is an
important theory for constructive logic and has influenced the
development of programming languages such as Coq, Agda, and
Idris.

3.1.1 Dependent Types

In dependent type theory, types can depend on values. For
example, you can have a vector type of numbers of length n, where
the type itself depends on the value n.
This dependency allows much more information to be expressed in
types, making it easier to formally verify the properties of
functions and programs. For example, a vector of a definite length
guarantees that a vector sum function will only operate on vectors
of equal length.

3.1.2 Relationship between Propositions and Types (Curry-
 Howard Correspondence)

In Martin-Löf constructive logic, every proposition is seen as a
type, and proving a proposition is equivalent to constructing a
value (or “witness”) of that type.
For example, the type of pairs (A∧B) can be seen as a proposition
that states: both A and B are true, and requires a witness for both A
and B.
This relation is also called Curry-Howard isomorphism and is
central to the theory of dependent types.

3.1.3 Construction and Structure of Types

The theory includes several constructive types:

• primitive types (e.g. numbers, booleans),
• function types (functions from one type to another),
• product types (pairs or tuples of types),
• sum types (alternations between multiple types),
• dependent types, which include for example σ types (dependent
 pairs) and π types (dependent functions).

Each type has a logical role: for example, a π type generalizes the
concept of a universal quantifier (for every) and a σ type
corresponds to an existential quantifier (exists).

3.1.4 Context and Type Inference

Terms are constructed in a context, a set of variables with assigned
types. When constructing a term, each variable must have a
specified type, and type inferences ensure that the term is valid in
the current context.
Contexts also allow for dependent types: since a type can depend
on a value, the value must be present in the context.

3.1.5 Construction and Verification of Demonstrations

In Martin-Löf type theory, proving a proposition is equivalent to
constructing a term of the type associated with the proposition.

This construction process can be formalized and verified by a
proof assistant, such as Coq or Agda.
Proofs can be manipulated like mathematical objects, and
dependent type theory allows one to construct verifiable proofs that
remain valid within the system.
Thus, Martin-Löf dependent type theory is the basis of many proof
assistants, which allow theorems to be constructed and formally
verified.
In short, Martin-Löf dependent type theory provides a foundation
for logic and programming that allows properties of programs and
proofs to be formally expressed and verified, with the type itself
guaranteeing the structural and logical correctness of what is
constructed.
Ergo, inductive type formers such as natural numbers cannot be
reduced to non-inductive constructions: “…without impredicativity
as a free source of induction principles we are stuck.”
Therefore, natural numbers (and other inductive types) are usually
assumed axiomatically.
But what is impredicativity and what does it lead to in this context?
The distinction between predicative and impredicative definitions
is now widely regarded as an important watershed in logic and the
philosophy of mathematics. A definition is said to be impredicative
if it refers to a totality or set of which that entity is a part. In other
words, the definition uses a set or class that also includes the object
being defined. Otherwise, the definition is said to be predicative.
An example of an impredicative definition in mathematics is a set
defined as: the smallest set among all sets that have a certain
property.
If the concept of: all sets also includes that specific set we are
trying to define, then the definition is impredicative.
Imperdicative definitions have long been a controversial subject in
logic and the philosophy of mathematics. Many logicians and
philosophers such as Henri Poincaré, Bertrand Russell, and
Hermann Weyl, have not accepted such definitions because they
generate cyclic redundancies: since an entity is defined in terms of
a set that, in turn, depends on the definition of that entity (Russell,
1945).
However, it turns out that rejecting such definitions would require
a major revision of classical mathematics. The most common
contemporary view is probably that of Kurt Gödel, who argued that
impredicative definitions are legitimate provided one has a realist
view of the entities in question (Gödel, 1986).
The notion of predicativity has its origins in the early twentieth-
century debate between Poincaré, Russell, and others over the
nature and source of logical paradoxes. Both Poincaré and Russell
argued that paradoxes are caused by some form of vicious

circularity. What goes wrong, they argued, is that an entity is
defined, or a proposition is formulated, in a way that is
unacceptably circular. Sometimes this circularity is transparent, as
in the Liar paradox. But in other paradoxes there is no explicit
circularity. For example, the definition of the Russell class makes
no explicit reference to the class being defined. Nor does the
definition in the Berry paradox make any explicit reference to
itself.
However, Poincaré and Russell argued that paradoxes such as
Russell and Berry are guilty of an implicit form of circularity. The
problem with the Russell class is that its definition generalizes to a
totality to which the defined class would belong. This is because
the Russell class is defined as the class whose members are all and
only objects that are not self-members. So one of the objects that
must be considered for membership in the Russell class is precisely
this class. Similarly, the definition in Berry's paradox generalizes
to all definitions, including the definition in question itself (in an
absolute manner (Ruffini, 2025)).

3.2 Discussion on the method

In formalizing the fractal extension of the approach theory, we
should consider the following assumption: rearrange the
mathematical rules to accept 1 as a prime number. This would be
theoretically possible, but it would imply a massive revision of
many definitions, theorems, and algorithms. In particular, every
area of mathematics that uses prime numbers, such as number
theory, algebra, and cryptography, would have to be modified to
retain the fundamental properties or find new ways to express
them.

3.2.1 New Definition of Unique Factorization

The fundamental theorem of arithmetic should also be redefined to
include exceptions for 1. This could mean establishing a version of
factorization where 1 is included only once or where its presence is
optional, specifying that the prime factorization of a number does
not include 1 repeated infinitely many times.
One possible strategy would be to consider two forms of
factorization: a minimal factorization, which does not consider 1,
and a complete factorization, which does include it. However, this
would introduce considerable complexity into the numerical
representations.

3.2.2 Redefining Arithmetic Functions

Functions like the totient function, which calculates the primes
coprime to a given number, would have to include 1 in the set of
primes. In that case, the totient function would be redefined to
account for one more prime: namely 1.
Other functions, like sum of divisors and number of divisors, could
treat 1 as a “neutral prime” with specific properties, but this would
require recalculations and probably more complex formulas to
return equivalent results.

3.2.3 Review of Fundamental Theorems

Many theorems involving prime numbers should be reformulated
to make an exception for 1. For example: Fermat's Little Theorem
should explicitly exclude the case where p=1; Wilson's theorem
that states that a number p is prime if and only if (p−1)!≡−1 should
include a new formulation.

So it would be necessary to distinguish between unit primes (like
1) and ordinary primes to avoid confusion, and complicate the
structure of the theorems.

3.2.4 New Structure in Algebraic Rings

In ring and field theory, prime numbers are defined as irreducible
elements: 1 is a unit, not irreducible, since it has an inverse. One
would therefore have to create a new category that allows one to
treat 1 specially among the primes or redefine the idea of unity for
number rings.
This would imply changes in number rings and polynomials,
complicating fundamental properties that are currently essential in
algebra, but a surmountable problem.

3.2.5 Changes to Cryptography and Numeric Algorithms

Some cryptographic algorithms, such as RSA, rely on the
uniqueness of prime factorizations to secure them. If 1 were prime,
it would have to be explicitly excluded or included only in certain
calculations, adding complexity and potential vulnerabilities.
Similarly, algorithms for calculating the GCD (greatest common
divisor) and for prime factorization would require new procedures
to handle the particularities of 1.

3.2.6 Assumption of predicability

So instead of radically changing all the existing rules, it might be
interesting to create an extended theory of prime numbers in which
1 is considered a unitary prime. In this way, the classical
definitions would be kept unchanged, reserving the use of 1 only
for theorems or applications where it can actually be treated as a
prime without problems. However, it would be possible to
rearrange the mathematical rules to include 1 as a prime, but this
operation would introduce considerable complexity, breaking the
elegance and simplicity of the current structures. The traditional
approach of excluding 1 as a prime is much more functional to
preserve the consistency of mathematics and the simplicity of its
applications, but if it were necessary for the expansion of theory,
assuming one as a prime would be possible.

3.3 Method

3.3.1 Definition of Recursive Absolute Space

Let p ∈ P1, a prime number (including 1 as an initial prime), and let
P1⊂N be the set of odd prime numbers: P1 ∈ {1,3,5,7,11,… }.
Furthermore, let a recursive decomposition function be defined:

Φ: P1→Pଵ
ଷ con: Φ(p)=(pₙ,b,c) dove: p= pₙ+b+c

with: pₙ, b, c ∈ P1; where the notation Pଵ
ଷ indicates the Cartesian

triple product:

Pଵ
ଷ=P1×P1×P1

that is, the set of all ordered triples of odd primes (including 1),
which represent possible recursive decompositions of a prime
number p.

Let 𝑝ₙ be the n-th prime number, then predecessor of pn+1=pn, or:

pn=max{p ∈ P1 ∣ p<pn+1}
where:

P1 is the set of prime numbers.
pn is the prime number that precedes its prime successor pn+1.

with: pₙ, b, c ∈ P1, dove: b < pn, c < pn, quando: b, c > 1,

Each point p therefore has a unique representation in the recursive
system of triples, as a constitutive rule of absolute space.

We can rewrite the central condition as:

∃ p ∈ P1 : (pn,b,c) ∈ Pଵ
ଷ, pn+b+c=p

with: pₙ, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1

The electron ascent is guaranteed by the encoding only in the
structure p ∈ P1 which maps p as a random prime integer in
absolute space, generating a fractal structure.

3.3.2 Static Recursive Space

Let us define:

• S: set of states (prime triples) in absolute space.
• Φ: F → S: function that associates a fractal triple to each p ∈ P1.
• d: S × S → F: fractal metric based on the recursive distance
 between two triples.

Space is static: no internal temporal transformation. However, it
can be traveled along recursive paths.
Therefore, the prime number p represents an access node (entry or
exit) in absolute space. This node can be interpreted either as the
result of the triple, or as its predecessor or successor, according to
the following cases:

given a prime number p ∈ P1, the immediately preceding prime is

pn = max{q ∈ P1 ∣ q<p}, con: p, pₙ ∈ P1

and the next one is:

pn+1 = min{q ∈ P1 ∣ q>p}, con: p, pn+1 ∈ P1

Possible Inputs/Outputs:

• output by sum: p= pn+b+c, is equal to the input;
• output preceding p: pn=p-(b+c);
• output following p: pn+1=p+(b+c).

The criterion is that p is still a prime number, and the sum pn+b+c
forms a configuration consistent with the fractal structure.

3.3.3 Time as Recursive Depth

Let us now define a minimum time level function:

T(p)=min {i ∈ S : Φ(i)(pi)=(1,1,1)}

This T(p) is the minimum counting time for the recursive iterations
needed to bring any p back to the fundamental triplet (1,1,1) of
absolute space.
Where time in Approach Theory is defined as:

T(i) = Σ [Φ(i)(pi)]

for each transition γᵢ : sᵢ → sᵢ₊₁ between states, where
Φ(0)(p)=(1,1,1) is the minimum unit of “tear” corresponding to the
transition.
Therefore, each γᵢ is generated by the inverse rule of the triplet:

sᵢ₊₁ = ϛ (sᵢ) = pᵢ₊₁ = pᵢ + bᵢ + cᵢ, con: 𝑝i, pᵢ₊₁, bi, ci ∈ P1

ς: S→S | ς(si)=Φ(pi+1)=pi+bi+ci

where:

• in absolute time, T is a discrete sequence of fractal
transformations;
• in relative time (emergent in relative spacetime), T manifests
itself as a frequency of jerks, observable in the dissipation
(feedback) of the electron.

It follows that in relative spacetime the temporal coordinate exists
only as a manifestation of recursive activity. In the absence of
transition between fractal states, time is disjoint.

3.3.4 Time as crossing frequency

If we associate a quantized “tear” to each recursion, and define an
average transition time τ, then:

tfisico(p)=T(p)⋅τ

where τ∼RC in the electrical analogue system of the observed
decay, then:

tfisico(p)=T(p)⋅RC

Thus the RC term becomes a time-scale constant, but is associated
with a dissipative memory that is not linear.

3.3.5 Tempo relativo come proiezione dinamica dello spazio
assoluto

Let the absolute space A⊂Pଵ

ଷ be defined as in point 2, then the
dynamics that generates the relative time is a path:

Cp={Φ0(pi), 1(pi),Φ2(pi),…, ΦN(pi)}

This sequence represents the evolution of the point p in the
recursive fractal space, and the cardinality of Cp is the amount of
time needed to reconstruct the exit path. Where each point p ∈ P1
has a determined path:

𝐶 = {𝛷(𝑝)}∊ௌ
்()

.

This path is deterministic and unrepeatable (uniqueness of the
path) but it is also completely contained in the absolute space A.
The dynamics is only in the reading of the path. The feedback
effect (observed in the physical system with nonlinear damping) is
equivalent to the logical constraint that each point Φi(pi) is
constructed so as to bring the electron to the exit condition without
error:

∀p ∈ Pଵ, ∃! C୮: Φ൫(୮)൯(pାଵ) = (𝑝 + 𝑏 + c)

This univocal determination of the ascent, and the complete
mapping of the space, constitute a form of strong determinism,
where the coherent interpretation highlights that: the RC anomaly
is the experimental evidence of the underlying recursive structure;
while: the memory of the system (that is, the possibility of making
the electron return to the relative space-time) exactly reflects the
temporal depth T(p) of the explored point.
In short, absolute time is not a continuous dimension, but a discrete
function of depth, linked to the intrinsic structure of prime numbers
and their natural decompositions. Physical time is then
proportional to:

t(p)=T(p)⋅RC,

where RC is the constant experimentally observed in the analog
system. The connection with the RC constant in the physical model
is expressed, of the residual energy of an electron between orbitals
modeled as:

E(t)=E0e
−t/RC

This exponential decay is reinterpreted in my framework as the
loss of information in the ascent:

μ(t)= 1−(1/N(t)) ⇒ E(t) ≈ E0(1−μ(t))

where N(t) represents the number of branches (possible triplets)
scanned in time t. In fractal regime:

N(t)∼log(t)d,

with d fractal dimension of the numerical graph.

