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Deformed Lie products and involution
First part: Discussion in a three-dimensional space
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This document is the �rst part of an exploration examining when a deformed
Lie product can be an involution. The approach starts softly in a real three-
dimensional space, introducing basic notions like (i) the already well-known link
between involution and neutral element, (ii) the importance of some rules con-
cerning the indexes when a discussion is developed in a three-dimensional space,
(iii) a speci�c semantic for the diverse representations of the deforming matrices
(e�ective, normalized, associated six-pack). It gives then the formalism of the
matrices representing the repetition of the action of any deformed cross prod-
uct. It starts a systematization of the discussion and �nally criterion precising
when a deformed cross product is an involution. It turns out that a classical
cross product cannot be an involution if the discussion is not involving vectors
with components in the set of complex numbers or of quaternions. ©Thierry
PERIAT: Deformed Lie products and involution - �rst part: discussion in a
three-dimensional space.
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1 DEFORMED LIE PRODUCTS AND INVOLUTION IN A
THREE-DIMENSIONAL SPACE.

1 Deformed Lie products and involution in a three-

dimensional space.

1.1 Basics

De�nition 1.1. Deformed cross product

The discussion involves vectors with three real components and Lie products
(see de�nition in [a]) which are deformed by anti-symmetric cubes with knots in
R, the set of real numbers. The space is denoted V3 = {E(3,R), A∈⊞−(3,R)}.

Because of this anti-symmetry, the cubes contain no more 33 = 27 knots but
only at most 3 × 3 = 9 di�erent non-necessarily vanishing positive real num-
bers. They can be regrouped inside an element [A] in M(3, R) which is a square
matrix.

(3)[A] =

 A1
12 A2

12 A3
12

A1
23 A2

23 A3
23

A1
13 A2

13 A3
13

 ∈ M(3, R)

Let suppose that V3 can be referred to a canonical basis Ω (e1, e2, e3); then,
per de�nition, the deformation is acting in the following manner:

∀ (3)q1,
(3)q2 ∈ V3 : [

(3)q1,
(3) q2][A] =

3∑
d=1

3∑
a<b=2

Adab . (q
a
1 . q

b
2 − qa2 . q

b
1) . ed

Proposition 1.1. Any deformed Lie product acting on pairs of elements in V3

is a deformation of the classical cross product involving these elements.

Proof. E�ectively, any deformed Lie product acting on a pair (q1, q2) writes:

[q1,q2][A]

=

3∑
a<b=2

A1
ab . (q

a
1 . q

b
2− qa2 . q

b
1) . e1+A2

ab . (q
a
1 . q

b
2− qa2 . q

b
1) . e2+A3

ab . (q
a
1 . q

b
2− qa2 . q

b
1) . e3

It can be represented in V∗
3, the dual space of V3:

|[q1,q2][A] >

=∣∣∣∣∣∣
∑3

a<b=2A
1
ab . (q

a
1 . q

b
2 − qa2 . q

b
1)∑3

a<b=2A
2
ab . (q

a
1 . q

b
2 − qa2 . q

b
1)∑3

a<b=2A
3
ab . (q

a
1 . q

b
2 − qa2 . q

b
1)

〉
=∣∣∣∣∣∣

A1
12 . (q

1
1 . q

2
2 − q22 . q

1
1) + A1

23 . (q
2
1 . q

3
2 − q32 . q

2
1) + A1

13 . (q
1
1 . q

3
2 − q32 . q

1
1)

A2
12 . (q

1
1 . q

2
2 − q22 . q

1
1) + A2

23 . (q
2
1 . q

3
2 − q32 . q

2
1) + A2

13 . (q
1
1 . q

3
2 − q32 . q

1
1)

A3
12 . (q

1
1 . q

2
2 − q22 . q

1
1) + A3

23 . (q
2
1 . q

3
2 − q32 . q

2
1) + A3

13 . (q
1
1 . q

3
2 − q32 . q

1
1)

〉

...
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1.1 Basics

Simultaneously, one knows that:

| ∧ (q1,q2) >=

∣∣∣∣∣∣
q21 . q

3
2 − q22 . q

3
1

−(q11 . q
3
2 − q12 . q

3
1)

q11 . q
2
2 − q12 . q

2
1

〉

and that:

[J ]t . [A] =

 0 1 0
0 0 −1
1 0 0

 .

