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abstract 

In this paper, through theoretical derivation, a functional relationship is revealed, 

demonstrating that the variation in time between objects in relative motion depends on both their 

relative velocity and the finite propagation speed of light. By applying the relationship of time 

change to the theory of classical mechanics, it can be concluded that the interaction force between 

objects are also related to the relative motion velocity. Due to the introduction of the speed of light 

in the formula of classical mechanical theory, the applicable scope of classical mechanics theory 

is effectively expanded, so that it is not only applicable to the calculation of low speed moving 

objects, but also to the calculation of high speed moving objects. Subsequently, through careful 

derivation within this new framework, several fundamental laws of classical electromagnetism 

were derived, the results of which strongly support the validity of the new functional relationship. 

 

Introduction 

Newton’s “The Mathematical Principles of Natural Philosophy” laid the theoretical 

foundation for classical physics. Nevertheless, in this seminal work, Newton did not introduce the 

concept of a finite propagation speed for forces. Instead, scientists at the time universally assumed 

that force transmission was instantaneous, that is, its propagation speed was considered infinite. 

Consequently, the mathematical formulations of Newtonian mechanics do not include any physical 

quantity representing the speed at which forces are transmitted. 

Currently, scientists have established that the four fundamental interactions in nature are 

mediated by fields that propagate at the speed of light. This observation raises an important 

question: Does the finite propagation speed of forces affect their magnitude? The answer is 

affirmative. In the following section, the impact of the finite speed of light on time is first examined. 

 

1. Effects of the finite speed of light on time 

As shown in schematic diagram 1, consider two particles, Z1 and Z2, in space. Particle Z1 is 

located at the coordinate origin, whereas particle Z2 is positioned at the coordinateM1. Both Z1 
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and Z2 are equipped with an identical clock, and the 

readings on both clocks are always synchronized. At 

time T = 0, two spherical light waves, Q1 and Q2, 

are successively emitted from particle Z1 at a time 

interval of τ, with the light propagating at a speed of 

C. 

1.1. Temporal variations for particles at 

relative rest 

When particle Z2 remains stationary at 

coordinate M1, calculations indicate that the time 

interval t0 displayed on the clock of particle Z2 between the receptions of spherical light waves 

Q1 and Q2 is equal to the emission time interval τ, that is, 

t0 = (τ +
r1

C
) −

r1

C
 = τ. (1.1) 

Here, t0 is defined as the static time interval. 

1.2. Temporal variations for particles in relative motion 

At time T = 0, simultaneously with the emission of the first spherical light wave Q1, particle 

Z2 commences uniform rectilinear motion from coordinate M1 along the positive X-axis at a 

constant speed V. This particle subsequently encounters spherical light wave Q1 at coordinate M2  

and spherical light wave Q2 at coordinate M3. Calculations reveal that when particle Z2 is in 

motion, the time interval t displayed on its clock between the receptions of  spherical light waves 

Q1 and Q2 is related to the emission time interval τ by the expression 

t = (τ +
r3

C
) −

r2

C
= τ +

r3 − r2

C
. (1.2) 

Here, t is referred to as the dynamic time interval. 

1.3. Functional relationship between static and dynamic time intervals 

Because the static time interval t0  is always equal to the time interval τ between the emissions 

of the spherical light waves Q1 and Q2, substituting τ = t0 into equation (1.2) yields 

t = t0 +
r3 − r2

C
. (1.3) 

Referencing schematic diagram 1 , for a triangle OM2X2, we have  

r2
2 = y1

2 + x2
2. 
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= y1
2 + (x1 + V

r2

C
)2. 

= y1
2 + x1

2 + 2x1V
r2

C
+ V2

r2
2

C2
. 

(C2 − V2)r2
2 − 2CVx1r2 − C2(y1

2 + x1
2) = 0. 

Assuming V < C, solving for r2 in the above equations yields  

r2 =
Vx1 ± √(C2 − V2)y1

2 + C2x1
2

C2 − V2
C. 

The physically meaningful solution for r2 is 

r2 =
Vx1 + √(C2 − V2)y1

2 + C2x1
2

C2 − V2
C. (1.4) 

Next, referencing schematic diagram 1, for a triangle OM3X3, we have 

r3
2 = y1

2 + x3
2. 

= y1
2 + [x1 + V (τ +

r3

C
)]2. 

=  y1
2 + x1

2 + 2x1Vτ + 2x1V
r3

C
+ V2τ2 + 2V2τ

r3

C
+ V2

r3
2

C2
. 