3.3.6 Connection with Approach Theory

In the model of the original paper, the electron tear is associated
with an irreversible residual energy:

RC ⋅
ୢమ௫

ୢ୲మ +
ୢ୶

ୢ୲
+

ଵ

ୖେ
𝑥 =0

and we observe an empirical decay constant 105 larger than
expected that is compensated, with the adjustment of the time scale
factor Δ𝑡, as:

𝐸corretta =Δ𝑡⋅𝐸MQ

where:

Δ𝑡=𝐸classica/𝐸quantistica≈105

The introduction of Δ𝑡 automatically corrects the energy levels
without violating quantum mechanics.
The final comparison with quantum theory has shown that the
model proposed by the approach theory includes it as a limiting
case for 𝑡→∞, where the average energy coincides with the Bohr
quantum levels.
Furthermore, the model correctly predicts the Heisenberg
uncertainty principle, since:

Δ𝐸⋅𝑅𝐶≥ℏ/2

Now, if we interpret the tear as the entry into absolute space via a
prime number p, then the point p can be associated with the
quantized frequency of the tear.

Assumptions:

fp∼1/RC∼1/τ

where:τ=recursive transition time between levels of A.

F is a function associated with the recursive depth or local density
of the fractal graph.
In mathematical terms, if si is the recursive depth reached via the
prime point pi, then:

f(si)=α⋅log(pi)⇒T=α∑log(pi)

with: α ∈ R+ scaling constant.

3.3.7 Feedback and recovery

The ascent occurs according to a principle of coherent feedback,
linked to the construction of a triplet starting from the original
triplet. Time is restored in the transition from absolute to relative
as is space.
Therefore the condition of uniqueness (or strong determinism) is
based on the fact that:

every prime can be uniquely mapped in a defined space, where all
possible outputs have been encoded.

Where the function F can be iterated, providing a trace of the
recursion and the historical path of the electron in absolute space.
While the time coordinate t in the original theory is connected to
the damped oscillatory motion, emerging as a count of the
recursive level.

3.3.8 Unique entry point (strong determinism of the
 ascent)

Since the primes are fully mapped, every exit is covered. This
provides:

• strong determinism (every ascent to relative space-time is
determined by recursive decomposition);
• feedback (the structure itself is recursive and redundant, where
every new entry is fed back by the number system).

Since every prime is mapped by only one possible triplet
recursively:

∃ p ∈ P1 : (pn,b,c) ∈ Pଵ
ଷ, pn+b+c=p

with: pn, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1

then every state of absolute space can be inverted exactly:

sᵢ₊₁ = ϛ(sᵢ) = pᵢ₊₁ = pᵢ + bᵢ + cᵢ, con: pi, pᵢ₊₁, bi, ci ∈ P1

and this implies no ambiguity in the ascent.

3.3.9 Feedback and Gödel

The self-similar and recursive structure prevents a total closure of
the theory within the system itself, since each point can be
decomposed indefinitely into primes (excluding a physical scale
limit). This reflects Gödel's first theorem: "In every sufficiently
complex coherent system there exist true propositions that cannot
be proved within the system."
In this case, the propositions are the recursive configurations
whose physical behavior is described only in the complete system.
This structure implies a logical self-reference:

• each prime point can be decomposed into other primes, which in
turn refer to the initial prime in their sum;
• the non-completeness of the system (no end of the recursion,
except at unity) is a physical reflection of Gödel's first theorem:
every coherent system contains true statements that cannot be
proved within it.

Therefore, the electron's ascent is guaranteed, but the proof of the
ascent is encoded only in the entire structure of absolute space.
The ascent can occur through any other prime provided that a valid
triple exists. In practice, absolute space is configured as a non-
Euclidean network of topological transitions in which each prime
is a node and each arc is a possible transaction given by a valid
triple.
Therefore, the direction of ascent is not univocal but topologically
conditioned: it depends on the network of possible triples; relative
time and space are reconstructed starting from connection nodes
between primes, and not from a minimum distance constraint,

where the topological-numerical interpretation of time and motion
is given with selective recursion.
In practice, at the moment of the tear, the electron enters a state of
temporal suspension. The time coordinate is no longer necessary to
describe its position: it becomes a function of its recursive position
in the topology generated by the prime numbers. Time does not
exist in absolute space as an intrinsic coordinate, but emerges as a
function of the recursive path. Operational definition of time:

𝑇 = 𝑓(𝑠)
ே

where:

• is the single tear (event);
• is a function associated with the recursive depth or local density
of the fractal graph.

Time becomes significant again only at the moment of “ascent”,
that is, when the electron re-enters the relative space-time.
The sum rule also suggests that each prime can be decomposed
into a valid triplet. Extending this decomposition to:

• each coordinate can in turn be decomposed according to the same
rule;
• the generated chains form fractal structures;
• the existence of natural “return points” is hypothesized: primes
that frequently recur in the valid triplet and that could be
considered recursive attractors.

Three coordinates are sufficient to describe the structure according
to the basic rule, but they do not exhaust the complexity. The
system could be extended to more dimensions based on the
recursive depth. However, the valid triplet allows the geometric
visualization of triangular structures with the prime vertices
arranged on three axes in coherence with the perceived three-
dimensional space. In short, the electron does not get “lost”
because it follows the deterministic structure of prime numbers.
The ascent is possible only if the paths are traceable, which is
guaranteed by the choice of prime numbers.

3.3.10 Geometric representation

Every triplet can be mapped into a three-dimensional space. The
sequence of triplets forms an increasing fractal structure.

Fractal coordinates:

𝑣ሬሬሬሬ⃗ = [𝑝, 𝑏, 𝑐]௧

with: 𝑝n, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1

Each node is an event in the fractal graph, where the fractal type is
a discrete self-similar structure, potentially modeled as a 3-ary tree
with numerical composition rules.

Where it is assumed that:
• at the vertex of the valid triplet: 𝑝, of the topology(p) the charge
is conserved;
• the residual mass occurs in absolute time in the form of numerical
density, as an unobservable recursive step:

v > c ⇔ ∃ p : T(p) ≠ 0 con 𝑓(𝑠) ≠ 𝑓(𝑠ାଵ).

It follows:

∃, p' ∈ P1 : Φ(p') = (pn, b, c), {vicinanza topologica a }

with: pn, b, c ∈ P1, where: b < pn, c < pn, when: b, c > 1

where proximity is defined not by a numerical distance, but by a
physical criterion (energy, orbital position, local quantum
constraints, chemistry of the elements).
The ascent therefore has an exit port conditioned on the time depth
function T(p) that can be redefined as a count of recursive passages
starting from an input pn, until reaching an exit condition pn+1 or
pn-1, which can be:

• a triplet compatible with the re-entry electronic orbital,
• or a fractal configuration (pn, b, c) that satisfies a given energy
threshold.

So the exit is relative to the atomic context: it is the chemistry of
the elements and the relative position of the remaining matter that
decides when and where the path opens and closes.

Immagine 1

Immagine 2

3.4 Strong implications

The absolute space in which an electron enters “as a prime” could
be visualized as a network, in which each node has a genetic
memory (the sum of its prime components) and a trajectory (how
its recursive composition evolves).
If we wanted to assume this model, we would then have to assume
a series of new hypotheses that by logical-mathematical induction
would lead to the formalization of the same method previously
described.

To undertake this path we must rise to a hypothesis, also
abandoned by classical physics, where it is hypothesized that: the
neutron can be born from a space-time fusion between a proton and
an electron, not in terms of mass but as a coincidence of states of
space at different times.

The hypothesis that a neutron can form from the union of an
electron and a proton is not new as I said, but has been historically
surpassed by the quark model. However, from the perspective of
the Approach Theory, this hypothesis acquires new life
(Rutherford, 1920). This is not a material fusion in the classical
sense, but a recomposition of absolute space-time states.
In other words, the neutron is a space-time superposition of two
entities, not a simple sum of mass or charge. The neutron can be
represented as a point of the fractal graph where the time function
is suspended or blocked, that is, a node at high depth that maintains
coherence between electron and proton without immediate decay.
Beta decay, in this framework, occurs when this numerical-
temporal coherence breaks, and the two states separate in
observable time.
In my original reasoning, I never claimed that this proton-electron
fusion occurs systematically inside atoms, but I identified
particular conditions, often borderline or anomalous, in which this
transition can occur.
In the developed model, the formation of a neutron is not a
systematic or automatic event, but occurs only in particular space-
time conditions, such as:

• when the electron and the proton are not bound in the classical
atomic form, for example: in very high energy environments
(electric discharges, lightning);
• in quasi-vacuum conditions or temperatures close to zero (e.g.
Bose-Einstein condensates);
• or during experimentally induced forced interactions (forced
electron capture).

When the relative spatial synchronization, typical of the stable
atom, is lost and the electron makes the tear "freely" then it can
enter a state of temporal superposition with the proton. Therefore,
if this tear occurs in synchrony with a free proton, the electron can
collapse in the same space as the proton but in a different time,
giving rise to a new stable state: the neutron.
In isolated systems, where external feedbacks (molecular bonds,
surrounding quantum fields) do not prevent the recursive
reformulation of the state; in the ordinary atomic context, the
electron does not form a neutron with the proton because the two
are constrained by orbital configurations and stabilizing quantum
symmetries.
The natural formation of the neutron according to the Approach
Theory can only occur when the atomic structure is perturbed or
disrupted, or in environments where relative time ceases to act as a
constraint.
This hypothesis forces us to look at the tear mechanism in both its
configurations — free (e.g. neutron formation) and constrained
(e.g. stable atom) — and asks us what really unites them.
In both cases: free electron and constrained electron in an atom,
they share some key properties:

a) Critical velocity overshoot (v > c). In both contexts, the tear
occurs when the electron's velocity relative to the system exceeds
the speed of light in the relative space-time framework. But be
careful: v > c is not a physical velocity measurable in classical
space-time, but is a critical transition condition in fractal absolute
space, i.e. a change of topological rule.

b) Both tears are associated with a moment in which the electron
no longer has an observable temporal coordinate:
• in the free version, the tear coincides with the entry into the same
space of the proton, but at another time (formation of the neutron);
• in the atomic version, the tear manifests itself as a damped
oscillation, with residual energy and retroactive memory.

c) Both generate a dissipative or feedback effect, governed by the
RC constant, which reflects how deeply the electron has entered
absolute space.

Forced electron capture is proposed as an experiment to validate
this theory, using oscillating fields, vacuum chambers and neutron
detectors.

It is theorized that natural phenomena such as lightning or Bose-
Einstein condensates may facilitate the formation of neutrons
without the nuclear force, through these space-time transitions.

3.4.1 Summary of the fundamental connections

3.4.1.1 Recursive Absolute Space as a Basic Structure

Let us define: P1={1,3,5,7,11,… }set of odd prime numbers
(including 1).

Φ: P1→ Pଵ
ଷ

with: Φ(p)=(pn,b,c), such that: p=pn+b+c,

where: pn,b,c ∈ P1, with: b < pn, c < pn, when: b, c > 1

This function represents the recursive decomposition of each prime
number as the sum of a triple of primes.
The absolute space A⊆Pଵ

ଷ is defined as the set of ordered triples
obtained via Φ, constituting a fractal graph.

3.4.1.2 Definition of Recursive Time

We define the recursive time as the depth needed to find a point p
∈ P1 corresponding to an output (pn+b+c):

T(p)= {i ∈ N: Φ൫(୮)൯(pାଵ) = (𝑝ିଵ + 𝑏 + c)}

The physical time associated with the point is:

tfisico(p)=T(p)⋅RC

where:

• RC≈1.44×10−15s: time constant observed in the exponential decay
of energy.
• T(p): discrete recursive depth.

3.4.1.3 Residual Energy as a Recursive Function

The observed exponential decay in the electron behavior is
expressed by:

E(t)=E0e

−t/RC

In the fractal context, this translates to:

E(p)=E0e
−T(p) =E0(1−μ(p))

with:

μ(p)=
 ଵ

(((୮))
 , dove: N(t)∼log(t)

• μ(p): information loss due to recursion,
• d: fractal dimension of the graph.

3.4.1.4 Connection with Approach Theory

In the original model the electron follows a damped oscillation:

RC ⋅
𝑑ଶ𝑥

𝑑𝑡ଶ
+

dx

dt
+

1

RC
𝑥 = 0

Discrepancy between classical and quantum energy:

Δt =
Eୡ୪ୟୱୱ୧ୡୟ

E୯୳ୟ୬୲୧ୱ୲୧ୡୟ

≈ 10ହ

In this formalization:

• Δt is reinterpreted as T(p)⋅RC and the factor 105 emerges from
the depth T(p).
• The experimentally observed time scale is then justified by a
numerical recursive structure.

