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We investigate the challenges of incorporating time-dependent mass in classical Lagrangian
mechanics, where velocity-dependent terms break time-translation symmetry and complicate energy
conservation. Using the 0-Sphere model—a point-like system with thermally modulated mass
inspired by Zitterbewegung and thermal oscillations—we demonstrate that a Hamiltonian formulation
simplifies the dynamics by eliminating velocity-dependent terms and preserving energy conservation
through conserved momentum, despite the Hamiltonian’s explicit time dependence. The model
assumes a position-independent thermal potential and oscillatory mass modulation, providing a
mathematically consistent framework. We also explore a preliminary quantum extension via the
time-dependent Schrödinger equation, suggesting potential applications to thermally driven systems.
While the model’s reliance on simplified potentials and the naive quantum approach limit its generality,
this work offers a starting point for understanding systems with dynamic inertial properties, with
possible relevance to cosmology and quantum mechanics.

I. INTRODUCTION

Systems with time-dependent mass, such as rockets,
accreting astrophysical objects, or particles in thermal
environments, present notable challenges in classical
mechanics [1]. In Lagrangian mechanics, a varying mass
gives rise to velocity-dependent terms that resemble
dissipation, complicating the variational principle and
breaking time-translation symmetry [2]. These issues can
be particularly pronounced in theoretical constructs like
the 0-Sphere model, which describes a point-like particle
confined by thermal potential barriers, with its inertial
mass modulated by oscillatory thermal effects.
The problem of time-dependent mass systems has

been considered in various contexts since the early work
of Rosen [3], who formulated classical and quantum
theories for such systems. Further developments include
the Caldirola-Kanai approach [4, 5], which introduced
effective mass modulation as a way to model energy
dissipation in quantum mechanics.

The 0-Sphere model, motivated by an interpretation of
Dirac’s Zitterbewegung as a localized oscillation at the
Compton wavelength scale, envisions a particle confined
within a photon-like sphere undergoing thermal oscillation
between two potential wells, referred to as “kernels.”
Rather than invoking extended objects as in string or
field theories, the model postulates dynamics along a
one-dimensional geodesic axis shaped by a thermally
modulated geometry—an idealized framework in which
temperature is assumed to influence inertial mass [6]. This
results in a time-dependent effective mass that complicates
the direct application of standard Lagrangian methods.
In this work, we explore the possibility that a

Hamiltonian formulation may provide a more tractable
approach. We examine the equations of motion for
the 0-Sphere model, evaluate energy conservation, and
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tentatively consider extensions to quantum mechanical
systems. While preliminary, this line of analysis may serve
as a starting point for further theoretical development of
the 0-Sphere model, particularly from a geometric and
analytical mechanics perspective.

II. FORMULATION AND DYNAMICS

A. Lagrangian Framework

We consider a point-like particle with time-dependent
mass m(t), motivated by the 0-Sphere model’s thermal
modulation, potentially influenced by internal oscillatory
effects such as Zitterbewegung [7]. The Lagrangian is

L(x, ẋ, t) =
1

2
m(t)ẋ2 − V (t), (II.1)

where V (t) is a time-dependent thermal potential,
assumed position-independent to focus on temporal
dynamics. The action is

S =

∫
L(x, ẋ, t) dt, (II.2)

yielding the Euler-Lagrange equation [1]

d

dt
(m(t)ẋ) = 0, (II.3)

since ∂V
∂x = 0. Expanding, we obtain

m(t)ẍ+ ṁ(t)ẋ = 0. (II.4)

The term ṁ(t)ẋ arises from mass variation, breaking
time-translation symmetry and complicating geodesic
interpretation, as the Lagrangian depends explicitly on
time [2].
In the 0-Sphere model, energy conservation is defined

by [8–10]

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
.