 (C2 − V2)r3
2 − 2C(V2τ + x1V)r3 − C2(y1

2 + V2τ2 + 2x1Vτ + x1
2) = 0. 

Similarly, assuming V < C, solving for r3 in the above equations yields  

r3 =
V2τ + x1V ± √ (C2 − V2)y1

2 + C2(Vτ + x1)2

C2 − V2
C. 

The physically meaningful solution for r3 is 

r3 =
V2τ + x1V + √ (C2 − V2)y1

2 + C2(Vτ + x1)2

C2 − V2
C. 

Because τ = t0, the expression for r3 can be rearranged as 

r3 =
V2t0 + x1V + √ (C2 − V2)y1

2 + C2(Vt0 + x1)2

C2 − V2
C. (1.5) 

Substituting equations (1.4) and (1.5) into equation (1.3) yields 

t = t0 +
1

C
(
V2t0 + x1V + √ (C2 − V2)y1

2 + C2(Vt0 + x1)2

C2 − V2
C −

Vx1 + √(C2 − V2)y1
2 + C2x1

2

C2 − V2
C). 

= t0 +
V2t0

 C2 − V2
+

√ (C2 − V2)y1
2 + C2(Vt0 + x1)2 − √(C2 − V2)y1

2 + C2x1
2

 C2 − V2
. 

Expanding the above expression as a power series in t0 using a Maclaurin series and retaining only 

the linear term, we obtain 
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t =
C2

(C2 − V2)
t0 +

C2x1V

(C2 − V2)√(C2 − V2)y1
2 + C2x1

2
t0. (1.6) 

According to schematic diagram 1, the variable x1 in equation (1.6) can be expressed as 

x1 = x2 − V
r2

C
. (1.7) 

In triangle OM2X2 of schematic diagram 1, we have x2 =
y1cosβ

sinβ
 and r2 =

y1

sinβ
. Substituting the 

expressions of x2 and r2 into equation (1.7) yields 

x1 =
C y1cosβ − V y1

C sinβ
. 

Inserting this expression for x1 into equation (1.6) yields 

t =
C2

(C2 − V2)
t0 +

C2V
C y1cosβ − V y1

C sinβ

(C2 − V2)√(C2 − V2)y1
2 + C2(

C y1cosβ − V y1

C sinβ
)2

t0 =
C

C − V cosβ
t0. 

That is, 

t =
C

C − V cosβ
t0. (1.8) 

In equation (1.8), t represents the dynamic time interval between the two particles, t0 denotes 

the static time interval, V is the relative speed between particles Z2 and Z1, β refers to the angle 

between the line connecting particles Z2 and Z1 and the relative velocity V, and C is the propagation 

speed of the light waves. 

Equation (1.8) provides the functional relationship between the static time interval t0 when 

the two particles are at relative rest and the dynamic time interval t when the two particles are in 

relative motion. Equation (1.8) indicates that when the speed of light is infinite (C→∞) or when 

the relative velocity between the two particles is zero (V = 0), t is identical to t0. Conversely, when 

C is finite and both V and cosβ are nonzero, t differs from t0. Additionally, the ratio between these 

intervals varies as a function of the relative speed V. Therefore, the speed of light being finite is 

considered a necessary condition for the emergence of relativistic variations in time. 

 

1.4. Relationship between static and dynamic time intervals and the doppler effect of light 

waves 

In theory, equation (1.8) can be directly applied to calculating the Doppler effect for light 
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waves. As an example, consider a stationary light source emitting a series of light waves with a 

period T0, where T0 is equal to the static time interval t0. When an observer moves in a uniform 

rectilinear motion relative to the light source at speed V, the functional relationship between the 

observed period T  and the emission period T0, according to equation (1.8), is given by 

T =
C

C − V cosβ
T0. 

Based on this, the functional relationship between the emitted frequency f0 and received frequency 

f is given by 

𝑓 =
C − Vcos β

C
𝑓0. (1.9) 

Here, f is the frequency of the light waves received by the observer, and f0 is the frequency of the 

light waves emitted by the source. 

Equation (1.9) represents the mathematically derived expression for the Doppler effect of 

light waves. The derivation of (1.9) shows that both the speed V and the angle β represent 

parameters characterizing the relative motion between the observer and the source. Therefore, the 

result obtained using equation (1.9) is identical regardless of whether it is the source or the observer 

that is in motion. 

 

2. Effects of temporal variations on forces 

The functional relationship between the dynamic and static time intervals in equation (1.8) 

shows that when the ratio V/C is zero, the dynamic time interval equals the static time interval. 

