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Abstract

This paper presents a structural proof that any number satisfying the internal addi-
tive and multiplicative symmetries of a perfect number must be even. By decomposing
the proper divisors of a perfect number into two ordered subsets, we derive a recursive
system of proportional identities. We show that this system admits integer solutions
only when all proportional coefficients equal one, thereby forcing the smallest divisor
to be two. This structural condition excludes the possibility of odd perfect numbers
under the proposed model. Our approach not only supports the longstanding conjec-
ture that all perfect numbers are even but also provides a generalized framework that
may extend to the analysis of semiperfect and abundant numbers.

1. Historical Overview of Perfect Numbers

The study of perfect numbers has captivated mathematicians for over two millennia. A perfect
number is a positive integer equal to the sum of its proper divisors, excluding itself.

1.1 Ancient Foundations: Euclid and Nicomachus The notion of perfect numbers
dates back to ancient Greece. In Elements, Book IX, Euclid provided a construction for even
perfect numbers[1]:

n = 2p−1(2p − 1),

where 2p−1 must be a prime, now known as a Mersenne prime. Later, Nicomachus of Gerasa
(1st century CE) discussed perfect numbers such as 6, 28, 496, and 8128, embedding them
in numerological contexts[2].

1.2 Renaissance and Enlightenment Era: Mersenne and Euler In the 17th century,
Marin Mersenne compiled a list of potential primes of the form 2p − 1, known as Mersenne
primes. Leonhard Euler, in the 18th century, proved that all even perfect numbers must be
of Euclid’s form, showing that[3][4]:

If n is even and perfect, then n = 2p−1(2p − 1), where 2p − 1 is prime.
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1.3 Modern Number Theory: Search for Odd Perfect Numbers Despite extensive
effort, no odd perfect number has been found. Several important results include:

• Touchard (1953): An odd perfect number must be of the form 12k + 1 or 36k + 9[5].

• Nielsen (2007): Any odd perfect number must have at least 75 prime factors[6].

• Ochem and Rao (2012): Raised this lower bound to 101 distinct prime factors[7].

1.4 Computational Era: GIMPS and Large Perfect Numbers Modern searches
are powered by distributed computing through the GIMPS (Great Internet Mersenne Prime
Search) project. As of 2024, 51 even perfect numbers have been discovered, each associated
with a known Mersenne prime. No odd perfect number has yet been identified[8].

2. Structural Model and Integer Constraints of

Perfect Numbers

Definition 2.1. A natural number N ∈ N is called perfect if the sum of its proper divisors
equals the number itself [9]. That is,

1 + a1 + a2 + · · ·+ ak + b1 + b2 + · · ·+ bk−2 + bk−1 + bk = N. (2.1)

Lemma 2.1 (Additive Decomposition). Let N be a perfect number. Then its proper divisors
can be partitioned into two strictly increasing sequences:

1 < a1 < a2 < · · · < ak < b1 < b2 < · · · < bk < N, (2.2)

Having shown in Lemma 2.1 that the divisors of a perfect number can be grouped through
the parameter α, we proceed in Lemma 2.2 to explore how this proportionality extends to
another divisor, bk−1, establishing a further layered structure.

Lemma 2.2 (Multiplicative Symmetry). Under the decomposition above, the following iden-
tity must also hold:

akb1 = ak−1b2 = · · · = a1bk = N. (2.3)

Figure 1: Divisor Combinations Whose Products Equal
N

Figure 1 shows the equation (2.2)
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The proportional relationship established in Lemma 2.2 naturally extends to a deeper layer
of divisors. In Lemma 2.3, we apply the same logic to define a proportional formula involving
bk−2, thereby revealing a recursive structural pattern in the divisor set.

Lemma 2.3 (Recursive Proportional Relations). To ensure compatibility between equations
(2.1) and (2.2), we require that:

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−3 + bk−2 + bk−1 = αbk (2.4)

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−3 + bk−2 = βbk−1 (2.5)

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−3 = γbk−2 (2.6)

...

1 + a1 + · · ·+ ak = ζb1 (2.7)

where α, β, γ, . . . ∈ N are proportional constants.

Proof. Since in Equation (2.3) we have a1bk = N , if we express the following part from
Equation (2.1) as αbk,

1 + a1 + a2 + · · ·+ ak + b1 + b2 + · · ·+ bk−2 + bk−1 = αbk, (2.8)

then the left-hand side becomes factorizable by bk, and the equation becomes a1bk = N ,
which satisfies Equation (2.3). That is,

αbk + bk = (α + 1)bk = N, (2.9)

which satisfies the form of Equation (2.1). This is why Equation (2.4) is necessary.
Next, in Equation (2.4), if we express the following part as βbk−1,

1 + a1 + a2 + · · ·+ ak + b1 + b2 + · · ·+ bk−2 = βbk−1, (2.10)

then

βbk−1 + bk−1 = (β + 1)bk−1 = αbk, (2.11)

which satisfies the condition a2bk−1 = a1bk in Equation (2.3). This is why Equation (2.5) is
necessary.

Equations (2.6) and (2.7) are similarly required by the same logical structure.

Remark 2.1. The strict ordering condition 1 < a1 < a2 < · · · < ak < b1 < · · · < bk < N
plays a crucial role in ensuring the uniqueness of the proportional constants. If any coeffi-
cient α, β, γ, . . . were greater than 1, it would rapidly increase the corresponding ai, thereby
violating the ordered divisor structure. This condition, therefore, necessitates that all such
constants be equal to 1 for the equations to remain consistent and the divisors to be properly
ordered.