(II.5)
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Using the identity

cos4
(
ωt

2

)
+ sin4

(
ωt

2

)
= 1− 1

2
sin2(ωt), (II.6)

the right-hand side simplifies to 1, confirming constant
total energy. The kinetic energy is

T =
1

2
m(t)ẋ2 =

E0

2
sin2(ωt), (II.7)

and the thermal potential is

V (t) = E0

(
1− 1

2
sin2(ωt)

)
. (II.8)

From Eq. (II.7), the mass satisfies

m(t)ẋ2 = E0 sin
2(ωt). (II.9)

To align with the thermal potential’s time dependence,
we define

m(t) = m0

(
1− 1

2
sin2(ωt)

)
, (II.10)

reflecting the model’s oscillatory mass modulation.
Substituting into Eq. (II.9), we obtain

ẋ2 =
E0 sin

2(ωt)

m0

(
1− 1

2 sin
2(ωt)

) , (II.11)

ensuring m(t) remains positive and dynamics are well-
defined. The velocity profile

ẋ =

√
E0

m0

sin(ωt)√
1− 1

2 sin
2(ωt)

(II.12)

produces non-harmonic motion consistent with the
model’s thermal modulation. Substituting Eq. (II.10)
into Eq. (II.4) yields

m0

(
1− 1

2
sin2(ωt)

)
ẍ−m0ω sin(ωt) cos(ωt)ẋ = 0,

(II.13)
describing the dynamics driven by mass variation.

B. Hamiltonian Framework

In the Hamiltonian framework [1], the canonical
momentum is

p = m(t)ẋ = m0

(
1− 1

2
sin2(ωt)

)
ẋ. (II.14)

The Hamiltonian is

H =
p2

2m0

(
1− 1

2 sin
2(ωt)

) + E0

(
1− 1

2
sin2(ωt)

)
.

(II.15)

The equations of motion are

ẋ =
p

m0

(
1− 1

2 sin
2(ωt)

) ,
ṗ = −∂V

∂x
= 0.

(II.16)

implying conserved momentum p. The Hamiltonian’s
time evolution is

dH

dt
=
∂H

∂t

=
p2ω sin(ωt) cos(ωt)

2m0

(
1− 1

2 sin
2(ωt)

)2 − E0ω

2
sin(ωt) cos(ωt).

(II.17)

dH

dt
=
∂H

∂t

=
p2ω sin(ωt) cos(ωt)

2m0

(
1− 1

2 sin
2(ωt)

)2 − E0ω

2
sin(ωt) cos(ωt).

(II.18)

Using Eq. (II.12), the kinetic term aligns with Eq. (II.7),
ensuring energy conservation. This approach follows the
framework established by Lewis [11] for time-dependent
harmonic systems and extends the invariant theory for
nonstationary quantum systems [12].

In the quantum regime, the time-dependent Schrödinger
equation [13] is

ih̄
∂ψ

∂t
=

[
− h̄2

2m0

(
1− 1

2 sin
2(ωt)

) ∂2

∂x2

+ E0

(
1− 1

2
sin2(ωt)

)]
ψ ,

(II.19)

where the time-varying mass modulates the kinetic
operator, suggesting non-trivial wave packet evolution
driven by thermal effects. This quantum extension builds
upon the Caldirola-Kanai formalism [4, 5] for dissipative
quantum systems.

III. CONCLUSION

This work represents an initial attempt to construct a
Hamiltonian-based framework for thermally modulated
mass systems using the 0-Sphere model. While prelimi-
nary, the results suggest a coherent theoretical structure
that warrants further development and investigation.
We have shown that the Hamiltonian formulation

simplifies the treatment of time-dependent mass in
the 0-Sphere model by eliminating velocity-dependent
terms in the equations of motion and enabling energy
conservation through conserved momentum and the
model’s specific structure, despite the Hamiltonian’s
explicit time dependence.
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In the 0-Sphere model, where mass modulation
arises from thermal oscillations, this approach preserves
canonical structure and maintains energy conservation,
providing a mathematically consistent framework for
describing such systems.

Several limitations and open questions remain. The
model’s reliance on position-independent potentials,
while mathematically convenient, restricts its immediate
applicability to more general systems. The physical
interpretation of ”thermal geometry” and its relationship
to established thermodynamic principles requires deeper
theoretical justification. Additionally, the connection
between the 0-Sphere’s discrete symmetry and observable
physical phenomena remains to be established through

explicit predictions and experimental validation. We must
acknowledge that the direct substitution of our classical
Hamiltonian into the Schrödinger equation, while formally
straightforward, represents a rather naive approach to
quantum extension that requires more careful theoretical
consideration.

Future work should focus on extending the framework
to spatially varying potentials, exploring the model’s
predictions for measurable quantities, and investigating its
relationship to established theories of dissipative quantum
systems. The approach presented here, while requiring
further development, offers a potentially useful starting
point for understanding systems where inertial properties
are dynamically modulated by environmental or internal
factors.
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