This scenario corresponds to interacting objects being at relative rest. In classical physics, 

Newton’s second law is recognized as a fundamental principle derived from experimental 

observations. However, owing to experimental limitations at the time, the relative velocity V 

between the object exerting the external force and the object upon which the force acts were 

typically exceedingly small, making the ratio V/C effectively zero. Therefore, we can infer that 

Newton’s second law of motion describes the natural principle governing changes in an object’s 

state of motion under the influence of a force in a specific scenario, where the object exerting the 

force and the object experiencing it are at relative rest. For convenience, the interaction force 

between the object that exerts the force and the object that experiences the force when they are at 

relative rest is defined as the static force, denoted by F0. In contrast, when the two objects are in 

relative motion, the interaction force is termed the dynamic force, denoted by F. Accordingly, based 
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on the differential form of Newton’s second law, the differential expressions of the static force F0 

and dynamic force F can be respectively expressed as 

F0 = m
d2r

dt0
2  and F = m

d2r

dt2
. (2.1) 

Here, t0 and t represent the static and dynamic time intervals, respectively. 

Differentiating the functional relationship between t0 and t from equation (1.8) with respect 

to t0 yields 

dt =
C

C − Vcos β
 dt0. (2.2) 

Substituting equation (2.2) into the expression for the dynamic force F in (2.1) yields 

F = (
C − Vcos β

C
)2F0. (2.3) 

Equation (2.3) provides the functional relationship between the dynamic force F and the static 

force F0. Equation (2.3) shows that when the speed of light, C, is finite and both the relative speed 

V and cosβ are nonzero, F differs from F0. Furthermore, their difference increases with increasing 

speed V. 

 

3. Application of the functional relationship between dynamic and static forces in Newtonian 

mechanics 

In this section, the functional relationship between dynamic and static forces, as given in 

equation (2.3), is employed to extend the scope of Newton’s second law and Newton’s law of 

universal gravitation in classical mechanics. The extended versions will be applicable to the 

calculation of not only forces between objects at relative rest but also to those between objects in 

relative motion. To distinguish these extended laws from their classical counterparts, we refer to 

them as the extended Newton’s second law of motion and the extended Newton’s law of universal 

gravitation, respectively. 

3.1. Extended Newton’s second law of motion 

Newton’s second law describes the natural principle governing changes in an object’s state of 

motion under the influence of a force in a specific scenario, where the object exerting the force 

and the object experiencing it are at relative rest. Its mathematical expression is given by 

F0 = m
d2r

dt0
2

(3.1) 
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By using equations (2.2) and (2.3) to convert dt0 and F0 into dt and F, respectively, we obtain 

F = m
d2r

dt2
. 

This is the differential form of the extended Newton’s second law. The expression indicates 

that the mathematical form of the extended Newton’s second law is identical to that of the classical 

formulation. Consequently, it is speculated that the underlying physical interpretation of the 

extended law remains consistent with its classical counterpart. The extended Newton’s second law 

applies not only to the force calculations when the interacting bodies are at relative rest but also to 

those when they are in relative motion. 

3.2. Extended Newton’s law of universal gravitation 

Similar to Newton’s second law of motion, Newton’s law of universal gravitation is believed 

to describe the gravitational force between two objects at relative rest. Therefore, when the relative 

velocity between two objects is nonzero, the gravitational force computed using Newton’s law of 

universal gravitation represents the static gravitational force, F0, rather than the actual dynamic 

gravitational force between the two objects, F. That is, 

F0 =
GMm

r2
. 

Substituting the expression for F0 from equation (2.3) into the above yields 

F = (
C − Vcos β

C
)2

GMm

r2
. (3.2) 

Equation (3.2) is the mathematical expression for the extended Newton’s law of universal 

gravitation. This extended law is applicable not only to the calculation of the gravitational force 

between objects at relative rest but also between objects in relative motion. Notably, when the 

relative velocity V between two interacting objects in motion is zero (V = 0), equation (3.2) reduces 

to the classical form of Newton’s law of universal gravitation. This clearly demonstrates that the 

extended law is compatible with the classical law, with the latter being a special case of the former 

when the relative velocity between two interacting objects in motion is zero. 

Mathematical analysis of expression (3.2) reveals that if the extended Newton’s law of 

universal gravitation is used to compute the gravitational forces among celestial bodies, the orbital 

trajectories of the planets in the solar system would no longer be closed ellipses. Instead, the 

planets would follow nearly elliptical paths that do not close and continuously revolve around the 

Sun. Moreover, the orientation of these approximate ellipses would precess as the planets move, 
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resulting in continual shifts in their perihelion. Therefore, the validity of the extended Newton’s 

law of universal gravitation can be verified by applying it to calculate planetary orbits and 

comparing the results with astronomical observations. 