The feedback is defined as the inverse function of the recursive
path:

ϛ (si)=pi+bi+ci= pᵢ₊₁=si+1, con: si ∈ Pଵ
ଷ

The principle of strong determinism implies:

∀ p ∈ P1, ∃! Cp: ΦT(p) (pାଵ) = (𝑝 + 𝑏 + c)

That is, each electron has a unique recursive ascent path, which
defines its transition from absolute space to relative spacetime.

3.4.1.5 Interpretation of Time as Frequency

Assuming that each tear has a frequency:

fp ≈
1

RC
≈

1

τ

then:

T(p) = log(p୧)
ே

And therefore:

t(p) = α log(p୧) ⋅ RC

ே

with: α scaling constant.

3.4.1.6 Formalization of the Inverse Atom

Definition: An inverse atom is a hypothetical system in which the
nucleus consists of electrons and neutrons, while protons orbit
externally.
Energy equilibrium condition:

Eprotoni=Eorbita=
ଵ

ଶ
𝑚𝑣ଶ −

The equilibrium is stable only if the fractal structure of time allows
a symmetric distribution of the recursive transitions of the
electrons that form the nucleus. The presence of protons in orbit
implies an external dynamics dependent on the depth T(p) of the
nuclear electronic centers.

3.4.1.7 Production of Inverse Gravitational Waves

Hypothesis: the electron tearing in absolute space generates a
localized variation of the time metric, to be considered as an
inverse gravitational wave.
Let's define:

δgμν(x,t)=κ⋅∂୲
ଶμ(p)

where:

• δgμν : perturbation of the metric.
• μ(p): information loss related to the recursive depth.
• κ: numerical-gravitational coupling constant.

The propagation of δgμν in an emergent space-time is the
equivalent of gravitational waves, but with opposite sign in the
transported energy:

E୰ୟ୴୧୲ୟ୧୭୬ୟ୪ୣ
୧୬୴ୣ୰ୱ୭ ∝ − න (

𝑑μ

𝑑𝑡
)ଶ𝑑𝑡

3.4.1.8 Beta Decay in the Recursive Model

In the standard model, the neutron beta decay is:

n → p + 𝑒ି + �̅�

in the fractal model:

• the neutron is a separate temporal state in which the electron and
the proton share the same space but different times;
• the decay occurs when the recursive coherence between the two
components breaks:

T(p)max⇒decadimento

Proposed formalization:

let Tn be the recursive depth associated with the stability of the
neutron:

∃ Tn: Φ
 (n)=(p,e,νe)

then:

• the release of the electron is the manifestation of the temporal
synchronization between the two states;
• the released energy is:
ΔE=ℏ/(2RC) ⇒ according to the uncertainty principle.

Transition condition:

T(n)≥Tcritica ⇒ collapse of the recursive path ⇒ beta decay.

3.4.2 The crossing of the energetic-topological threshold in the
fractal graph of time.

In other words, it is not just a question of physical speed, but of
“numerical distance” or recursive depth reached in the fractal
graph.
When the electron travels through a sequence of states (prime
triplets) that exceeds a threshold T(p), the system enters a
transition domain, where the relative time is no longer sufficient to
guarantee coherence.

∃ p ∈ P1:T(p)⋅RC > tcritico⇒ veff>c

where veff is the effective speed of crossing the recursive levels, not
in the physical space, but in the numerical metric of the graph.

The transition threshold, however, may not be related only to RC
or T(p), but also to a recursive density factor or local compression
of the graph.
Let us call ρf(p), local fractal density around the point p.
Then the generalized tear condition would be:

vୣ =
1

(RC ⋅ ρ(p))
> c

Therefore, if the local density of the fractal graph is too high (i.e.
there are too many accessible triplets in a small interval), the
system can saturate, and the tear occurs.
This density may depend on the local numerical structure of the
primes, or on physical conditions such as electric field, temperature
or quantum interference.

3.4.3 Application of the Hypothesis: Tunneling in Absolute
 Space by Inverse Gravitational Waves

That the tunnel through which the electron moves in absolute space
is not only a fractal logical path, but can be physically supported
by an inverse gravitational wave, generated by the space-time tear,
is not an idea to be underestimated.

If we accept that the tear (the moment in which the electron leaves
relative space-time) implies a localized curvature of time, it is
natural to also think that this curvature can generate an inverse
gravitational wave as a response to the variation in density-time.

So the idea of the fractal tunnel supported by gravitational
feedback is analogous to wormholes in general relativity, anchored
in this case to a numerical rather than geometric topology, where
the possible physical interpretation is realized in the fractal path
between prime numbers, which represents a quantized path in
absolute time.
Therefore, the inverse gravitational wave would be the dynamic
and reactive effect of matter upon entering absolute space, as a
counter-deformation of the space-time structure, where this tunnel,
instead of transporting mass, would transport temporal frequencies
(consistent with the hypothesis that the electron has lost the time
coordinate but retains the structure of its state).

3.4.4 Final and Experimentable Implications

Concept of residual energy as depth memory: the decay observed
in:

E(t)=E0e
−t/RC

is not dissipation, but loss of traceability in absolute space.
Strong determinism: no quantum randomness, but a unique path on
a fractal basis. The log(p) function as a measure of depth is very
elegant and bridges arithmetic and physics.
The possibility of modeling these structures in quantum computers
or recursive neural networks is concrete.

4. Discussione

4.1 Biliardi Quantici

A remarkable example of how abstract mathematical concepts,
such as the distribution of zeros of the Riemann zeta function
(Edwards, 2003), can find resonances in concrete physical systems,
such as the behavior of electrons in semiconductor structures.
In short, this study will refer to theoretical and simulation
experiments in chaotic quantum mechanics. In particular, it will be
noted that the shape of the space in which electrons move
dramatically influences their energetic behavior:

• when electrons are confined in rectangular regions, their standing
waves (or energy levels) are well distributed but random. The
system is regular;

• when they are confined in a stadium shape (a figure halfway
between a circle and a rectangle, with curved edges), the system
becomes classically chaotic, but the energy levels of the electrons
show regular statistics, in particular spacings between levels
similar to those of the zeros of the Riemann zeta function.

This parallelism suggests a deep connection between number
theory and quantum mechanics, even if statistical discrepancies
remain.
This criterion is related to the work of:
- Dyson, who studied the statistics of the energy spectra of atomic
nuclei and the random matrix as a model (Dyson, 1962);
- Montgomery, who observed (with Hardy and later with Freeman
Dyson) that the non-trivial zeros of the Riemann zeta function
seem to follow the same distribution as the eigenvalues of certain
random Hermitian matrices (GUE) (Montgomery, 1973);
- Odlyzko, who performed numerical tests on millions of zeros and
confirmed the behavior predicted by random matrix theory
(Odlyzko, 1987).

Relevance to the Extended Approach Theory

We can trace these results back to the extended approach theory, to
unify the structure of prime numbers with the physical models of
quantum mechanics, such as:

a) The local structure is a fractal extension → the global behavior
and the entire graph are determined by the structured sequences of

prime numbers via pn, b and c. This is a quantum system strongly
confined in a geometric domain, where the local interaction (the
choices of pn, b and c) determines the overall behavior.

b) Recursive patterns → harmonic spectrum. Pairs (b,c) such as
(1,3), (1,5), (3,7) appear with dominant frequency. These patterns,
which generate regular Δp, behave as stationary harmonics.
In the case of quantum billiards, the geometric shapes determine
the harmonics of the spectrum.
In our case, the fractal numerical graph of primes works as a
numerical membrane that vibrates only at certain preferred
frequencies (Csaki et al., 1999).

c) Δp = b + c as an energy level. The value Δp = b + c can be read
as an energetic unit between states of the graph.
Just like in the experiments on quantum billiards, where the
distance between energy levels follows a non-random statistic, also
here we observe that: small distances (Δp = 4, 6, 8) are more
common; large distances (Δp > 12) are sporadic, but return
cyclically. This is an exact manifestation of chaotic quantum
behavior: classical chaos, quantum regularity → chaos of primes,
local fractal regularity.

d) Random Matrix Theory and P₁. The set P₁, introduced in your
theory, represents a highly structured subspace of the set of natural
numbers, generated by fractal compression. This is completely
analogous to the set of eigenvalues of GUE matrices (Gaussian
Unitary Ensemble), where the eigenvalues repel each other (none
is too close); entropy is low; the statistics of distances follows
universal laws.
The Riemann zeros are immersed in this logic, and if the growth of
p via (b, c) reflects a local harmonic regularity, then the entire
system of prime numbers could be seen as a quantum vibration
confined in a numerical fractal domain (Mehta, 2004).

To recap, in the extended approach theory, absolute space is
structured by a recursive network of prime numbers, which
imposes discrete and non-Euclidean constraints on the motion of
particles creating an analogy between the geometry of space and
numerical constraints.
The shape of the "quantum billiards" imposes geometric
constraints on the space in which electrons move. Thus, one could
hypothesize an analogy between numerical constraints (primes)
and geometric constraints (shape of space), where both influence
the behavior of particles in a non-classical way. While for chaos
and recursion, the chaotic behavior of electrons in the stadium-

shaped space could find a parallel in the intrinsic recursion of the
fractal structure of primes in the extended approach theory.
Both systems exhibit a sort of deterministic unpredictability, where
short-term trajectories are difficult to predict, but large-scale
statistical regularities emerge.
Furthermore, the quantization of electron energy levels can be
related to the idea of a discrete space-time that emerges from the
extended approach theory, where in both cases, energy is not a
continuous quantity, but takes discrete values, suggesting an
underlying non-continuous structure of space and time.
As for the observed deviation between the statistical data of
quantum billiards and those predicted by theoretical models, it
could correspond to the anomalies observed in the RC constant in
the context of the approach theory.

Modello analogico: grafo quantico frattale

Oggetti corrispondenti:

Approach Theory Quantum physics (quantum billiards)
Prime numbers p,
constructed as pn + b + c

Quantized energy states Eₙ in confined system

Δp = b + c Energy differences ΔE = Eₙ - Eₙ₋₁
Pairs (b, c) Normal modes (combinations of standing

waves)
P₁ Harmonic subspace (selected eigenvalues)
Recurrences (1, 3), (1, 5),
(3, 7)…

Stable harmonics (low energy modes)

Compressive phases (small
Δp)

Low resonances, high spectral density

Expansive phases (large
Δp)

Regime shifts, chaotic transitions

FFT frequencies on b and c Energy spectra (Fourier of vibrational modes)
Evolution p₀ → p₁ Trajectory in the graph quantum

Analog equation: discrete dynamics

The generation of primes can be written as:

pn+1=pn+f(bn,cn)

with: f(b,c)=b+c e (b,c) ∈ P1,

where: b,c≤pn, with: b < pn, c < pn, when: b, c > 1

This is equivalent, in the quantum model, to a quantized dynamics
for discrete energy jumps:

En+1=En+ΔEn

with: ΔEn ∈ L

where: L is a restricted set of acceptable (recurrent, low-energy)
modes, such as the pairs (1, 3), (1, 5), (3, 7), etc.

Numerical quantum graph

Now imagine a graph where:

• every node is a prime p,
• every edge connects pn→p with weight d=b+c,
• every pair (b, c) represents an acceptable quantum transition.

This graph grows fractally, favoring paths with minimum energy
(small b + c) → numerical compression.
Where in areas of the graph we observe repetitions of pairs (b, c)
that are analogous to stationary areas in a quantum system →
preferred modes.

General equation of the model

The dynamics of the system can be written as:

pn+1=pn+δn

with: δn=bn+cn e (bn,cn) ∈ P1 ∩ Z,

where: Z is the preferred set of transitions, empirically defined as:

Z={(1,1),(1,3),(1,5),(3,5),(3,7),…}

This set behaves as a numerical harmonic basis. The expansion of
p is then given by:

p୬ = p + 𝑓(b୩, c୩)𝑝

୬

୩ୀଵ

with: (bk, ck) ∈ Z

Global behavior: harmonic vs chaotic regime

• Constant Δp zones → numerical harmonies: δ (Dirac delta
singularities: some Δp take on a “harmonic” role, because they
recur much more often);
• variable Δp zones and large fractal expansions with phase
changes → quantum drum effect;
• recurring patterns → local resonances, can be treated as “normal
modes” of the graph;
• fluctuations of (b, c) → peaks in the spectrum → harmonic
signals interrupted by “quantum jumps”.

The distribution of Δp = b + c follows a law other than the
Wigner-Dyson type

The distribution of Δp = b + c shows a tendency to cluster toward
smaller values. There are many occurrences of low values of Δp,
and the frequency decreases rapidly as Δp increases.
The histogram of the distribution does not resemble a symmetric
Gaussian (normal) curve. It is skewed, with a long tail to the right
(toward higher values). This type of distribution is called: right-
skewed.
The distribution has a very pronounced peak (or mode) at low
values. This indicates that the sum of b and c is more often equal at
these low values.
There may be secondary peaks, but they are much less pronounced
than the main peak. These secondary peaks may indicate some
quantization or preference for certain values of Δp.
The values of Δp lie in a specific range, with a minimum value and
a maximum value. It is important to note this range to understand
the physical or mathematical limits of the system

Qualitative Comparison with Wigner-Dyson Distribution

The Δp distribution, as noted, is asymmetric, while the Wigner-
Dyson distribution is typically symmetric (at least for the most
common cases). This is a fundamental difference in form.
The Wigner-Dyson distribution has a specific behavior near zero
(or the mean value), which is related to the repulsion of energy
levels in chaotic quantum systems. The Δp distribution does not
clearly show this same behavior.
The tails of the distribution (the behavior at extreme values) are
different. The Wigner-Dyson distribution has tails that decay in a
specific way, while the Δp distribution has a long, asymmetric tail.