 A1
12 A2

12 A3
12

A1
23 A2

23 A3
23

A1
13 A2

13 A3
13

 =

 A1
23 A2

23 A3
23

−A1
13 −A2

13 −A3
13

A1
12 A2

12 A3
12


or also:

[A]t . [J ] =

 A1
23 −A1

13 A1
23

A2
23 −A2

13 A2
23

A3
23 −A3

13 A3
23


It is then easy to state that:

|[q1,q2][A] >= {[A]t . [J ]} . | ∧ (q1,q2) >

With:

[J ] =

 0 0 1
1 0 0
0 −1 0

 [J ]t =

 0 1 0
0 0 −1
1 0 0


The last term on the right hand side (r.h.s.) is nothing but the classical cross
product (i.e.: the three-dimensional version of the wedge product). This �rst
and basic statement explains why that new product has been coined with the
label �deformed cross product�.

Proposition 1.2. �A cross product is a Lie product deformed by the matrix [J]�.

Proof. E�ectively, writing [A] = [J] in the de�nition of any deformed cross
product immediately yields:

[q1,q2][J ] = ∧(q1,q2)

Since, historically, the cross product can be considered as the �point zero� for
the de�nition of a Lie bracket/cross product (i.e.: as a non-deformed Lie product
acting in a three-dimensional space), the spontaneous terminology attributing
the deformation to the (3)[A] matrix may be a little bit confusing. This is
suggesting that one should either change it for convenience and harmonization
with the intuitive way of doing; or consider the presence of [J] as a sign left
by the nature and containing a subliminal message related to some underlying
symmetry; for example: the Abel cyclic group C6.

[J ]2 =

 0 0 1
1 0 0
0 −1 0

 .

 0 0 1
1 0 0
0 −1 0

 =

 0 −1 0
0 0 1
−1 0 0


...
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[J ]3 = −Id3

[J ]4 = ([J ]2)2

 0 −1 0
0 0 1
−1 0 0

 .

 0 −1 0
0 0 1
−1 0 0

 =

 0 0 −1
−1 0 0
0 1 0

 = −[J ]

[J ]5 = −[J ]2

[J ]6 = Id3

1.2 Involution and neutral element

De�nition 1.2. The function [a, ...][A].

Let consider a given element a in V3; the function [a, ...][A] is an element in
End(V3) such that:

∀x ∈ V3

[a, ...][A]−−−−−→ [a, x][A] ∈ V3

Proposition 1.3. If f = [a, ...][A] acts on a given element x in V3 like an
involution would do it, then there automatically exists an element [B([A], a)] in
M(3, R) such that a behaves like a neutral element on the left side of x for the
deformed cross product [..., ...][B([A], a)]; concretely:

[a, [a, x][A]︸ ︷︷ ︸
=X

][A] = x ⇒ ∃ [B([A], a)] ∈ M(3, R) : [a,x][B([A],a)] = x

Proof. Let consider the de�nition of any deformed cross product and let then
calculate:

a ∈ E(3, R) : [a, X︸︷︷︸
=

∑3
γ=1X

γ . eγ

][A]

When:
X = [a, x][A]

Because:

∀ γ = 1, 2, 3 : Xγ =
3∑

α<β=2

Aγαβ . (a
α . xβ − aβ . xα)

This is:
{[a, X][A]}η

=
3∑

δ<γ=2

Aηδγ . {a
δ . Xγ − aγ . Xδ}

=
3∑

δ<γ=2

Aηδγ . {a
δ .