 

4. Application of the functional relationship between dynamic and static forces in classical 

electromagnetic theory 

In this section, the functional relationship between dynamic and static forces expressed by 

equation (2.3) is first employed to extend the applicability of Coulomb’s law in classical 

electromagnetism theory. The extended version of Coulomb’s law applies not only to calculating 

the electric field force between stationary point charges but also to that between point charges in 

relative motion. Subsequently, by applying the extended Coulomb’s law, a coherent theoretical 

derivation of several related laws in classical electromagnetism that were originally deduced from 

experimental observations by earlier researchers are provided. To distinguish the classical 

electromagnetic theory from its extended version, we refer to the latter as the extended classical 

electromagnetic theory. 

4.1. Extended Coulomb’s law for point charge electric fields 

Coulomb’s law for electrostatic fields is a fundamental law of electromagnetism derived from 

experimental observations. It describes the natural variation of the electric field force between two 

point charges at relative rest. In this case, the electric field force between the two point charges, a 

static force denoted by F0, is given by 

F0 =
1

4πε0

q1q2

r2
r̂. 

Substituting the expression for F0 from equation (2.3) into the above yields 

F = (
C − Vcos β

C
)2

1

4πε0

q1q2

r2
r̂. (4.1) 

Equation (4.1) is the mathematical expression for the extended Coulomb’s law for point 

charge electric fields. Here, F represents the electric field force between the point charges q1 and 

q2, and V denotes the relative speed between the two point charges. Equation (4.1) shows that 

when the relative speed between the interacting point charges is zero (V = 0), the extended 

expression reduces to the classical Coulomb’s law for electrostatic fields. This confirms that the 

extended Coulomb’s law for point charge electric fields is consistent with Coulomb’s law for 

electrostatic fields, with the latter being a special case only applicable when there is no relative 
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motion between point charges. 

The extended Coulomb’s law for point charge electric fields is applicable not only to the 

calculation of static electric field forces between two point charges at rest but also to the 

computation of dynamic electric field forces between charges in relative motion. This extension 

significantly broadens the applicability of Coulomb’s law within classical electromagnetic theory. 

4.2. Extended Coulomb’s law for line charge electric fields 

The distribution of positive and negative point charges in a conductor can be considered as 

positive and negative line charges. In the mathematical expression (4.1) for the extended 

Coulomb’s law for point charge electric fields, the velocity, V, represents the relative motion 

between two point charges. However, in a conductor, the motion of electrons is random and 

irregular, with both the magnitude and direction of their velocities being indeterminate random 

quantities. Currently, the macroscopic drift velocity of free electrons can only be indirectly 

determined by measuring the current. Therefore, when applying expression (4.1) to calculate the 

electric field force between point charges in a line charge, we must multiply the macroscopic drift 

velocity V by a correction coefficient, that is, 

F = (
C − kVcos β

C
)2

1

4πε0

q1q2

r2
r̂. (4.2) 

Equation (4.2) is the mathematical expression for the extended Coulomb’s law for line charge 

electric fields, incorporating an overall correction coefficient, k. In physics, the value of this 

coefficient is typically determined experimentally, similar to how constants such as G in the law 

of universal gravitation are established. Despite this, k for the macroscopic drift velocity in line 

charges can still be derived by analyzing the 

electromagnetic force between two current-carrying 

wires. 

As shown in schematic diagram 2, consider 

two parallel current-carrying wires, L1 and L2, 

separated by a distance R. In wire L1, the linear 

densities of both the positive and negative charges 

are λ1, whereas the macroscopic drift velocity of the 

negative charges is V1. Additionally, the length of 

this wire is assumed to be infinitely long. 
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Alternatively, in wire L2, the linear densities of both the positive and negative charge are λ2, and 

the macroscopic drift velocity of the negative charges is V2. The length of this wire, which is finite, 

is denoted by L2. The currents in both wires flow in the same direction, and all the positive charges 

remain stationary. 

Y-axis component of the electric field force exerted by the negative line charges in current-

carrying wire L1 on the negative line charges in current-carrying wire L2, 𝐅𝐲−
− : 

According to schematic diagram 2 and equation (4.2), the electric field force, dF−
− , exerted 

by a negative line charge λ1dL1 in the infinitely long wire L1 on a negative line charge -λ2dL2 in 

wire L2 is given by 

dF−
− = −[

C − k(V1 − V2)cosβ

C
]2

1

4πε0

λ1dL1λ2dL2

r2
r̂. 