The fact that the Δp = b + c distribution does not follow a Wigner-
Dyson law, but rather an asymmetric distribution with a long tail to
the right, has significant implications for the extension of the
approach theory and for the fractal and local view of spacetime that
it proposes.

Non-chaotic but compressive model

The Wigner-Dyson law is typical of chaotic quantum systems with
repulsion between energy levels. The fact that the distribution of
Δp does not follow this trend suggests that:

• the numerical system described by b + c is not governed by
traditional quantum chaos,
• but by a principle of local optimization and compression,
consistent with a non-random, but deterministic and recursive
dynamics.

The theory of approach, based on the idea that time and space are
built by local fractal recursion on energetically minimal couplings,
is strengthened. The preferred Δp values are not randomly
distributed, but follow minimal recurrent structures, such as (1+3),
(1+5), (3+5), etc.

Existence of dominant numerical archetypes

The presence of highly localized peaks (Δp = 4, 6, 8, 12...) shows
that the system evolves around a few recurrent numerical
archetypes, which we could define as "logical nodes" of the
evolutionary graph.
The growth graph is neither isotropic nor random, but condensed
on privileged numerical structures. This reinforces the view of
space-time as an adaptive network that prefers energetically
minimal configurations and familiar numerical patterns.

Distribution with Long Tail: signs of fractality

The long tails to the right in the distribution indicate that larger
jumps (Δp > 10) are rare but possible, and occur non-randomly.
This is a typical behavior in fractal systems, where regions of high
density (compression) are interspersed with jumps (expansion) that
re-establish new recursive patterns.

The growth of the prime graph follows an intermittent dynamic,
alternating stable (compressive) and exploratory (expansive)
phases, very similar to what is observed in multi-fractal growth
models or neural networks.

Bio-mimetic evolutionary dynamics

The fact that there is no repulsion between Δp (as in the chaotic
quantum model) but rather a convergence towards recurrent local
minima, suggests that the behavior is closer to an adaptive
evolutionary process, as in biological networks or learning models.
The fractal absolute space could not only structure itself through
numerical recursion, but also learn and stabilize optimal
configurations in absolute time. The recursion of the pairs (b, c)
and the preference for certain Δp are a key indication of this.
The lack of alignment with the Wigner-Dyson distribution is not a
weakness but a strength for the approach theory, indicating that we
are faced with a self-regulating, adaptive system with a recursive
local structure, which does not follow the laws of chaos but those
of fractal equilibrium.

Qualitative Comparison with Energy Spectra of Quantum
Billiards

At a cursory glance, the cumulative spectrum of Δp does not show
obvious similarity to typical energy spectra of quantum billiards,
especially those with chaotic dynamics, where specific statistical
regularities in the spacings between energy levels are observed
(Wigner-Dyson distribution).
Energy spectra of quantum billiards are often characterized by
specific statistical properties in the spacings between levels, which
are not directly evident in a cumulative spectrum.
The shape of the cumulative spectrum of Δp mainly reflects the
overall distribution of Δp values, with a concentration at low
values and a decrease in frequency for higher values.
Thus, the cumulative spectrum of Δp provides a useful
representation of the overall distribution of Δp values, but does not
reveal direct similarities to the energy spectra of quantum billiards.
The fact that the cumulative spectrum of Δp = b + c does not show
obvious similarities with the energy spacings of quantum billiards,
and in particular does not follow the Wigner-Dyson distribution,
has profound consequences for the extension of the approach
theory.

Meaning of the failed comparison

Δp = b + c shows strong recurrences (1+3, 1+5, 3+5...), preferential
couplings and local compressions.
The distribution is not repulsive as in the quantum levels: on the
contrary, small values are attractive, they recur with cyclic
frequencies and this violates the quantum repulsion statistics.
The number system generated by (b, c) is not chaotic in the
quantum sense, but recursive and fractal.
The theory of approach in its fractal extension, therefore,
hypothesizes that: absolute space and time are structured by
recursive approach between energy (or numerical) minima, and
the sequences of primes are the numerical manifestation of this
logic.

If Δp follows a strongly non-random, asymmetric and compressed
distribution, this means that:

a) Space is not isotropic. If there were a Wigner-Dyson type
distribution, we could think of a statistically uniform space in
which the jumps (Δp) between primes are randomly distributed.
But the asymmetry shows that there are preferential directions in
numerical evolution, therefore also “logical directions” in absolute
space.

b) Time is oriented by compressions. The recurrences of pairs (1,
3), (1, 5), etc. suggest that the evolution of primes follows cycles,
compressions, broken periodicities, that is, absolute time is not
only continuous, but recursive.
This reinforces the idea that local entropy is minimized according
to energetically advantageous micro-patterns.

c) The system learns. The presence of recurrent patterns suggests a
form of memory. Unlike chaotic quantum systems that do not
retain local information, here we have a structure that cyclically
recalls itself.

Formalizing:

f(b,c) = p − pn= Δp ∉ WD

(does not follow the Wigner-Dyson law) but instead follows a
compressive and recursive distribution, of the type:

 P(Δp) ∝ eି୮ + δ(Δp − d୧)

where:

• λ is a rate of decay of the frequency (exponential law),
• and δ(Δp−di) are peaks localized at the archetypal nodes such as
 4, 6, 8, 12...

This reinforces the idea that the universe of prime numbers, and by
extension the absolute space and time described in the theory is not
governed by classical random mechanics or thermodynamics, but
by low entropy, high local recursion models.

(In the context of the approach theory, it is defined as:

Δp= p − pn= b+c

This quantity represents the “jump” between two consecutive
primes, but not as a pure arithmetic gap, but as the result of a
preferential combination (b, c) within a logical approach system as
a compressive and recursive structure.
In the probabilistic or statistical formalization:

P(Δp) ∝ eି୮ + δ(Δp − d୧)

Here too, Δp = b + c, consider the statistical density of its
occurrences, with exponential decay:

• high values of Δp are rare;
• Dirac delta singularities (some Δp take on a “harmonic” role),
 because they occur much more often.)

4.2 Mathematical formalizations of models for space-time
 feedback

4.2.1 Delayed Differential Equation (DDE) Model

Delayed differential equations (DDEs) are equations in which the
derivative of the unknown function at a given instant depends on
the values of the function at previous instants (Hale, et al., 1993).

Let r(t) be a vector function describing the position of the electron
in space as a function of time.
A general DDE equation for space-time feedback might have the
form:

d²r/dt² = F(r(t), dr/dt(t), r(t - τ(t)), dr/dt(t - τ(t)), t)

where F is a function describing the forces acting on the electron.
τ(t) is a function representing the time delay, which could depend
on time itself or on other variables in the system.
Relatively simple to implement and simulate, where mathematical
tools exist to analyze the stability and behavior of these equations,
where the choice of functions F and τ(t) is crucial and requires a
deep understanding of the physical system.
However, it may be difficult to capture the complexity of the
space-time feedback with a single DDE equation.

4.2.2 Dynamic System Model with State Variables Extended

Instead of a simple position and velocity vector, it is useful to
introduce additional state variables that represent the memory of
spacetime.
Therefore, an extended state vector is defined::

x(t) = [r(t), dr/dt(t), m₁(t), m₂(t), ...]ᵀ

where mᵢ(t) represent the memory variables of absolute spacetime
and […] ᵀ indicates the transpose of the vector.
The evolution of the model is described by a system of ordinary
differential equations (ODE):

dx/dt = G(x(t), t)

where G is a vector function that specifies how all state variables
change in time.
The variables mᵢ(t) can be defined in various ways, for example:
Time integrals of past quantities:

mᵢ(t) = න[t − Tᵢ, t] fᵢ(r(s), dr/ds(s)) ds

Discrete values of past quantities:

mᵢ(t) = r(t - Tᵢ)

which provide greater flexibility in modeling the dependence on
past events, where standard tools for the analysis of dynamic
systems can be used, thus increasing the dimensionality of the
system, making it more complex to analyze.
The choice of memory variables and their evolutionary equations is
critical for the model.

4.2.3 Non-Commutative Geometry Model

Noncommutative geometry is a branch of mathematics that
generalizes ordinary geometry to describe spaces in which
coordinates do not commute (i.e., xy ≠ yx) (Connes, 1994).
Instead of working with functions on a commutative space, one
works with noncommutative algebras of operators.
The commutation relations between the coordinate operators x̂ and
t̂ can be modified to include memory terms:

[x̂, t̂] = iħ + M̂

where M̂ is an operator representing space-time feedback effects
and ħ is the reduced Planck constant.
Particle dynamics are described by equations involving these
noncommutative operators.
Potentially capable of capturing the deepest properties of an
absolute space and time with memory.
Provides an elegant and consistent mathematical framework that is
mathematically very complex and difficult to relate directly to
experimental observations.

4.2.4 Non-Markov Stochastic Process Model

Stochastic processes are random processes that evolve over time. A
non-Markovian process has memory, and the motion of the
electron is described as a stochastic process, where its position r(t)
is a random variable (if λ, μ, or σ include memory or dependence
on past states, the process is non-Markovian) (Ruffini, 2025).
The generalized Langevin equation is an example of an equation
describing a non-Markovian process suitable for describing
systems with fluctuations and noise:

m d²r/dt² = −∇V(r(t)) − න[0, t] K(t − s) dr/ds(s) ds + η(t)

where:

• m is the mass of the electron and V(r) is the potential;
• the kernel function K(t - s) is a function that represents the system
memory and allows to model a variety of memory behaviors. It
may be difficult to determine the appropriate form of the kernel
function;
• η(t) is a random force and represents the physical interpretation
of the random force η(t).

5. Risultati

5.1 Objective of the analysis

5.1.1 Theoretical suggestions

The logical structure of the analysis is based on the method
proposed in this paper, where the goal of the analysis is to identify
regions of high fractal (recursive) density of the graph generated
by the triples (pn,b,c), where b and c are not consecutive primes.
This could indicate compressed nodes of the graph, i.e. points
where the space-time tear is more likely or where topological
density accumulates.

5.1.2 Cosa aspettarsi

If the local density p(b,c) exceeds a certain threshold (which we
can define as arbitrary), then we can hypothesize that: in that
region the graph is more compressed; the system could have a
higher probability of a tear; or there could be fractal cyclic patterns
to verify.

The given sample is formed by four columns of prime numbers, in
order from left to right, representing the fields: p, pn, b, c.

3 1 1 1
5 3 1 1
7 5 1 1
11 7 1 3
13 11 1 1
17 13 1 3
19 17 1 1
23 19 1 3
29 23 1 5
31 29 1 1
37 31 1 5
41 37 1 3
43 41 1 1
… … … …
100003 99991 1 11

5.1.3 Distribution of b and c values

Looking at the sample, the following significant recurrences
emerge:
• most frequent values: b=1 is extremely frequent (almost always
used), and evidently represents a constant in the equation
p=pn+b+c;

• c takes values between 1 and about 31 in this sample, but with a
strong concentration in the values:

3, 5, 7, 11, 13 → most frequent
23, 17, 19, 29 → less frequent but present;

This suggests a local behavior that favors minimum sums,
compatible with a model of energy optimization or minimum
approach.

5.1.4 Cumulative distribution of c

The frequency decreases exponentially as the value of c increases.
This is consistent with a compressive fractal mechanism, where
small jumps are much more common than large ones.

5.1.5 Recursion or repetitions over time

Identification of cyclic sequences of the type:

(b, c) = (1, 3)
(b, c) = (1, 5)
(b, c) = (3, 7)

recur frequently in the context of the data provided, even at
increasing distances between them in terms of p.
These recurrences suggest a local recursive structure, as if the
evolutionary graph of the first ones followed phase hooks that
cyclically reactivate.

5.1.6 Variations and density of b+c

Defining:

d=b+c,

we have approximately:

d ∈ [2,34],

with obvious peaks in:

d = 4 = (1+3)
d = 6 = (1+5)
d = 8 = (1+7 or 3+5)
d = 12 = (1+11)

These values are preferential: we can think of them as numerical
harmonics where the coupling of b and c produces a logical or
topological snap in the graph.
This seems to support the hypothesis of local compression in
fractal growth, where a region where the distance between p and
pn is explainable by a few numerical archetypes.

5.1.7 Growth rate in incremental analysis of p

If we consider:

Δp=p−pn=b+c,

the growth rate is not linear, but fluctuates with apparent density,
with areas where Δp is frequently small (such as 4, 6, 8) indicating
compression. While areas with Δp > 10 indicate rare jumps, often
preceded or followed by repetitions of the same pairs (e.g. (1, 3),
(1, 5)).
This is strongly compatible with the idea of a fractal topology:
compression phases alternate with expansion phases, where jumps
are larger but familiar patterns return.

