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Abstract

We introduce a class of geometric bodies, which we call vertex-edge-combinatorial poly-
topes, defined by a local structure in which each vertex is connected to a number of edges
equal to the dimension of the body, and where any subset of those edges belongs to a face
whose dimension equals the subset’s cardinality. These polytopes satisfy an empirical formula
for the number of vertices, from which a general combinatorial expression for the number
of faces can be deduced. The class includes simplices, hypercubes, and the dodecahedron,
and excludes the octahedron, the icosahedron, and any higher-dimensional polytopes derived
from them. In some cases where the formula diverges, such as the hexagonal tiling, an infinite
regular structure does exist, although this is not always the case.

1 Regular polygons and their natural extensions

Regular polygons have historically served as the foundation for building highly symmetrical
three-dimensional structures: the Platonic solids. However, not all regular polygons admit
a closed three-dimensional extension in which all faces are congruent copies of the base
polygon:

• For α = 3 (triangle), three regular solids exist: the tetrahedron, the octahedron, and
the icosahedron.

• For α = 4 (square), only one: the hexahedron or cube.

• For α = 5 (pentagon), only one: the dodecahedron.

• For α = 6 (hexagon), no closed solid exists: the polygon tiles the Euclidean plane
without gaps or overlaps, forming an infinite regular lattice.

• For α ≥ 7, not even that: no regular 3D solids can be constructed from congruent faces
of such polygons.

It is also possible to construct higher-dimensional polytopes from simple 3D solids, such as
the simplices (based on the tetrahedron) and the hypercubes (based on the cube).

We present an empirical formula that describes the number of vertices of a significant
proportion of these structures:

• In dimension 2, all regular polygons (trivially, since each vertex has 2 edges).

• In dimension 3, includes the tetrahedron, cube, and dodecahedron, and excludes the oc-
tahedron and icosahedron.

• In higher dimensions, the simplices and hypercubes, which fully satisfy both the formula
and the local combinatorial conditions.
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When the formula yields a finite positive integer, the result is a closed polytope.
When it yields an infinite value, this indicates that no closed polytope can be built under

the same vertex-edge combinatorial rules. In some cases (such as α = 6, β = 3), it may
correspond to an actual infinite tessellation. The case α = 5, β = 4, where the formula diverges,
predicts the breakdown of combinatorial extensibility: while the 120-cell exists as a finite closed
structure, it fails to satisfy the local inductive criteria defined here.

When it yields a fractional or negative value, this clearly signals the impossibility of a
coherent polytope satisfying the same structural principles.

The exclusion of the octahedron and icosahedron is not arbitrary; as we will show in Section 3,
it is rooted in their local vertex structure. This is due to the fact that their vertices are connected
to more than β edges, violating the condition of local regularity.

2 The empirical formula for the number of vertices

Although we lack a formal derivation, this expression appears to encode the critical balance
between connectivity and closure at each dimensional level.

Let N0(α, β) denote the number of vertices of a β-dimensional body generated from a regular
polygon with α vertices. The empirical formula observed for these bodies is recursive:

N0(α, β) =

{
1 if β = 0

R(α, β) ·N0(α, β − 1) if β ≥ 1

where the growth coefficient R(α, β) is given by:

R(α, β) =
(3α− 8) + (4− α)β

(2α− 6) + (4− α)β

This formula exhibits several notable properties:

• For α = 3, we get N0(3, β) = β + 1, corresponding to simplices.

• For α = 4, we get N0(4, β) = 2β, corresponding to hypercubes.

• For α = 5, it correctly reproduces the number of vertices of the dodecahedron (β = 3).

The behavior of R(α, β) varies with both parameters and determines when the formula ceases
to yield coherent results. In particular, for certain combinations of α and β, the denominator
vanishes or the expression becomes negative or fractional, which signals a breakdown in the
construction process.

In addition, the formula satisfies N0(α, 0) = 1 for any value of α, since all constructions
begin from a single point in dimension zero. For β = 1, it yields a segment with two vertices,
regardless of α. For β = 2, it correctly returns the regular polygon with α vertices, recovering
all planar cases.