The Y-axis component of this force, dF−
− , is calculated by 

dFy−
− = −[

C − k(V1 − V2)cosβ

C
]2

1

4πε0

λ1dL1λ2dL2

r2
sinβ. 

By taking dL2 = L2 and integrating both sides of the above equation, we have 

Fy−
− = − ∫ [

C − k(V1 − V2)cosβ

C
]2

1

4πε0

λ1λ2L2

r2

∞

−∞

sinβ dL1. 

= − ∫
λ1λ2L2

4πε0R
[
C − k(V1 − V2)cosβ

C
]2sinβ dβ

π

0

. 

= −
λ1λ2L2

2πε0R
[1 + 

k2(V1 − V2)2

3C2
]. 

Y-axis component of the electric field force exerted by the positive line charges in current-

carrying wire L1 on the negative line charges in current-carrying wire L2, 𝐅𝐲−
+ :  

According to diagram 2 and equation (4.2), the electric field force, dF−
+ , exerted by a positive 

line charge λ1dL1 in the infinitely long wire L1 on a negative line charge -λ2dL2 in wire L2 is 

expressed as 

dF−
+ = [

C + kV2cosβ

C
]2

1

4πε0

λ1dL1λ2dL2

r2
r̂. 

The Y-axis component of this force, dF−
+ , is calculated by 

dFy−
+ = [

C + kV2cosβ

C
]2

1

4πε0

λ1dL1λ2dL2

r2
sinβ. 

By taking dL2 = L2 and integrating both sides of the above equation, we have 
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Fy−
+ = ∫ [

C + kV2cosβ

C
]2

1

4πε0

λ1λ2L2

r2
sinβ

∞

−∞

dL1. 

= ∫
λ1λ2L2

4πε0R
[
C + kV2cosβ

C
]2sinβ dβ

π

0

. 

=
λ1λ2L2

2πε0R
[1 +  

k2V2
2

3C2
]. 

Y-axis component of the electric field force exerted by the negative line charges in current-

carrying wire L1 on the positive line charges in current-carrying wire L2, 𝐅𝐲+
− :  

According to diagram 2 and equation (4.2), the electric field force, dF+
− , exerted by a negative 

line charge -λ1dL1 in the infinitely long wire L1 on a positive line charge λ2dL2 in wire L2 is given 

by 

dF+
− = [

C − kV1cosβ

C
]2

1

4πε0

λ1dL1λ2dL2

r2
r̂. 

The Y-axis component of this force, dF+
− , is calculated by 

dFy+
− = [

C − kV1cosβ

C
]2

1

4πε0

λ1dL1λ2dL2

r2
sinβ. 

By taking dL2 = L2 and integrating both sides of the above equation, we have 

Fy+
− = ∫ [

C − kV1cosβ

C
]2

1

4πε0

λ1λ2L2

r2
sinβ

∞

−∞

dL1. 

= ∫
λ1λ2L2

4πε0R
[
C − kV1cosβ

C
]2sinβ dβ

π

0

. 

=
λ1λ2L2

2πε0R
[1 +  

k2V1
2

3C2
]. 

Y-axis component of the electric field force exerted by the positive line charges in current-

carrying wire L1 on the positive line charges in current-carrying wire L2, 𝐅𝐲+
+ :  

According to diagram 2 and equation (4.2), the electric field force, dF+
+ , exerted by a positive 

line charge λ1dL1 in the infinitely long wire L1 on a positive line charge λ2dL2 in wire L2 is given 

by 

dF+
+ = −

1

4πε0

λ1dL1λ2dL2

r2
r̂. 

The Y-axis component of this force, dF+
+ , is calculated by 

dFy+
+ = −

1

4πε0

λ1dL1λ2dL2

r2
sinβ. 



12 
 

By taking dL2 = L2 and integrating both sides of the above equation, we have 

Fy+
+ = − ∫

1

4πε0

λ1λ2L2

r2
sinβ

∞

−∞

dL1. 

= − ∫
λ1λ2L2

4πε0R
sinβ dβ

π

0

. 

= −
λ1λ2L2

2πε0R
. 

Y-axis component of the total electric field force exerted by current-carrying wire L1 on 

current-carrying wire L2, 𝐅𝐲:  

Fy = Fy−
− + Fy−

+ + Fy+
− + Fy+

+ . 

= k2
λ1V1λ2V2L2

3πε0RC2
. 