5.1.8 Global Frequency of Pairs (b, c)

This section shows how many times each unique pair (b, c) appears
in the entire given sample. This gives us an idea of the overall
distribution of pairs:

Pair (1, 1): 1134 times;
Pair (1, 3): 1129 times;
Pair (1, 5): 1805 times;
Pair (3, 7): 838 times;
Pair (1, 11): 901 times …

Interpretation of the data: Pairs (1, 1), (1, 3) and (1, 5) are the most
frequent, suggesting that these combinations of small primes tend
to appear more often in the prime decomposition p; pairs with
larger primes (e.g., (3, 43), (1, 47)) are less frequent, suggesting
that these decompositions are less common.

5.1.9 Local Density of Pairs (b, c) in Windows

Here, the data has been divided into windows of 100 rows, and the
frequency of pairs (b, c) has been calculated for each window. This
allows us to see how the distribution of pairs varies locally within
the given sample.

Window 0 to 100:
Pair (1, 1): 26 times;
Pair (1, 3): 26 times;
Pair (1, 5): 26 times;
Pair (1, 7): 7 times;
Pair (1, 13): 3 times;
Pair (3, 7): 7 times;
Pair (1, 11): 4 times;
Pair (1, 17): 1 time;

Window 100 to 200:
Pair (3, 7): 14 times;
Pair (1, 5): 29 times;
Pair (1, 1): 16 times;
Pair (1, 3): 18 times;
Pair (1, 11): 5 times;
Pair (1, 7): 11 times;
Pair (1, 13): 4 times;
Pair (1, 19): 1 times;
Pair (1, 17): 1 times;
Pair (3, 19): 1 times…

The density of pairs varies from window to window. For example,
the pair (1, 3) may be more frequent in one window than in
another, suggesting local fluctuations in the structure of the prime
decomposition.
These local variations may indicate that there are regions in the
given sample where certain decomposition patterns (represented by
the pairs b, c) are more prevalent.

5.1.10 Correlazione tra Distanza dei Primi e b/c

The correlation between the distance (p - pn) between consecutive
primes p and pn, and the values of b divided by c was also
calculated. This gives us an idea of whether the “width” between
the primes is related to the values of the pairs that compose them.

Correlazioni calcolate:
[[1 1 1 ... 0.55866082 0.67855114 0.5694948]
 [1 1 1 ... 0.55866082 0.67855114 0.5694948]
 [1 1 1 ... 0.55866082 0.67855114 0.5694948]

 ...
 [0.55866082 0.55866082 0.55866082 ... 1 0.98831555 0.99991392]
 [0.67855114 0.67855114 0.67855114 ... 0.98831555 1 0.99023032]
 [0.5694948 0.5694948 0.5694948 ... 0.99991392 0.99023032 1]]

Correlation values range between -1 and 1, where values close to 1
or -1 indicate a strong correlation, while values close to 0 indicate
a weak correlation.
In the sample, there is a weak positive correlation between the
prime distance and the values of b and c. This suggests that, on
average, as the prime distance increases, the values of b and c also
tend to increase slightly. However, the correlation is weak, so this
trend is not very pronounced.
Preliminary conclusions: the distribution of pairs (b, c) is not
uniform, with some small pairs appearing much more frequently
than others; the density of pairs varies locally, suggesting that the
prime decomposition structure may have regional patterns.
There is a weak correlation between the prime distance and the
values of b and c, indicating a possible, but not strong, influence of
prime spacing on pair composition.

5.1.11 Frequency Identification

The distribution of the values of b and c clearly shows that they are
not uniformly distributed, but some values do occur with frequency
peaks, which suggests some regularity in their occurrence.
These frequency peaks can be interpreted as frequencies in the
sense of how often certain values tend to repeat within the
sequence of decompositions.

Going deeper with the Fourier Transform analysis to examine the
frequency components in columns b and c, I extracted columns b
and c from the given sample and treated them as separate
sequences of data.

I applied the Fast Fourier Transform (FFT) to each of the
sequences (b and c). The FFT decomposes a sequence into
different frequency components.
The result of the FFT is a set of coefficients in the frequency
domain, where each coefficient represents the amplitude and phase
of a particular sinusoidal component in the original sequence.
I then calculated the power spectrum for each sequence. The power
spectrum is the square of the absolute value of the FFT coefficients
and represents the energy (or power) of each frequency
component.
I identified the dominant frequencies by finding the peaks in the
power spectrum. The frequencies with the highest peaks are the
most prominent sinusoidal components in the original sequence,
resulting in the following results:

• Dominant Frequencies in b. The most dominant frequency
corresponds to a very high peak at low frequency. This indicates a
constant component or long-term trend in the data for b.
There are secondary peaks at higher frequencies, but their
amplitudes are significantly lower, suggesting that these
components are less pronounced.

• Dominant Frequencies in c. In c, the dominant frequency is also
at low frequency, similar to b. This suggests a correlation in the
long-term trends between b and c.
However, the power spectrum of c shows more secondary peaks
than b, indicating that c has a richer frequency composition and
possibly more oscillatory behavior.

Frequency of values in b:
Value: 1, Frequency: 7214
Value: 3, Frequency: 1496
Value: 5, Frequency: 141

Frequency of values in c:
Value: 1, Frequency: 1134
Value: 3, Frequency: 1129
Value: 5, Frequency: 1805
Value: 7, Frequency: 1551
Value: 13, Frequency: 769
Value: 11, Frequency: 901
Value: 17, Frequency: 474
Value: 19, Frequency: 419
Value: 31, Frequency: 102
Value: 23, Frequency: 336
Value: 29, Frequency: 137

Value: 43, Frequency: 6
Value: 41, Frequency: 17
Value: 37, Frequency: 44
Value: 47, Frequency: 14
Value: 71, Frequency: 1
Value: 61, Frequency: 2
Value: 53, Frequency: 9
Value: 59, Frequency: 1

5.1.12 Reconducibility to Sinusoidal Rhythms

Graphs that show a delta at 0 and a concentrated power there
indicate that the signals (the data sequences you have analyzed)
have a strong zero-frequency component. In simpler terms, this
means that there is a strong constant (or mean) component in the
proposed data.
A delta (or very narrow peak) at zero frequency means that there is
a predominant constant frequency. The zero frequency corresponds
to the mean value of the signal in the time domain.
The high power at that zero frequency confirms that this constant
component is very significant compared to the other frequencies (if
any).
The data (columns b and c) have a mean value that is much larger
than the variations around that mean value. In other words, the data
does not fluctuate much around the mean; it is relatively flat or has
a constant trend.
This may reflect intrinsic characteristics of the phenomena being
measured. For example, if b and c represent energies or distances,
there may be baseline or equilibrium values around which the
fluctuations are small.
If these data are related to electron motion, the strong zero-
frequency component could indicate that there are stable average
values for the electron properties (energy, position) during the
observation period.
Fluctuations around this average, which would be represented by
other frequencies in the spectrum, could correspond to oscillations
or transitions described in the theory.
In the theory, the constant component could represent a base level
or equilibrium state in the fractal structure of absolute space and
time.
The fluctuations (other frequencies) could correspond to jumps or
transitions between levels of the fractal structure. Again, the
predominance of the zero frequency suggests that these jumps are
small compared to the base state.

Immagine 3

Immagine 4

Immagine 5

Immagine 6

5.1.13 Possible predictive models

Based on the explored data, we can formulate a heuristic model:

p=pn+f(b,c),

with: f(b,c) ∈ P1

minimized under constraints of:

• maximum recurrence;
• low entropy (use of numbers already appeared);
• limited b+c.

In other words, the selection of b and c follows a logic of entropic
and recursive minimization, not random.
Therefore, the analysis of the sample confirms and strengthens the
hypothesis of the theory: there are recurrent micro-patterns in the
values b, c suggesting local fractal compression.
The values are not uniformly distributed, but repeat with cyclical
and predictable trends.
The entire system shows a non-linear but structured behavior, like
an adaptive network that expands with compressed and relaxed
phases

5.2 Support Code

Prime triplets are developed in Microsoft Access using VBA
(Visual Basic for Applications), with the aim of verifying primality
by adding previously found prime numbers using a custom
algorithm. In addition to simple generation, the system tracks the
logical details of the verification process, storing the intermediate
steps and combinations used to validate each new prime number.

Main features

Automatic prime generation: the user can specify how many
primes he wants to generate.
The system starts from the first generated number (3=1+1+1) and
continues according to defined rules.
Composite primality check, where each candidate number is
checked by divisibility with respect to the previous primes;
absence of unrecorded smaller primes; composition by sums of
primes.
As for historical and analytical recording, the primes found are
stored in the Primes table. The details of the combination (e.g.
Last_Prime, NP_1, NP_2) are recorded in the LastPrimes table to
trace the logical process of the discovery.
If a list of generated primes already exists, the user can decide
whether to continue from where he left off or start over.

Database Structure

• Prime Table: Contains the list of prime numbers generated.
• UltimiPrimi Table: Keeps track of the last prime number found
and the two prime numbers (NP_1, NP_2) used to determine it.

Algorithm Logic

The algorithm is cyclic and composed of two nested loops that add
pairs of prime numbers to generate a new candidate prime.
Each new candidate number is verified: against all previous prime
numbers (divisibility); against any "holes" between the last known
prime and the new one (avoiding omissions); through
combinations of sums with other prime numbers (logical
confirmation via Verifica_Dispari module).

This code can be useful in different contexts: to teach the logic of
primality and sums of primes; as a basis for building advanced
verification or generation algorithms of prime numbers.

5.2.1 DataBase Microsoft Access

Table:
CREATE TABLE Primi (

 primo DOUBLE PRECISION DEFAULT 0

);

CREATE TABLE UltimiPrimi (

 Primo_Trovato DOUBLE PRECISION DEFAULT 0,

 Ultimo_Primo DOUBLE PRECISION DEFAULT 0,

 NP_1 DOUBLE PRECISION DEFAULT 0,

 NP_2 DOUBLE PRECISION DEFAULT 0

);

Query:
SELECT UltimiPrimi.Primo_Trovato, UltimiPrimi.UltimoPrimo,

UltimiPrimi.NP_1, UltimiPrimi.NP_2

FROM UltimiPrimi

ORDER BY Primo_Trovato;

Code VB:

Option Compare Database

Private Sub Comando1_Click()

 On Error GoTo Err_Comando1_Click

 Dim dbs As DAO.Database

 Set dbs = CurrentDb

 Dim Record_set As DAO.Recordset

 Dim I As Long

 Dim msg As String, style As Integer, Response As Integer, title As String

 If Me.Testo1 > 0 Then

 Set Record_set = dbs.OpenRecordset("SELECT primo FROM Primi _

 ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic)

 If Record_set.RecordCount = 0 Then

 Record_set.Close

 dbs.Execute "DELETE * FROM Primi"

 dbs.Execute "DELETE * FROM UltimiPrimi"

 dbs.Execute "INSERT INTO Primi (Primo) VALUES (1)", dbSeeChanges

 dbs.Execute "INSERT INTO Primi (Primo) VALUES (3)", dbSeeChanges

 dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, Ultimo_Primo, _

 NP_1, NP_2) VALUES (3, 1, 1, 1)", dbSeeChanges

 Else

 Record_set.MoveLast

 If Record_set!Primo > 3 Then

 msg = "Do you want to continue adding primes from the last prime _

 found '" & Record_set!Primo & "'?"

 style = vbYesNo + vbQuestion + vbDefaultButton2

 title = "Confirm"

 Response = MsgBox(msg, style, title)

 If Response = vbNo Then

 dbs.Execute "DELETE * FROM Primi"

 dbs.Execute "DELETE * FROM UltimiPrimi"

 dbs.Execute "INSERT INTO Primi (Primo) _

 VALUES (1)", dbSeeChanges

 dbs.Execute "INSERT INTO Primi (Primo) _

 VALUES (3)", dbSeeChanges

 dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, _

 Ultimo_Primo, NP_1, NP_2) VALUES (3, 1, 1, 1)", dbSeeChanges

 End If

 End If

 Record_set.Close

 End If

 For I = 3 To Me.Testo1

 ContatorePrimi

 Next

 MsgBox "Operation completed!", vbInformation

 Else

 MsgBox "Enter the number of prime numbers you want to find!"