Through the successive lemmas, a series of proportional equations has been systematically
established. These form a general inductive framework that culminates in Theorem 2.1, where
the full structural characterization of even perfect numbers is presented.



4

Theorem 2.1 (Integer Consistency and Evenness). If N satisfies the structural system in
(2.1)–(2.7), then the elements ai are defined recursively as:

a1 = α + 1

a2 =
(β + 1)(α + 1)

α

a3 =
(γ + 1)(β + 1)(α + 1)

αβ
...

These expressions are integers only when α = β = γ = · · · = 1. Therefore, a1 = 2, implying:

2 | N.

Hence, any such perfect number must be even.

Proof. From Equation (2.3), we have the identity

a1bk = a2bk−1 = · · · = akb1 = N.

Using Equation (2.4),

1 + a1 + · · ·+ ak + b1 + · · ·+ bk−1 = αbk,

subtracting bk from both sides gives

N = (α + 1)bk.

But since a1bk = N , we obtain
a1 = α + 1.

From Equation (2.5), we similarly get

a2 =
(β + 1)(α + 1)

α
.

For a2 ∈ N, we must have α | (α+1), which is only satisfied by α = 1. This gives a1 = 2.
Now we use the strict ordering condition

1 < a1 < a2 < · · · < ak < b1 < · · · < bk < N.

From a1 = 2, it follows that a2 ≥ 3. But from above,

a2 =
(β + 1)(α + 1)

α
,

and when α = 1, this simplifies to a2 = 2(β + 1). For a2 ≥ 3, we must have β ≥ 1, and to
maintain minimal integer structure, we again conclude β = 1 ⇒ a2 = 4.
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Continuing to a3, we have:

a3 =
(γ + 1)(β + 1)(α + 1)

αβ
.

Substituting α = β = 1, we get a3 = 2(γ + 1). Again, the ordering condition requires
a3 > a2 = 4, so γ ≥ 2, but this contradicts the symmetry a3bk−2 = N unless all coefficients
remain small.

Therefore, for both integer consistency and ordering of divisors to be maintained, we
must have

α = β = γ = · · · = 1,

which yields:
a1 = 2, a2 = 4, a3 = 8, . . .

Thus,
a1bk = 2bk = N ⇒ 2 | N.

Therefore, any such perfect number N must be even.

Remark 2.2. The strict ordering condition 1 < a1 < a2 < · · · < ak < b1 < · · · < bk < N
plays a crucial role in ensuring the uniqueness of the proportional constants. If any coeffi-
cient α, β, γ, . . . were greater than 1, it would rapidly increase the corresponding ai, thereby
violating the ordered divisor structure. This condition, therefore, necessitates that all such
constants be equal to 1 for the equations to remain consistent and the divisors to be properly
ordered.

3. Nonexistence of Odd Perfect Numbers Under This

Model

Theorem 3.1 (Exclusion of Odd Perfect Numbers). If a perfect number N satisfies the
structural decomposition defined by equations (2.1)–(2.7), then N must be even. Thus, no
odd perfect number can satisfy this structure.

Proof. From Theorem 2.2 , the only valid integer solutions occur when all proportional
constants are 1. This leads to a1 = 2. Since a1 | N , and a1 = 2, it follows that 2 | N .
Therefore, N must be even.

Assuming the structure is a necessary property of all perfect numbers, the existence of an
odd perfect number would contradict this derived evenness, leading to a contradiction.

Remark 3.1. This result provides a structural explanation for why no odd perfect num-
bers have been found, and if the decomposition model holds universally, it establishes the
nonexistence of odd perfect numbers.

Remark 3.2. The decomposition model presented here, while developed for perfect numbers,
may also be adaptable to semiperfect numbers, as it is based on additive divisor structures.
However, the strict multiplicative symmetry conditions used to eliminate odd perfect num-
bers may not hold for such generalized cases.
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4. Conclusion

We have introduced a structural decomposition model that captures both additive and multi-
plicative symmetries among the proper divisors of perfect numbers. Through this framework,
we derived recursive expressions whose integer consistency demands that all proportional
constants be equal to one. This constraint leads inevitably to the inclusion of 2 as a divisor,
confirming that any perfect number satisfying the structure must be even. Consequently,
odd perfect numbers are excluded from this model.

The model not only supports Euclidean constructions of even perfect numbers but also
offers a pathway for classifying integers based on internal divisor symmetries. Although this
framework was designed for perfect numbers, its additive structure could potentially extend
to semiperfect or abundant numbers if the strict multiplicative symmetry is relaxed. Future
research may explore such extensions and seek broader applications in number theory.

Remark 4.1. Although this model was originally formulated for perfect numbers, its additive
structure—particularly the identity

1 + a1 + a2 + · · ·+ ak + b1 + b2 + · · ·+ bk = N

—may naturally apply to semiperfect numbers as well. These are numbers for which a subset
of proper divisors sums exactly to N , without requiring full multiplicative symmetry[10].
Future work could explore whether relaxed forms of our recursive conditions can be adapted
to characterize semiperfect or abundant numbers in a similar framework.

This structural approach provides not only insight into the parity of perfect numbers
but also opens a pathway toward a more unified classification of integers based on divisor
configurations.
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