Because λ1V1 and λ2V2 are equal to the current intensities I1 and I2 of wires L1 and L2, respectively, 

the expression can be rearranged into 

Fy = k2
I1I2L2

3πε0RC2
. (4.3) 

Here, Fy denotes the Y-axis component of the total force exerted by the infinitely long wire L1 on 

wire L2, calculated using equation (4.2). 

Alternatively, according to classical electromagnetic theory, the Y-axis component of the 

force exerted by the infinitely long wire L1 on wire L2, Fy, is given by 

Fy =
μ0I1I2L2

2πR
. 

Substituting the identity μ0 ≡
1

ε0C2 into the above expression yields 

Fy =
I1I2L2

2πRε0C2
. (4.4) 

Because the Fy in equations (4.3) and (4.4) refer to the same force, we have 

k2
I1I2L2

3πε0RC2
=

I1I2L2

2πRε0C2
. 

k = √
3

2
. 

Substituting the correction coefficient k along with the expressions q1 = λ1dL1 and q2 = λ2dL2 

into equation (4.2), we obtain 
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dF = (
C − √3

2 Vcos β

C
)2

1

4πε0

λ1dL1λ2dL2

r2
r̂. (4.5)

 

Equation (4.5) is the mathematical expression for the extended Coulomb’s law for line charge 

electric fields. Here, dF represents the electric field force between two different line charges λ1dL1 

and λ2dL2, V denotes the macroscopic relative drift velocity between λ1dL1  and λ2dL2, and β refers 

to the angle between the line joining the two line charges and the macroscopic relative velocity V. 

4.3. Application of the extended Coulomb’s law for line charge electric fields in classical 

electromagnetic theory 

In this section, the extended Coulomb’s law for line charge electric fields is employed to 

theoretically derive certain concepts and laws in classical electromagnetic theory. To distinguish 

the derived theorems from the conventional laws of classical electromagnetic theory, we prepend 

the term “extended” to the names of the derived laws and designate them as theorems. 

4.3.1. Extended Ampère theorem 

Next, the extended Coulomb’s law for line charge electric fields is used to theoretically 

calculate the electric field force between two current elements. The resultant mathematical 

expression is termed the extended Ampère theorem. 

As depicted in schematic diagram 3, we assume the distance between two current elements 

dL1 and dL2 is r, and the angle between the line joining them and the positive X-axis is β. In current 

element dL1, the negative charges move at an angle, θ, relative to the positive X-axis. Meanwhile, 

current element dL2 is located at the origin, the 

negative charges of which move along the X-axis. 

We assume that in current element dL1, the 

macroscopic drift velocity of the negative charges is 

V1, whereas the positive charges remain stationary. 

Additionally, the linear densities of both the positive 

and negative charges are λ1. Alternatively, in current 

element dL2, the macroscopic drift velocity of the 

negative charges is V2, whereas that of the positive 

charges remain at zero. The linear densities of both 

types of charges are λ2. According to the mathematical 

expression (4.5) for the extended Coulomb’s law for 
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line charge electric fields, the electric field force, dF, owing to the interaction between the line 

charge elements λ1dL1 in dL1 and λ2dL2 in dL2 is expressed as 

dF =
𝜆1dL1𝜆2dL2

4πε0r2
(
C − √3

2
[V1 cos(β − θ) − V2cosβ]

C
)2r̂. 

Electric field force exerted by the negative line charge element -λ2dL2 in current element dL2 

on the negative line charge element -λ1dL1 in current element dL1, 𝐝𝐅−
− : 

dF−
− =

𝜆1dL1𝜆2dL2

4πε0r2
(
C − √3

2
[V1 cos(β − θ) − V2cosβ]

C
)2r̂. 

Electric field force exerted by the negative line charge element -λ2dL2 in current element dL2 

on the positive line charge element λ1dL1 in current element dL1, 𝐝𝐅−
+ :  

dF−
+ = −

λ1dL1λ2dL2

4πε0r2
(
C + √3

2 V2cosβ

C
)2r̂. 

Electric field force exerted by the positive line charge element λ2dL2 in current element dL2 

on the negative line charge element -λ1dL1 in current element dL1, 𝐝𝐅+
− :  

dF+
− = −

λ1dL1λ2dL2

4πε0r2
(
C − √3

2 V1 cos(β − θ)

C
)2r̂. 

Electric field force exerted by the positive line charge element λ2dL2 in current-carrying 

element dL2 on the positive line charge element λ1dL1 in current-carrying element dL1, 𝐝𝐅+
+ :  

dF+
+ =

λ1dL1λ2dL2

4πε0r2
r̂. 