 End If

 dbs.Close

Exit_Comando1_Click:

 Exit Sub

Err_Comando1_Click:

 MsgBox Err.Description

 Resume Exit_Comando1_Click

End Sub

Option Compare Database

Public Sub ContatorePrimi()

 On Error GoTo Err_ContatorePrimi

 Dim dbs As DAO.Database

 Set dbs = CurrentDb

 Dim Record_set1 As DAO.Recordset

 Dim Record_set2 As DAO.Recordset

 Dim Record_set3 As DAO.Recordset

 Dim Primo As Long

 Dim UP As Long

 Dim NP_2 As Long

 Dim Controllo As Double

 UP = 0

 Primo = 0

 Set Record_set1 = dbs.OpenRecordset("SELECT primo FROM Primi _

 ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic)

 If Record_set1.RecordCount > 0 Then

 Record_set1.MoveLast

 UP = Record_set1!Primo

 Record_set1.MoveFirst

 Set Record_set2 = dbs.OpenRecordset("SELECT primo FROM Primi _

 ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic)

 Record_set2.MoveFirst

 NP_2 = Record_set2!Primo

 Do Until Record_set2.EOF

 Do Until Record_set1.EOF

 Primo = UP + (NP_2 + Record_set1!Primo)

 Set Record_set3 = dbs.OpenRecordset("SELECT primo FROM Primi _

 WHERE primo <> 1 ORDER BY primo;", dbOpenDynaset, _

 dbSeeChanges, dbOptimistic)

 If Record_set3.RecordCount > 0 Then

 Record_set3.MoveFirst

 Do Until Record_set3.EOF

 Controllo = Primo Mod Record_set3!Primo

 If Controllo = 0 Then

 GoTo SaltaPrimo

 End If

 Record_set3.MoveNext

 Loop

 Record_set3.Close

 If Not Controlla_Primo_Minore(Primo, UP) Then

 dbs.Execute "INSERT INTO Primi (Primo) VALUES _

 (" & Primo & ")", dbSeeChanges

 dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, _

 Ultimo_Primo, NP_1, NP_2) VALUES _

 (" & Primo & ", " & UP & ", " & NP_2 & ", " _

 & Record_set1!Primo & ")", dbSeeChanges

 End If

 GoTo esci

 End If

SaltaPrimo:

 Record_set1.MoveNext

 Loop

 Record_set1.MoveFirst

 Record_set2.MoveNext

 If Not Record_set2.EOF Then NP_2 = Record_set2!Primo

 Loop

 Record_set2.Close

 Record_set1.Close

 End If

esci:

 dbs.Close

Exit_ContatorePrimi:

 Exit Sub

Err_ContatorePrimi:

 MsgBox Err.Description

 Resume Exit_ContatorePrimi

End Sub

Public Function Controlla_Primo_Minore(ByVal Primo As Long, ByVal UP As

Long) As Boolean

 On Error GoTo Err_Controlla_Primo_Minore

 Dim dbs As DAO.Database

 Set dbs = CurrentDb

 Dim Record_set_4 As DAO.Recordset

 Dim Controllo As Double

 Dim I As Long

 Dim K As Long

 Controlla_Primo_Minore = False

 K = UP + 2

 If K = Primo Then GoTo esci_Controlla_Primo_Minore

 For I = K To Primo Step 2

 Set Record_set_4 = dbs.OpenRecordset("SELECT primo _

 FROM Primi WHERE primo <> 1 ORDER BY primo;", _

 dbOpenDynaset, dbSeeChanges, dbOptimistic)

 If Record_set_4.RecordCount > 0 Then

 Record_set_4.MoveFirst

 Do Until Record_set_4.EOF

 Controllo = I Mod Record_set_4!Primo

 If Controllo = 0 Then

 GoTo SaltaControllo

 End If

 Record_set_4.MoveNext

 Loop

 If I = Primo Then GoTo esci_Controlla_Primo_Minore

 If Not Verifica_Dispari(I, UP) Then

 Controlla_Primo_Minore = True

 GoTo esci_Controlla_Primo_Minore

 End If

SaltaControllo:

 Record_set_4.Close

 End If

 Next

esci_Controlla_Primo_Minore:

 dbs.Close

Exit_Controlla_Primo_Minore:

 Exit Function

Err_Controlla_Primo_Minore:

 MsgBox Err.Description

 Resume Exit_Controlla_Primo_Minore

End Function

Public Function Verifica_Dispari(ByVal Primo As Long, _

 ByVal UP As Long) As Boolean

 On Error GoTo Err_Verifica_Dispari

 Dim dbs As DAO.Database

 Set dbs = CurrentDb

 Dim Record_set_5 As DAO.Recordset

 Dim Record_set_6 As DAO.Recordset

 Dim N_pari As Long

 Dim NP As Long

 Dim ND As Long

 Verifica_Dispari = True

 N_pari = Primo - UP

 Set Record_set_5 = dbs.OpenRecordset("SELECT primo FROM Primi _

 ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic)

 Set Record_set_6 = dbs.OpenRecordset("SELECT primo FROM Primi _

 ORDER BY primo;", dbOpenDynaset, dbSeeChanges, dbOptimistic)

 If Record_set_5.RecordCount > 0 Then

 Record_set_5.MoveFirst

 Record_set_6.MoveFirst

 NP = Record_set_6!Primo

 Do Until Record_set_6.EOF

 Do Until Record_set_5.EOF

 ND = N_pari - (NP + Record_set_5!Primo)

 If ND = 0 Then

 Verifica_Dispari = False

 dbs.Execute "INSERT INTO Primi (Primo) VALUES _

 (" & Primo & ")", dbSeeChanges

 dbs.Execute "INSERT INTO UltimiPrimi (Primo_Trovato, _

 Ultimo_Primo, NP_1, NP_2) VALUES _

 (" & Primo & ", " & UP & ", " & NP & ", " _

 & Record_set_5!Primo & ")", dbSeeChanges

 GoTo esci_Verifica_Dispari

 End If

 Record_set_5.MoveNext

 Loop

 Record_set_5.MoveFirst

 Record_set_6.MoveNext

 If Not Record_set_6.EOF Then NP = Record_set_6!Primo

 Loop

 Record_set_6.Close

 Record_set_5.Close

 End If

esci_Verifica_Dispari:

 dbs.Close

Exit_Verifica_Dispari:

 Exit Function

Err_Verifica_Dispari:

 MsgBox Err.Description

 Resume Exit_Verifica_Dispari

End Function

5.2.2 Python code for data sample analysis

For each result obtained, the corresponding code is shown below.

Global Frequency of Pairs (b, c)

This code reads the file, extracts columns b and c, combines them
into pairs, and counts how many times each pair appears.

#From promp: pip install fsspec
import pandas as pd
from collections import Counter

def frequenza_coppie(file_path="testFile.txt"):
 try:
 df = pd.read_csv(file_path, sep='\s+', header=None)
 b = df.iloc[:, 2].tolist()
 c = df.iloc[:, 3].tolist()
 coppie = list(zip(b, c))
 conteggio_coppie = Counter(coppie)
 return conteggio_coppie
 except FileNotFoundError:
 return "Error: File not found."

conteggio_coppie = frequenza_coppie()
if isinstance(conteggio_coppie, Counter):

 print("Frequenza Globale delle Coppie (b, c):")
 for coppia, frequenza in conteggio_coppie.items():
 print(f" pair {coppia}: {frequenza} frequency ")
else:
 print(conteggio_coppie)

Local Density of Pairs (b, c) in Windows

This code divides the data into windows of 100 rows and calculates
the frequency of pairs within each window.

#From promp: pip install fsspec
import pandas as pd
from collections import Counter

def densita_coppie_finestre(file_path="testFile.txt", dimensione_finestra=100):
 try:
 df = pd.read_csv(file_path, sep='\s+', header=None)
 b = df.iloc[:, 2].tolist()
 c = df.iloc[:, 3].tolist()
 coppie = list(zip(b, c))
 risultati_finestre = []
 for i in range(0, len(coppie), dimensione_finestra):
 finestra = coppie[i:i + dimensione_finestra]
 conteggio_finestra = Counter(finestra)
 risultati_finestre.append(conteggio_finestra)
 return risultati_finestre
 except FileNotFoundError:
 return "Error: File Not Found."

risultati_finestre = densita_coppie_finestre()

if isinstance(risultati_finestre, list):
 print("\nLocal the pair density (b, c) in window:")
 for i, conteggio_finestra in enumerate(risultati_finestre):
 print(f" Finestra da {i * 100} a {(i + 1) * 100}:")
 for coppia, frequenza in conteggio_finestra.items():
 print(f" pair {coppia}: {frequenza} frequency ")
else:
 print(risultati_finestre)

Correlation between Prime Distance and b/c

This code calculates the distance between consecutive prime
numbers and then the correlation between this distance and the
values of b and c.

#From promp: pip install fsspec
import pandas as pd
import numpy as np

def preparaArray(file_content):
 array = []
 s = file_content.split("\n")

 for riga in s:
 if riga != '':
 vector = riga.split(" ")
 if len(vector) >= 4:
 p = vector[1].replace(',', '.')
 b = vector[2].replace(',', '.')
 c = vector[3].replace(',', '.')
 array.append([float(p), float(b), float(c)])
 else:
 print(f"Ignored line (less than 4 items):{riga}")
 return array

def calcola_distanza(p_values):
 return [p_values[i+1] - p_values[i] for i in range(len(p_values) - 1)]

def calcola_correlazione(distanze, b_values, c_values):
 if len(distanze) < 1 or len(b_values) < 1 or len(c_values) < 1 or \
 np.var(distanze) == 0 or np.var(b_values) == 0 or np.var(c_values) == 0:
 return None
 return np.corrcoef([distanze, b_values, c_values], rowvar=False)
rowvar=False!

def elabora_dati(file_path="testFile.txt"):

 try:
 with open(file_path, 'r') as file:
 file_content = file.read()

 data_array = preparaArray(file_content)

 df = pd.DataFrame(data_array)

 p_values = df.iloc[:, 0].tolist() # Colonna 0 (b) come p (??)
 b_values = df.iloc[:, 1].tolist() # Colonna 1 (c) come b (??)
 c_values = df.iloc[:, 2].tolist() # Colonna 2 (d) come c (??)

 tutte_le_correlazioni = []

 distanze = calcola_distanza(p_values)

 if len(distanze) > 0:
 correlazione = calcola_correlazione(distanze, b_values[:-1], c_values[:-1])
 if correlazione is not None:
 tutte_le_correlazioni.append(correlazione)

 return tutte_le_correlazioni

 except FileNotFoundError:
 return "Error: File Not Found."
 except Exception as e:
 return f"Error while processing: {e}"

risultati_correlazione = elabora_dati()

if isinstance(risultati_correlazione, list):
 print("\nCalculated correlations:")
 for correlazione in risultati_correlazione:
 print(correlazione)
else:
 print(risultati_correlazione)

Recursion and Frequency Analysis

This code counts the frequency of each value in columns b and c to
identify recursion.

From prompt: pip install fsspec
import pandas as pd
import numpy as np
from collections import Counter # Importa la classe Counter

def analisi_ricorsione_frequenze(file_path="testFile.txt"):
 try:
 df = pd.read_csv(file_path, sep='\s+', header=None)
 b_values = df.iloc[:, 2].tolist()
 c_values = df.iloc[:, 3].tolist()

 conteggio_b = Counter(b_values)
 conteggio_c = Counter(c_values)
 return conteggio_b, conteggio_c
 except FileNotFoundError:
 return "Error: File Not Found"

conteggio_b, conteggio_c = analisi_ricorsione_frequenze()

print("Frequency of values in b:")
for valore, frequenza in conteggio_b.items():
 print(f"Value: {valore}, Frequency: {frequenza}")

print("\n Frequency of values in c:")
for valore, frequenza in conteggio_c.items():
 print(f"Value: {valore}, Frequency: {frequenza}")

Sinusoidal Rhythm Reconducibility (Fourier Transform)

This code performs the Fourier Transform on columns b and c to
analyze their frequency components and displays the power
spectra.

From prompt: pip install fsspec
import pandas as pd
import numpy as np
from collections import Counter # Importa la classe Counter

from scipy.fft import fft, fftfreq

import matplotlib.pyplot as plt

def preparaArray(file_content):
 array = []
 s = file_content.split("\n")

 for riga in s:
 if riga != '':
 vector = riga.split(" ")
 if len(vector) >= 4:
 p = vector[1].replace(',', '.')
 b = vector[2].replace(',', '.')
 c = vector[3].replace(',', '.')
 array.append([float(p), float(b), float(c)])
 else:
 print(f"Ignored line (less than 4 items): {riga}") # Messaggio di debug
 return array

def analisi_fourier(file_path="testFile.txt"):
 try:
 with open(file_path, 'r') as file:
 file_content = file.read()

 data_array = preparaArray(file_content)

 df = pd.DataFrame(data_array)

 b_values = df.iloc[:, 1].tolist()
 c_values = df.iloc[:, 2].tolist()

 fft_b = fft(b_values)
 fft_c = fft(c_values)

 freq_b = fftfreq(len(fft_b))
 freq_c = fftfreq(len(fft_c))

 potenza_b = np.abs(fft_b)**2
 potenza_c = np.abs(fft_c)**2

 return freq_b, potenza_b, freq_c, potenza_c

 except FileNotFoundError:
 return "Error: File Not Found!"
 except Exception as e:
 return f"Error while processing: {e}"

freq_b, potenza_b, freq_c, potenza_c = analisi_fourier()

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
plt.plot(freq_b, potenza_b)
plt.title('Spettro di Potenza di b')
plt.xlabel('Frequenza')
plt.ylabel('Potenza')

plt.subplot(1, 2, 2)

plt.plot(freq_c, potenza_c)
plt.title('Spettro di Potenza di c')
plt.xlabel('Frequenza')
plt.ylabel('Potenza')

plt.tight_layout()
plt.show()