3∑
α<β=2

Aγαβ . (a
α . xβ −xα . aβ)− aγ .

3∑
α<β=2

Aδαβ . (a
α . xβ −xα . aβ)}

=

...
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1.2 Involution and neutral element

3∑
δ<γ=2

Aηδγ . {
3∑

α<β=2

(aδ . Aγαβ − aγ . Aδαβ︸ ︷︷ ︸
=Cδγ

αβ

) . (aα . xβ − xα . aβ)}

=

3∑
α<β=2

(
3∑

δ<γ=2

Aηδγ . C
δγ
αβ︸ ︷︷ ︸

=Bη
αβ

) . (aα . xβ − xα . aβ)

=

3∑
α<β=2

Bη
αβ . (a

α . xβ − xα . aβ)

With:
∀α, β, η = 1, 2, 3

∀ (α, β) |α < β :

Bη
αβ =

3∑
δ<γ=2

Aηδγ . C
δγ
αβ

Cδγ
αβ = Aδαβ . a

γ − Aγαβ . a
δ

Remark 1.1. Concerning the indexes in a three-dimensional space.

Due to the fact that for any given pair (α, β) of non-repeated indexes:

� taken in Ind3 = {1, 2, 3} and

� such that α < β

... can be replaced by the index missing in the pair at hand, let it for example
denote with the Greek letter ϵ:

(α, β) = (1, 2) ≡ ϵ = 3

(α, β) = (1, 3) ≡ ϵ = 2

(α, β) = (2, 3) ≡ ϵ = 1

This remark is also true for the pairs (δ, γ) which can be replaced by an index
denoted, e.g., µ.

Hence, one must decode the cube B in starting with:

∀α, β, η = 1, 2, 3

∀ (α, β) |α < β and∀ (δ, γ) | δ < γ

Bη
αβ

=

...
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5



©T.
PE

RIA
T

1 DEFORMED LIE PRODUCTS AND INVOLUTION IN A
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3∑
δ<γ=2

Aηδγ . C
δγ
αβ

=

Aη12 . C
12
αβ + Aη23 . C

23
αβ + Aη13 . C

13
αβ

=

Aη3 . C
3
αβ + Aη1 . C

1
αβ + Aη2 . C

2
αβ

In a second step, one must write:

Bη
12 = Aη3 . C

3
12 + Aη1 . C

1
12 + Aη2 . C

2
12

Bη
13 = Aη3 . C

3
13 + Aη1 . C

1
13 + Aη2 . C

2
13

Bη
23 = Aη3 . C

3
23 + Aη1 . C

1
23 + Aη2 . C

2
23

There relations are equivalent to:

Bη
3 = Aη3 . C

3
3 + Aη1 . C

1
3 + Aη2 . C

2
3

Bη
2 = Aη3 . C

3
2 + Aη1 . C

1
2 + Aη2 . C

2
2

Bη
1 = Aη3 . C

3
1 + Aη1 . C

1
1 + Aη2 . C

2
1

At this stage, it becomes absolutely evident that the cube B and the hyper-
cube C are in fact respectively equivalent to an element [B] and to an element
[C] in M(3,R). It is obvious that the entries of [C] depend on the information
contained in the pair ([A],a) - nota bene: more details concerning this point
will be given later in this document.

Therefore, as claimed:

1. What gave the initial illusion to be a cube B is only a (3-3) matrix [B] in
M(3,R) depending on the information contained in the pair ([A],a).

2. When f is an involution, one can write:

[a, [a, x][A]][A] = [(3)a, (3)x][B((3)[A], (3)a)] =
(3)x

The formalism of this relation proves that the vector (3)a acts like a neutral
element on the left side of (3)x through the function [a, ...][B ]. One can

also say that a repetition of the involutive action of [(3)a, ...][A] on a given

vector (3)x modi�es the deforming matrix but not this vector.