Net electric field force exerted by current element dL2 on dL1, dF:  

dF = dF−
− + dF+

− + dF−
+ + dF+

+ . 

 = −
3V1V2

4πε0

λ1dL1λ2dL2

r2C2
cos(β − θ)cosβ r̂. 

Substituting V1λ1 = I1, V2λ2 = I2 into the above expression, we obtain 

dF = −
3I1I2dL1dL2

4πε0r2C2
cos(β − θ)cosβ r̂. (4.6) 

Equation (4.6) is the mathematical expression of the extended Ampère theorem describing 

the force between two current elements. While this expression differs from the traditional 

mathematical form of Ampère’s law, in the special case where the two current elements are parallel 
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and one of them is infinitely long, the result obtained from the extended Ampère theorem coincides 

exactly with that derived from Ampère’s law. 

4.3.2. Extended Biot–Savart theorem 

In this section, based on the physical definition of magnetic induction B and using the 

mathematical expression of the extended Ampère theorem, equation (4.6), the mathematical 

expression of the extended Biot–Savart theorem is derived. 

According to the definition of magnetic induction B, when in equation (4.6) we set dL1 = 1m, 

I1 = 1A, and θ = 0°, the magnetic field intensity produced by the current element I2dL2 at a distance 

r, denoted by dF, is given by  

dB =
3IdL

4πε0r2C2
cos2β. 

The above expression is the extended Biot–Savart theorem. Although it differs from the 

traditional mathematical form of the Biot–Savart Law, in the limit of an infinitely long current 

element, the results obtained from the extended Biot–Savart theorem are identical to those of the 

conventional Biot–Savart law. 

4.3.3. Extended Faraday’s theorem of electromagnetic induction 

Faraday’s law of electromagnetic induction is a classic law of electromagnetism derived from 

experimental observations. It describes the natural phenomenon in which a changing magnetic 

field induces an electromotive force in a conductor. The sources of the varying magnetic field can 

be broadly classified into those generated by permanent magnets and those induced by current-

carrying conductors. Notably, the magnetic field generated by a magnet results from the motion of 

electrons around atomic nuclei, which exhibit both high numbers and complex trajectories. Thus, 

calculations based on the extended Coulomb’s law for line charge electric fields are not yet 

applicable. Therefore, the following sections focus exclusively on electromagnetic induction 

phenomena resulting from the magnetic fields of current-carrying conductors. 

The mathematical expression for Faraday’s law of electromagnetic induction is given by 

ℰ = −
d∅

dt
. 

According to the definition of magnetic flux, when the magnetic field lines are perpendicular to 

the plane formed by the closed loop, the expression for Faraday’s law of electromagnetic induction 

can be expressed as 
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ℰ = −
d(BS)

dt
. 

= −B
dS

dt
− S

dB

dt
. 

In the above equation, the first term on the right-hand side of the equation represents the 

motional electromotive force as described in classical electromagnetic theory, and the second term 

corresponds to the induced electromotive force. Next, using the extended Coulomb’s law for line 

charge electric fields, the variation patterns for both the motional and induced electromotive forces 

are calculated. The resultant mathematical expressions are referred to as the extended motional 

electromagnetic induction theorem and the extended induced electromagnetic induction theorem, 

respectively.  

4.3.3.1. Extended motional electromagnetic induction theorem. 

 As depicted in schematic diagram 4, consider an infinitely long current-carrying conductor 

L with a current I, where free electrons move along the positive X-axis at speed V1. A closed loop, 

abcd, is formed by a conductor, where segment ab is free to move and travels along the negative 

Y-axis at a speed of V. The distance R denotes the separation between the charges in segment ab 

and current-carrying conductor L. 

According to the physical definition of electromotive force, the motional electromotive force 

ε generated at the two ends of segment ab due to its motion is equal to the difference between the 

electric field force FVX along the X-axis experienced by a unit negative charge in the moving state 

and the electric field force F0X along the X-axis experienced by the same negative charge in the 

stationary state in segment ab, multiplied by the 

length of segment ab, Lab, that is, 

ℰ = (FVx − F0x)Lab. 

By applying the mathematical expression of the 

extended Coulomb’s law for line charge electric 

fields, i.e., equation (4.5), the expressions for FVX 

and F0X are given by 

FVx =
VI

2πε0RC2
+

√6 I

8ε0RC
. 

F0x =
√6 I

8ε0RC
. 
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Based on this, the mathematical expression for the motional electromotive force ε across the two 

ends of segment ab is expressed as 

ℰ = (FVx − F0x)Lab. 