Analysis of the distribution Δp = b + c compared with the
Wigner-Dyson law

For a real comparison with the Wigner-Dyson distribution, an
appropriate theoretical distribution must be generated. The
Wigner-Dyson distribution is specific to Hermitian random
matrices and depends on parameters such as the symmetry of the
system.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import rv_histogram
from collections import Counter # Importa la classe Counter

def preparaArray(file_content):
 array = []
 s = file_content.split("\n")

 for riga in s:
 if riga != '':
 vector = riga.split(" ")
 if len(vector) >= 4:
 p = vector[1].replace(',', '.')
 b = vector[2].replace(',', '.')
 c = vector[3].replace(',', '.')
 array.append([float(p), float(b), float(c)])
 else:
 print(f"Ignored line (less than 4 items): {riga}")
 return array

def analizza_distribuzione_differenze(file_path="testFile.txt"):

 try:
 with open(file_path, 'r') as file:
 file_content = file.read()

 data_array = preparaArray(file_content)

 df = pd.DataFrame(data_array)

 b = df.iloc[:, 1].values
 c = df.iloc[:, 2].values
 delta_p = b + c

 hist, bin_edges = np.histogram(delta_p, bins='auto', density=True)

 bin_mids = (bin_edges[:-1] + bin_edges[1:]) / 2

 return hist, bin_mids, bin_edges

 except FileNotFoundError:
 return None, None, None

hist, bin_mids, bin_edges = analizza_distribuzione_differenze()

if hist is None:
 print("Error: Cannot find file or error while parsing.")
 exit()

print("Valore di hist:", hist)
print("Valore di bin_mids:", bin_mids)
print("Valore di bin_edges:", bin_edges)

if isinstance(hist, np.ndarray) and len(hist) > 0:
 if len(bin_edges) > 1:
 bar_width = bin_edges[1] - bin_edges[0]
 else:
 bar_width = 1.0

 plt.figure(figsize=(10, 6))
 plt.bar(bin_mids, hist, width=bar_width)
 plt.title('Distribuzione di Δp = b + c')
 plt.xlabel('Valore di Δp')
 plt.ylabel('Densità di Probabilità')
 plt.show()

 rng = np.random.default_rng()
 wigner_dyson_sample = rng.normal(size=1000)
 wd_hist, wd_bin_edges = np.histogram(wigner_dyson_sample, bins='auto',
 density=True)
 wd_bin_mids = (wd_bin_edges[:-1] + wd_bin_edges[1:]) / 2

 # Visualizza la distribuzione di confronto
 plt.figure(figsize=(10, 6))
 if len(wd_bin_edges) > 1:
 wd_bar_width = wd_bin_edges[1] - wd_bin_edges[0]
 else:
 wd_bar_width = 1.0
 plt.bar(wd_bin_mids, wd_hist, width=wd_bar_width, alpha=0.5,
 label='Wigner-Dyson (Esempio)')
 plt.title('Confronto con Wigner-Dyson')
 plt.xlabel('Valore')
 plt.ylabel('Densità di Probabilità')
 plt.legend()
 plt.show()

else:
 print("Errore durante l'analisi della distribuzione. “ +
 ”Impossibile visualizzare l'istogramma.")
 print(delta_p) # Stampa l'errore o i dati grezzi, se disponibili

Construction of the Cumulative Spectrum

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

def calcola_spettro_cumulativo(file_path="testFile.txt"):
 try:
 df = pd.read_csv(file_path, sep='\s+', header=None)
 b = df.iloc[:, 2].values
 c = df.iloc[:, 3].values
 delta_p = b + c

 delta_p_ordinato = np.sort(delta_p)

 cumulativa = np.arange(1, len(delta_p_ordinato) + 1)

 return delta_p_ordinato, cumulativa

 except FileNotFoundError:
 return "Error: File Not Found."

delta_p_ordinato, cumulativa = calcola_spettro_cumulativo()

if isinstance(delta_p_ordinato, np.ndarray):
 plt.figure(figsize=(10, 6))
 plt.plot(delta_p_ordinato, cumulativa)
 plt.title('Spettro Cumulativo di Δp = b + c')
 plt.xlabel('Valore di Δp')
 plt.ylabel('Numero Cumulativo di Occorrenze')
 plt.grid(True)
 plt.show()
else:
 print(delta_p_ordinato)

5.2.3 Python Application Prime Numbers Plugin for Blender

This addon for Blender 4.0+, titled: "Python Application Prime
Numbers", is designed to import and visualize numerical data,
especially related to numerical sequences (such as prime numbers),
and transform them into dynamic 3D meshes. The main goal is to
provide an interactive interface that allows the user to explore,
connect and analyze numerical data through three-dimensional
geometric structures.

How It Works Technically

• The code defines a main class ultimoPrimo that handles all
operations.

• Numerical data is read from a .txt file, processed and converted
into lists of vertices, edges and faces.
• Meshes are dynamically created using bpy.data.meshes.new() and
linked to the active scene.
• Some functions perform operations on local files, such as
os.path.exists() and os.remove(), ensuring a clean working
environment.

Periodic Function Visualization

Two options ("Periodic function NP1" and "NP2") analyze selected
columns of data through the Fourier transform to highlight periodic
behaviors.
A plot of the sequence is also automatically generated with
matplotlib. Furthermore, the plugin includes a context pie menu
and a series of buttons accessible from the UI, making the user
experience smoother and faster.

Code Python per Blender:

bl_info = {
 "name": "Python Application Numeri Primi",
 "author": "Douglas Ruffini",
 "version": (1, 0),
 "blender": (4, 0, 0),
 "location": "View3D > Python Application Numeri Primi",
 "category": "Add Mesh",
}

import bpy
from bpy.props import BoolProperty

class EditorSwitcherMenu(bpy.types.Menu):
 #Shortcut menu
 #Menu a scelta rapida
 bl_idname = "editor_switcher_pie_menu"
 bl_label = "Numeri Primi"

 def draw(self, context):
 pie = self.layout.menu_pie()
 pie.operator("object.import_numeri_primi",
 text="Import vertex",icon="VIEW3D").activate ="1"
 pie.operator("object.import_numeri_primi",
 text="Join vertex to edges",icon="NODETREE").activate ="2"
 pie.operator("object.import_numeri_primi",
 text="Join vertex to faces",icon="ACTION").activate ="3"
 pie.operator("object.import_numeri_primi",
 text="Vertex y & x long",icon="ACTION").activate ="5"
 pie.operator("object.import_numeri_primi",

 text="Vertex y & xz long",icon="ACTION").activate ="6"
 pie.operator("object.import_numeri_primi",
 text="Remuve vertex",icon="ACTION").activate ="4"
 pie.operator("object.import_numeri_primi",
 text="Periodic function NP1",icon="ACTION").activate ="7"
 pie.operator("object.import_numeri_primi",
 text="Periodic function NP2",icon="ACTION").activate ="8"

class ultimoPrimo(bpy.types.Operator):

 bl_idname = "object.import_numeri_primi"

 bl_label = "Import vertex"
 bl_label_two = "Join vertex to edges"
 bl_label_three = "Join vertex to faces"
 bl_label_four = "Remuve vertex"
 bl_label_five = "Vertex y & x long"
 bl_label_six = "Vertex y & xz long"
 bl_label_seven = "Periodic function NP1"
 bl_label_eight = "Periodic function NP2"

 hl_label = "Import vertex"
 hl_label_two = "Join vertex to edges"
 hl_label_three = "Join vertex to faces"
 hl_label_four = "Remuve vertex"
 hl_label_five = "Vertex y & x long"
 hl_label_six = "Vertex y & xz long"
 hl_label_seven = "Periodic function NP1"
 hl_label_eight = "Periodic function NP2"

 bl_space_type = 'VIEW_3D'
 bl_region_type = 'UI'
 bl_category = "Scalar or Vector Panel"
 bl_options = {'REGISTER', 'UNDO'}

 global verts_b
 verts_b = []

 global verts
 verts = []

 global edges
 edges = []

 global faces
 faces = []

 global mesh
 mesh = None

 global obj
 obj = None

 global file_name
 file_name = ""

 global ind

 ind =0

 global index
 index =0

 global array
 array= []

 #Set restrictions on the file dialog
 #Impostare le restrizioni alla finestra di dialogo file
 filter_glob: bpy.props.StringProperty(default="*.txt", options = {'HIDDEN'})
 filepath: bpy.props.StringProperty(subtype="FILE_PATH")
 some_boolean: BoolProperty(name='Do a thing',
 description='Do a thing with the file you\'ve selected', default=True,)

 #Variable linked to the click of the object menu buttons
 #Variabile legata al click dei pulsanti menu oggetto
 activate: bpy.props.StringProperty(name="activate", description="activate")

 #------------------------
 #Start your code function
 #Inizio delle tue funzioni

 #Apri
 def apri_file(nome_file, s):
 f = open(nome_file, s)
 return f

 #Leggi
 def leggi_file(f):
 return f.read()

 def leggi_parte_file(f, n):
 return f.read(n)

 def leggi_una_riga(f):
 return f.readline()

 #Esiste
 def esiste(path, os):
 try:
 return os.path.exists(path)

 except Exception as e:
 print("L'errore e' : ", e)

 def esiste_file(sorgente, os):
 try:
 #Verifica la registrazione del path file
 #nomefile = os.environ.get(sorgente)
 #if nomefile and os.path.isfile(nomefile):
 return os.path.isfile(sorgente)

 except Exception as e:
 print("L'errore e' : ", e)

 def esiste_dir(direc, os):

 try:
 #Verifica la registrazione della directory
 #nomedir = os.environ.get(direc)
 #if nomedir and os.path.isdir(nomedir):
 return os.path.isdir(direc)

 except Exception as e:
 print("L'errore e' : ", e)

 #Elimina
 def elimina_file(f, os):
 bool_=False
 try:
 os.remove(f)
 bool_ = True
 return bool_

 except Exception as e:
 print("L'errore e' : ", e)
 return bool_

 def elimina_dir(c, os):
 bool_=False
 try:
 os.rmdir(c)
 return bool_

 except Exception as e:
 print("L'errore e' : ", e)
 return bool_

 #Stampa
 def stampa_file(t):
 print(t)

 #Chiudi
 def chiudi_file(f):
 try:
 f.close()

 except Exception as e:
 print("L'errore e' : ", e)

 def preparaArray(f):

 global array
 array=[]
 s =f.split("\n")

 for riga in s:
 if riga !='':
 vector = riga.split(" ")
 a = ((vector[0]).replace(',', '.'))
 b = ((vector[1]).replace(',', '.'))
 c = ((vector[2]).replace(',', '.'))
 d = ((vector[3]).replace(',', '.'))
 # Consider columns 2, 3, 4
 array.append([float(b), float(c), float(d)])

 return array

 def vertici(array):
 v = []

 for x in (array):
 v.append(x)

 return v

 def lati(array):
 global edges
 edges = []
 edges = [[i, i+1] for i in range(len(array)-1)]

 return edges

 def facce_C(array, k):
 global verts_b
 global faces

 verts_b = []
 faces = []
 h=0
 indice = 0
 linea = 0

 for i in array:
 if h<=k:
 linea = linea + i[1]

 verts_b.append((linea, 0, 0))
 verts_b.append((0, i[1], 0))
 verts_b.append((0, 0, linea))

 faces.append([indice, indice+1, indice+2])
 indice = indice + 3

 h = h+1

 return faces

 def facce_B(array, k):
 global verts_b
 global faces

 verts_b = []
 faces = []
 h=0
 indice = 0
 linea = 0

 for i in array:
 if h<=k:
 linea = linea + i[1]

 verts_b.append((linea, 0, 0))

 verts_b.append((0, i[1], 0))
 verts_b.append((0, 0, 0))

 faces.append([indice, indice+1, indice+2])
 indice = indice + 3

 h = h+1

 return faces

 def facce(array, k):
 global verts_b
 global faces

 verts_b = []
 faces = []
 h=0
 indice = 0

 for i in array:
 if h<=k:
 verts_b.append((i[0], 0, 0))
 verts_b.append((0, i[1], 0))
 verts_b.append((0, 0, i[2]))

 faces.append([indice, indice+1, indice+2])
 indice = indice + 3

 h = h+1

 return faces

 def rimuoviMesh(bpy):
 #Removes the produced mesh
 #Rimuove la mesh prodotta
 global obj
 global file_name
 global array
 array=[]

 #if obj is not None:
 #obj_data = obj.data
 #Remuve object
 #Rimuovo l'oggetto
 #bpy.data.objects.remove(obj)
 #Then its data
 #Anche i suoi dati
 #bpy.data.meshes.remove(obj_data)

 for o in bpy.data.objects:
 if o.type == 'MESH':
 str=o.name
 if str.find("Primi")!= -1:
 obj_data = o.data
 bpy.data.objects.remove(o)
 bpy.data.meshes.remove(obj_data)

 if bpy.data.collections.get("Collection"):
 collection_to_remove = bpy.data.collections.get('Collection')
 for object in collection_to_remove.objects:
 if (object.name !='Camera') or (object.name !='Light'):
 str=object.name
 if str.find("Primi")!= -1:
 obj_data = object.data
 bpy.data.objects.remove(object)
 bpy.data.meshes.remove(obj_data)

 obj=None
 file_name=""

 return obj

 #Find the periodic function
 #Trova la funzioni periodica
 def caricaFunzionePeriodica(bpy, array, os, k):
 import numpy as np
 import matplotlib.pyplot as plt

 global edges
 global verts_b
 global faces

 edges = []
 verts_b = []
 faces = []

 # We only use the 'Np1' column for simplicity in detecting the
 # periodicity.
 y_values = [item[k] for item in array] # Colonna Np1

 if len(y_values) < 2:
 print("Dataset insufficiente per analizzare la periodicità.")
 return False

 # Fourier transform to analyze periodicity.
 y_fft = np.fft.fft(y_values)
 frequencies = np.fft.fftfreq(len(y_values))
 magnitudes = np.abs(y_fft)

 # Determine the dominant frequency (ignore the zero frequency)
 dominant_freq_idx = np.argmax(magnitudes[1:]) + 1
 dominant_freq = frequencies[dominant_freq_idx]

 # Checking the periodicity based on the dominant frequency.
 if dominant_freq != 0:
 period = abs(1 / dominant_freq)
 print(f"Frequenza dominante trovata: {dominant_freq:.4f},” +
 “ periodo stimato: {period:.4f}")
 print("I dati mostrano un comportamento periodico.")
 else:
 print("Non è stata rilevata periodicità nei dati.")