...
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1.3 A normalized formalism for the deforming matrices

1.3 A normalized formalism for the deforming matrices

Any anti-symmetric and real cube A can be condensed as an element [A] in
M(3,R)

(3)[A] =

 A1
12 A2

12 A3
12

A1
23 A2

23 A3
23

A1
13 A2

13 A3
13


Due to the remark 1.1 concerning the indexes, this element can also be rewritten
as:

(3)[A] =

 A1
3 A2

3 A3
3

A1
1 A2

1 A3
1

A1
2 A2

2 A3
2


This writing is not corresponding to the usual (line, row) convention because a
normalized writing of this matrix would be: A1

1 A1
2 A1

3

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3

 = [A⋄]

The normalized formalism of the deforming matrix can always be recovered in
introducing the matrix:

[W ] =

 0 1 0
0 0 1
1 0 0

 ; |K| = 1; [W ] . [W ]t = Id3

Because it is easy to verify that:

[A] = {[A⋄] . [W ]}t = [W ]t . [A⋄]t

[A]t = [A⋄] . [W ]

[A⋄] = [A]t . [W ]t = {[W ] . [A]}t

The transposed matrix [W]t is one of the three matrices representing the tetra-
hedron group in a three dimensional space [01; annex J, pp. 653-655]. It is also
an element generating the cyclic group Z3 [02; p.18].

Per convention:

� The matrix [A] is the deforming matrix,

� The matrix [A]t.[J] is the e�ective deforming matrix appearing in propo-
sition 1.1 proving that a deformed Lie product acting on elements in V3

is a deformation of the cross product involving these elements and

� The matrix [A⋄] is the normalized deforming matrix ; note that the e�ective
deforming matrix is related to the normalized one through the relation:

[A]t . [J ] = [A⋄] . [W ] . [J ]

...
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7



©T.
PE

RIA
T

1 DEFORMED LIE PRODUCTS AND INVOLUTION IN A
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Note also by the way that:

[W ] . [J ] =

 0 1 0
0 0 1
1 0 0

 .

 0 0 1
1 0 0
0 −1 0

 =

 1 0 0
0 −1 0
0 0 1



[J ] . [W ] =

 0 0 1
1 0 0
0 −1 0

 .

 0 1 0
0 0 1
1 0 0

 =

 1 0 0
0 1 0
0 0 −1


And that:

[W ] . [J ] . [J ]Φ(a) =

 1 0 0
0 −1 0
0 0 1

 .

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 =

 0 −a3 a2

−a3 0 a1

−a2 a1 0



[J ]Φ(a) . [J ]
t =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

 0 1 0
0 0 −1
1 0 0

 =

 a2 0 a3

−a1 a3 0
0 −a2 −a1


These results will be useful later in this document.

1.4 An alternative representation for any matrix in M(3,R)

Any element in M(3, R), for example [A], can be understood as a set of six
intricate elements in E(3, R).

Proof. Each (3-3) matrix contains implicitly six vectors because, as a matter of
facts:

(3)[A] =

 A1
12 A2

12 A3
12

A1
23 A2

23 A3
23

A1
13 A2

13 A3
13


can always be decoded as the juxtaposition of three columns:

(3)[A] = [|a1 > , |a2 > , |a3 >]

with:

|aη >≡

∣∣∣∣∣∣
Aη12
Aη23
Aη13

〉
; η = 1, 2, 3.

and as a superposition of three lines:

[A] =

 |a1 >
|a2 >
|a3 >


Each of these six vectors has three components in R. Each of them is simulta-
neously a component of another vector in that six-pack.

...
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1.5 Characterizing the deforming matrix (3)[B((3)[A], (3)
a)]

De�nition 1.3. Six-pack

A �six-pack� is a set of six elements in E(3,R) such that their components
allow the reconstruction of an element in M(3, R). Per convention, the element
in M(3, R) is the mother of a six-pack.

Note that:

� any element in M(3, R) is systematically equivalent to a six-pack; but, the
converse is false.