=
IVLab

2πε0RC2
. 

Because the direction of the induced current in segment ab is the same as that in the infinitely 

long conductor L, the magnetic fields generated by the two cancel each other within the area 

enclosed by the closed loop. Consequently, a negative sign is introduced to the induced 

electromotive force ε. The mathematical expression for the extended motional electromagnetic 

induction theorem is therefore given by 

ℰ = −
IVLab

2πε0RC2
. (4.7) 

Substituting 
I

2πε0RC2 = B and VLab =
dS

dt
 into equation (4.7) yields 

ℰ = −B
dS

dt
. 

Because BdS = dØ, the above expression can be rearranged into 

ℰ = −
d∅

dt
. 

The above equation is the mathematical expression of Faraday’s law of electromagnetic 

induction. This result indicates that the extended Coulomb’s law for line charge electric fields can 

be used to derive Faraday’s law of electromagnetic induction, which was originally deduced from 

experimental observations. Consequently, equation (4.7), which represents the mathematical 

formulation of the extended motional electromagnetic induction theorem in terms of electric fields, 

is equivalent to Faraday’s law of electromagnetic induction, which is expressed in terms of 

magnetic fields. This observation also indirectly verifies the correctness of the extended 

Coulomb’s law for line charge electric fields. 

4.3.3.2. Extended induced electromagnetic induction theorem.  

As shown in schematic diagram 5, consider a current-carrying conductor L with a current I, and 

assume abcd is a closed loop formed by a conductor. When the current in conductor L flows along 

the positive X-axis, the mathematical expression (4.5) of the extended Coulomb’s law for line 

charge electric fields is applicable to compute the forces on both the positive and negative charges 

in the closed loop. The resultant force directions on these charges are as indicated in diagram 5. 
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Schematic diagram 5 shows that an induced 

electromotive force ε exists between points a and 

c in the closed loop abcd. Under the influence of 

this induced electromotive force ε, the negative 

charges (free electrons) in the loop split into two 

streams flowing from point c to point a, thereby 

generating an induced current i in the loop. As 

negative charges accumulate at point a, a static 

electric field is established between points a and 

c, the magnitude of which is equal to that of ε but 

opposite in direction. At this point, because the 

forces exerted by the induced electromotive force and the static electric field on the charges in the 

loop are equal in magnitude and opposite in direction, the charges in the loop become 

macroscopically stationary, and the induced current in the loop vanishes (i = 0). If the current I in 

conductor L remains constant, the positive and negative charges in the closed loop will remain 

macroscopically at rest, and the induced current will continue to be zero. 

Alternatively, when the current in L increases, according to the mathematical expression (4.5) 

of the extended Coulomb’s law for line charge electric fields, the electric field generated by L will 

exert a greater force on the charges in the closed loop, such that the electric field force due to L 

becomes greater than the static electric field force formed by the charges within the loop. In this 

case, an induced current will continue to arise in the closed loop flowing toward point c, thereby 

increasing the static electric field strength until the forces on the charges once again reach 

equilibrium and the induced current vanishes. 

Conversely, when the current in L decreases, based on to the mathematical expression (4.5) 

of the extended Coulomb’s law for line charge electric fields, the force exerted on the charges in 

the closed loop by the electric field produced by L diminishes accordingly, making it smaller than 

the static electric field force generated by the charges in the loop. At this point, an induced current 

(denoted as current i in the diagram) flows toward point a that is opposite in direction to the original 

induced current. This current reduces the static electric field strength in the loop until the forces 

on the charges reach equilibrium once more and the induced current again vanishes. 

The above describes the principle underlying the generation of the induced electromotive 
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force and induced current. Nevertheless, formulating a complete mathematical expression for 

induced electromagnetic induction solely within the theoretical framework of the extended 

Coulomb’s law for line charge electric fields remains a significant challenge that requires further 

in-depth investigation. 

 

5. Conclusion 

The time between objects changes with the change of their relative velocity, and the change 

of time will cause the force on the moving object to change accordingly. We can think that 

Newton's second law of motion and the law of gravitation correctly describe the laws of nature 

that follow for the forces that arise between relatively stationary objects. Applying this functional 

relationship of time variation within the framework of classical Newtonian mechanics theory, it 

can expand the scope of application of Newton's second law of motion and the law of universal 

gravitation, so that they are no longer limited to objects moving at rest or at low speed. And through 

its successful application in classical electromagnetic theory, it can be considered that this new 

functional relationship correctly reflects the objective laws that follow the interaction between 

objects in nature. 

 

 