α β = 2 β = 3 β = 4

3 3 4 5
4 4 8 16
5 5 20 ∞
6 6 ∞ –
7 7 < 0 –

Note that for α = 5, the function diverges at β = 4, aligning with the breakdown of local
combinatorial construction.
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3 Definition of vertex-edge-combinatorial polytopes

The bodies selected by the empirical formula for N0(α, β) share a remarkable structural feature:
any combination of j edges emanating from a vertex belongs to a j-dimensional face.
This implies that the local organization of edges at each vertex determines the entire structure
of the body.

Definition

A β-dimensional geometric body is called a vertex-edge-combinatorial polytope if it satisfies
the following conditions:

1. Each vertex is connected to exactly β edges.

2. Any subset of j ≤ β of those edges defines a j-dimensional face, isomorphic to the body
generated by the same empirical formula in dimension j.

This definition ensures that the edge combinatorics around each vertex fully determine the
face structure of the body.

This naturally excludes bodies such as:

• The octahedron, where each vertex has 4 edges (more than its dimension).

• The icosahedron, which also features excess connectivity.

In contrast, the tetrahedron, cube, hypercubes, simplices, and dodecahedron fully
satisfy these conditions.

4 Sharing relations between elements of different dimensions

Let Cj→k denote the number of k-dimensional faces that share a j-dimensional element. The
following relation must hold:

Cj→k =
Nk(α, β) ·Nj(α, k)

Nj(α, β)
=

(
β − j

k − j

)

5 On the deducibility of the empirical formula

Although consistent with the observed combinatorial structure, the empirical formula is not
directly deduced from the number of faces of lower-dimensional bodies. Partial combinatorial
interpretations may suggest how it arises, but a full derivation remains elusive.

6 Euler–Poincaré characteristic

In all known examples, the following identity holds:

χ =

β∑
k=0

(−1)kNk(α, β) = 1 + (−1)β

This supports the conjecture that all such polytopes are topological spheres, as expected
from a closed inductive construction, although a general proof for all α has not yet been found.
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7 Interpretation of Divergence

Although the empirical formula yields infinite values for certain pairs (α, β), these should not
be interpreted as necessarily indicating the existence of infinite tessellations.

For example:

• For (α = 6, β = 3), the formula diverges, and this corresponds to the well-known infinite
tessellation of the Euclidean plane by regular hexagons.

• However, for (α = 5, β = 4), the formula also diverges, but no such infinite structure exists.
The only known construction using regular dodecahedra in 4D is the finite 120-cell, which
does not satisfy the local combinatorial conditions defined for vertex-edge-combinatorial
polytopes.

Therefore, a divergent value of N0(α, β) must be interpreted more generally as indicating
the impossibility of constructing a closed polytope that satisfies the recursive com-
binatorial structure, not necessarily the existence of an infinite one.

This aligns with the interpretation of negative or fractional values, which more clearly signal
incompatibility with a closed, locally consistent structure.

8 Final remarks

This article defines a coherent class of polytopes with elegant and predictive combinatorial
properties. Outstanding challenges include:

• Deriving the empirical formula from internal principles.

• Proving the Euler–Poincaré identity for all α.

• Extending the formula to describe the number of vertices of bodies outside the defined
class.

To the best of our knowledge, all known polytopes that satisfy the vertex-edge combinatorial
structure defined here also satisfy the empirical formula for the number of vertices. Conversely,
all polytopes for which the formula diverges or breaks down—whether by producing non-integer,
negative, or divergent values—appear to violate the local structural conditions.

No counterexample has yet been identified: no polytope is known to fulfill the local rules
while escaping the formula. This dual correspondence suggests that the empirical recurrence
may not merely select the class of vertex-edge-combinatorial polytopes, but fully characterize
it. The search for a potential exception remains open, and might provide deeper insight into the
combinatorics of higher-dimensional geometry.
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