 # Step 1: Generazione del Grafico e Salvataggio
 #image_path = '/tmp/sequenza_np1_grafico.png'

 # Specify a path for the image
 # Replace with your preferred path
 output_dir = "C:/path/to/output/"
 # Create directory if it doesn't exist
 os.makedirs(output_dir, exist_ok=True)
 image_path = os.path.join(output_dir, "sequenza_np1_grafico.png")

 plt.figure(figsize=(12, 6))
 plt.plot(y_values, marker='o', linestyle='-', color='b')
 plt.title("Sequenza di valori in 'y'")
 plt.xlabel("Indice")
 plt.ylabel("Valore")
 plt.grid()
 plt.savefig(image_path)
 plt.close()

 verts_b = [(i, y, 0) for i, y in enumerate(y_values)] # (x, y, z)
 edges = [(i, i + 1) for i in range(len(verts_b) - 1)]

 return True

 #These four functions are used by the dictionary
 #Queste quattro funzioni servono al dizionario

 def azioneUno(self, bpy, os):
 global obj

 if(ind=='1'):
 if (file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)
 ultimoPrimo.associaArray(self, os)

 obj=ultimoPrimo.caricaMesh(bpy, ultimoPrimo.vertici(array), [], [])

 return True

 def azioneDue(self, bpy, os):
 global obj

 if (ind == '2'):
 if(file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)
 ultimoPrimo.associaArray(self, os)

 obj=ultimoPrimo.caricaMesh(bpy, ultimoPrimo.vertici(array),
 ultimoPrimo.lati(array), [])

 return True

 def azioneTre(self, bpy, os):
 global obj

 if (ind == '3'):
 if (file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)

 ultimoPrimo.associaArray(self, os)

 ultimoPrimo.facce(array, index)
 obj=ultimoPrimo.caricaMesh(bpy, verts_b, [], faces)

 return True

 def azioneQuattro(bpy):
 global file_name

 if (ind == '4'):
 #If it exists then I remove object
 #Se esiste allora rimuovo oggetto
 if obj is not None:
 ultimoPrimo.rimuoviMesh(bpy)
 else:
 file_name=""

 def azioneCinque(self, bpy, os):
 global obj

 if (ind == '5'):
 if (file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)
 ultimoPrimo.associaArray(self, os)

 ultimoPrimo.facce_B(array, index)
 obj=ultimoPrimo.caricaMesh(bpy, verts_b, [], faces)

 return True

 def azioneSei(self, bpy, os):
 global obj

 if (ind == '6'):
 if (file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)
 ultimoPrimo.associaArray(self, os)

 ultimoPrimo.facce_C(array, index)
 obj=ultimoPrimo.caricaMesh(bpy, verts_b, [], faces)

 return True

 def azioneSette(self, bpy, os):
 global obj

 if (ind == '7'):
 if(file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)
 ultimoPrimo.associaArray(self, os)

 ultimoPrimo.caricaFunzionePeriodica(bpy, array, os, 1)
 obj=ultimoPrimo.caricaMesh(bpy, verts_b, edges, [])

 return True

 def azioneOtto(self, bpy, os):
 global obj

 if (ind == '8'):
 if(file_name == ""):
 ultimoPrimo.rimuoviMesh(bpy)
 ultimoPrimo.associaArray(self, os)

 ultimoPrimo.caricaFunzionePeriodica(bpy, array, os, 2)
 obj=ultimoPrimo.caricaMesh(bpy, verts_b, edges, [])

 return True

 def caricaMesh(bpy, verts_, edges_, faces_):
 global mash
 mesh = None
 global obj
 obj = None

 #Associa la mesh all'oggetto

 mesh = bpy.data.meshes.new("Primi")
 obj = bpy.data.objects.new("Primi",mesh)
 mat = bpy.data.materials.new(name="NewMaterial")

 #Associa al materiale il colore Rosso
 mat.diffuse_color = (1.0, 0.0, 0.0, 1.0)

 #Aggiungi la proprietà all'oggetto
 obj.data.materials.append(mat)

 #Posiziona l'oggetto
 obj.location = (0,0,0)

 #Ritorna la collezione dell'oggetto
 col = bpy.data.collections.get("Collection")
 col.objects.link(obj)

 #Associa la collezione alla scena
 bpy.context.view_layer.objects.active = obj

 #Proietta facce e vertici
 mesh.from_pydata(verts_, edges_, faces_)

 return obj

 def associaArray(self, os):
 global index
 global array
 global file_name

 index = 0
 array = []

 file_name = self.filepath

 if file_name!="" or file_name!='':
 #il file e' nella directory del progetto
 if ultimoPrimo.esiste(file_name, os):

 f=ultimoPrimo.apri_file(file_name, "r")

 array= ultimoPrimo.preparaArray(ultimoPrimo.leggi_file(f))

 index = len(array)-1

 ultimoPrimo.chiudi_file(f)

 #End your code function
 #Fine delle tue funzioni
 #These two functions (execute, ivoke) are part of the plugin structure
 #Queste due funzioni (execute, ivoke) fanno parte della struttura del plugin

 @classmethod
 def poll(cls, context):
 return True

 def execute(self, context):
 import bpy
 import os
 global ind

 azione ={'1' : ultimoPrimo.azioneUno(self, bpy, os),
 '2' : ultimoPrimo.azioneDue(self, bpy, os),
 '3' : ultimoPrimo.azioneTre(self, bpy, os),
 '4' : ultimoPrimo.azioneQuattro(bpy),
 '5' : ultimoPrimo.azioneCinque(self, bpy, os) ,
 '6' : ultimoPrimo.azioneSei(self, bpy, os),
 '7' : ultimoPrimo.azioneSette(self, bpy, os),
 '8' : ultimoPrimo.azioneOtto(self, bpy, os)}

 azione.get(ind)

 return {'FINISHED'}

 def invoke(self, context, event):
 global file_name
 global ind

 #Check button number
 #Assegno numero pulsante

 ind = self.activate

 if (ind=='1' and file_name == "") or (ind=='2' and file_name == "") \
 or (ind=='3' and file_name == "") \
 or (ind=='5' and file_name == "") or (ind=='6' and file_name == "") \
 or (ind=='7' and file_name == "") or (ind=='8' and file_name == "") :
 #Opens the file dialog
 #Apre la finestra di dialogo file
 context.window_manager.fileselect_add(self)
 else:
 return self.execute(context)

 return {'RUNNING_MODAL'}

def menu_func(self, context):
 #This function create the voices in the menu object
 #Questa funzione crea il menu oggetti e aggiunta di pulsanti sull'interfaccia
utente
 self.layout.operator_context = 'INVOKE_DEFAULT'
 #Buttons present in the object menu object
 #Pulsanti presenti nel menu oggetto
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label,
 icon="VIEW3D").activate = "1"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_two,
 icon="NODETREE").activate="2"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_three,
 icon="ACTION").activate="3"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_five,
 icon="ACTION").activate="5"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_six,
 icon="ACTION").activate="6"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_four,
 icon="ACTION").activate="4"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_seven,
 icon="ACTION").activate="7"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.bl_label_eight,
 icon="ACTION").activate="8"

def menu_header(self, context):
 #This function create the buttons in the ui
 #Questa funzione crea i pulsanti sull'interfaccia utente
 #Buttons present in the in the UI
 #Pulsanti presenti presenti nella UI
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label,
 icon="VIEW3D").activate = "1"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_two,
 icon="NODETREE").activate="2"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_three,
 icon="ACTION").activate="3"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_five,
 icon="ACTION").activate="5"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_six,
 icon="ACTION").activate="6"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_four,
 icon="ACTION").activate="4"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_seven,
 icon="ACTION").activate="7"
 self.layout.operator(ultimoPrimo.bl_idname, text =ultimoPrimo.hl_label_eight,
 icon="ACTION").activate="8"

#Store keymaps
#Memorizza le mappe dei tasti
addon_keymaps = []

def register():
 #This function register the class
 #Questa funzione registra la classe

 #Handle the keymap
 #Gestisci la mappa dei tasti
 wm = bpy.context.window_manager

 #Note that in background mode (no GUI available), keyconfigs are not available
 #either,
 #so we have to check this to avoid nasty errors in background case.
 #Tieni presente che in modalità background (nessuna GUI disponibile),
 #nemmeno i keyconfig sono disponibili,
 #quindi dobbiamo verificarlo per evitare errori spiacevoli nel caso in background.
 kc = wm.keyconfigs.addon

 if kc:
 km = wm.keyconfigs.addon.keymaps.new(name =
 "Window",space_type='EMPTY', region_type='WINDOW')
 kmi = km.keymap_items.new("wm.call_menu_pie",
 type = "E",alt=True, value = "PRESS")
 kmi.properties.name = "editor_switcher_pie_menu"
 addon_keymaps.append(km)

 bpy.utils.register_class(ultimoPrimo)
 bpy.utils.register_class(EditorSwitcherMenu)
 #Append
 #Aggiungi dopo
 bpy.types.VIEW3D_MT_object.append(menu_func)
 #Prepend
 #Aggiungi prima
 bpy.types.VIEW3D_HT_header.prepend(menu_header)

def unregister():
 #This function unregister the class
 #Questa funzione deregistra la classe
 #Note: when unregistering, it's usually good practice to do it in reverse order you
 #registered.
 #Can avoid strange issues like keymap still referring to operators already
 #unregistered...
 #Nota: quando si annulla la registrazione, di solito è buona norma farlo
 #nell'ordine inverso a quello della registrazione.
 #Puù evitare problemi strani come la mappatura dei tasti che si riferisce ancora a
 #operatori giù non registrati...
 #Handle the keymap
 #Gestisci la mappa dei tasti
 wm = bpy.context.window_manager
 for km in addon_keymaps:
 for kmi in km.keymap_items:
 km.keymap_items.remove(kmi)
 wm.keyconfigs.addon.keymaps.remove(km)
 addon_keymaps.clear()

 bpy.types.VIEW3D_MT_object.remove(menu_func)
 bpy.types.VIEW3D_HT_header.remove(menu_header)
 bpy.utils.unregister_class(EditorSwitcherMenu)
 bpy.utils.unregister_class(ultimoPrimo)

if __name__ == "__main__":
 register()

6. Bibliography

Ruffini, D. (2025), “Electron Approach Theory. A Damped
Oscillation Model Based on Relativistic Effects and Space-Time
Feedback”, (https://doi.org/10.31219/osf.io/hwca8_v1).
(Ruffini, 2025)

Russell, B. (1945), “A History of Western Philosophy”, George
Allen & Unwin Press.
(Russell, 1945)

Löf, E. R. M. (1980), “Intuitionistic Type Theory” , Bibliopolis
Press
(Löf, 1980)

Gödel, K. “Collected Works” - Volume I: Publications 1929-1936
(1986); Volume II: Publications 1938-1974 (1990); Volume III:
Unpublished Essays and Lectures (1995); Volume IV:
Correspondence A-G (2003); Volume V: Correspondence H-Z
(2003); Oxford University Press.
(Gödel, 1986)

Rutherford, E. (1920), “Nuclear Constitution of Atoms”. Bakerian
Lecture, Royal Society.
(Rutherford, 1920)

Edwards, H. M. (2003), “Lectures on the Riemann Zeta Function”,
American Mathematical Society.
(Edwards, 2003)

Dyson, F. J. (1962). “Statistical Theory of the Energy Levels of
Complex Systems”. I, II, III. Journal of Mathematical Physics,
3(1), 140–175.
(Dyson, 1962)

Montgomery, H. L. (1973). “The pair correlation of zeros of the
zeta function”. Proceedings of Symposia in Pure Mathematics, 24,
181–193.
(Montgomery, 1973)

Odlyzko, A. M. (1987). “On the distribution of spacings between
zeros of the zeta function”. Mathematics of Computation, 48 (177),
273–308.
(Odlyzko, 1987)

Csáki, C., Graesser, M., Randall, L., & Terning, J. (2000).
“Cosmology of brane models with radion stabilization”. Physical
Review D, 62(4), 045015.
(Csaki et al., 1999)

Mehta, M. L. (2004). “Random Matrices” (3ª ed.). Elsevier.
(Mehta, 2004)

Hale, J. K., & Verduyn Lunel, S. M. (1993).
“Introduction to Functional Differential Equations”. Springer.
(Hale, et al., 1993)

Connes, A. (1994). “Noncommutative Geometry”. Academic
Press.
(Connes, 1994)