� any six-pack contains two subsets of each three vectors: three rows and
three lines. The subset containing the three lines can be crossed with the
subset containing the three rows and the maneuver generates a set of nine
classical cross products. Each of these products can be deformed by an el-
ement chosen in M(3, R); eventually, they can be simultaneously deformed
by only one element, for example [X]. Exceptionally, the deforming matrix
[X] can coincide with the mother [A] of the six-pack.

1.5 Characterizing the deforming matrix (3)[B((3)[A], (3)a)]

Coming back to the main topic of this document, one now looks for more in-
formation concerning the formalism of the generic deforming matrix [B((3)[A],
(3)a)] which is obtained when the action of [a, ...][A] is repeated. This subsection
gives four important characteristics for this matrix:

� It is the simplest decomposition for some cross product which is deformed
by a cube D in ⊞(3,R): [a, ...]D; proposition 1.4.

� It is a speci�c and degenerated representation in M(3,R) of a repetition
of the action of f = [a, ...][A]; proposition 1.5.

� It is a weighted sum of Pythagorean tables which are built with the vectors
implicitly contained in the deforming matrix (3)[A]; proposition 1.6.

� Its determinant is null; proposition 1.7.

Proposition 1.4. The (non-normalized) formalism of the deforming matrix
(3)[B] is a trivial one.

Proof. Let recall the result which has been obtained during the demonstration
of proposition 1.3:

η = 1, 2, 3 ; α < β :

Bη
αβ = Aη12 . (A

1
αβ . a

2−A2
αβ . a

1)+Aη23 . (A
2
αβ . a

3−A3
αβ . a

2)+Aη13 . (A
1
αβ . a

3−A3
αβ . a

1)

The relation can be reorganized as:

Bη
αβ

=

−(Aη12 . A
2
αβ +Aη13 . A

3
αβ) . a

1+(Aη23 . A
3
αβ −Aη12 . A

1
αβ) . a

2+(Aη23 . A
2
αβ +Aη13 . A

1
αβ) . a

3

...
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They can then be condensed:

η = 1, 2, 3 ; α < β : Bη
(αβ) =

3∑
λ=1

Dη
λ(αβ) . a

λ

With:
η = 1, 2, 3 ; α < β : Dη

1αβ = −(Aη12 . A
2
αβ + Aη13 . A

3
αβ)

η = 1, 2, 3 ; α < β : Dη
2αβ = (Aη23 . A

3
αβ − Aη12 . A

1
αβ)

η = 1, 2, 3 ; α < β : Dη
3αβ = (Aη23 . A

2
αβ + Aη13 . A

1
αβ)

The pairs (α, β) take only three values: (1, 2), (2, 3) and (1, 3). Due to the
fact that the discussion is developed in a three-dimensional space, these pairs
can be replaced by a unique subscript, for example ϵ, the value of which is the
missing one in the set {1, 2, 3}:

η , ϵ = 1, 2, 3 : Dη
1ϵ = −(Aη3 . A

2
ϵ + Aη2 . A

3
ϵ )

η , ϵ = 1, 2, 3 : Dη
2ϵ = (Aη1 . A

3
ϵ − Aη3 . A

1
ϵ )

η , ϵ = 1, 2, 3 : Dη
3ϵ = (Aη1 . A

2
ϵ + Aη2 . A

1
ϵ )

Hence:

η , ϵ = 1, 2, 3 : Bη
ϵ =

3∑
λ=1

Dη
λϵ . a

λ

or, more concisely and as it was claimed, the non-normalized writing of [B] has
the same formalism than the simplest decomposition for some deformed cross
product of the [a, ...]D type:

[B([A],a)] = DΦ(a)

At this stage, one don't know if the cube D owns symmetries or not. The three
matrices λ[D] (for λ = 1, 2, 3) composing it are:

1[D] = [Dη
1ϵ] = −

[
D1

11 D1
12 D1

13
D2

11 D2
12 D2

13
D3

11 D3
12 D3

13

]
=

[
A1

3 . A2
1 + A1

2 . A3
1 A1

3 . A2
2 + A1

2 . A3
2 A1

3 . A2
3 + A1

2 . A3
3

A2
3 . A2

1 + A2
2 . A3

1 A2
3 . A2

2 + A2
2 . A3

2 A2
3 . A2

3 + A2
2 . A3

3
A3

3 . A2
1 + A3

2 . A3
1 A3

3 . A2
2 + A3

2 . A3
2 A3

3 . A2
3 + A3

2 . A3
3

]

2[D] = [Dη
2ϵ] =

[
D1

21 D1
22 D1

23
D2

21 D2
22 D2

23
D3

21 D3
22 D3

23

]
=

[
A1

1 . A3
1 − A1

3 . A1
1 A1

1 . A3
2 − A1

3 . A1
2 A1

1 . A3
3 − A1

3 . A1
3

A2
1 . A3

1 − A2
3 . A1

1 A2
1 . A3

2 − A2
3 . A1

2 A2
1 . A3

3 − A2
3 . A1

3
A3

1 . A3
1 − A3

3 . A1
1 A3

1 . A3
2 − A3

3 . A1
2 A3

1 . A3
3 − A3

3 . A1
3

]
3[D] = [Dη

3ϵ] =

[
D1

31 D1
32 D1

33
D2

31 D2
32 D2

33
D3

31 D3
32 D3

33

]
=

[
A1

1 . A2
1 + A1

2 . A1
1 A1

1 . A2
2 + A1

2 . A1
2 A1

1 . A2
3 + A1

2 . A1
3

A2
1 . A2

1 + A2
2 . A1

1 A2
1 . A2

2 + A2
2 . A1

2 A2
1 . A2

3 + A2
2 . A1

3
A3

1 . A2
1 + A3

2 . A1
1 A3

1 . A2
2 + A3

2 . A1
2 A3

1 . A2
3 + A3

2 . A1
3

]

...
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1.5 Characterizing the deforming matrix (3)[B((3)[A], (3)
a)]

Proposition 1.5. The matrix [B] is a speci�c and degenerated representation
in M(3,R) of a repetition of the action of f = [a, ...][A].

Proof. First of all, let recall the description of the entries of the matrix [B]
(remark 1.1) in re-ordering them to get a normalized formalism; one obtains:

� For the �rst row:

B1
1 = A1

3 . C
3
1 + A1

1 . C
1
1 + A1

2 . C
2
1

B2
1 = A2

3 . C
3
1 + A2

1 . C
1
1 + A2

2 . C
2
1

B3
1 = A3

3 . C
3
1 + A3

1 . C
1
1 + A3

2 . C
2
1

� For the second row:

B1
2 = A1

3 . C
3
2 + A1

1 . C
1
2 + A1

2 . C
2
2

B2
2 = A2

3 . C
3
2 + A2

1 . C
1
2 + A2

2 . C
2
2

B3
2 = A3

3 . C
3
2 + A3

1 . C
1
2 + A3

2 . C
2
2

� For the third row:

B1
3 = A1

3 . C
3
3 + A1

1 . C
1
3 + A1

2 . C
2
3

B2
3 = A2

3 . C
3
3 + A2

1 . C
1
3 + A2

2 . C
2
3

B3
3 = A3

3 . C
3
3 + A3

1 . C
1
3 + A3

2 . C
2
3

This simple action gives the opportunity to get a product of normalized matrices:

Bη
ϵ =

3∑
µ=1

Aηµ . C
µ
ϵ ⇐⇒ [B⋄] = [A⋄] . [C⋄]

Furthermore, with the conventions which have been introduced in remark 1.1:

µ = 1 : C(2, 3)
ϵ = C1

ϵ = A2
ϵ . a

3 − A3
ϵ . a

2

µ = 2 : C(1, 3)
ϵ = C2

ϵ = A1
ϵ . a

3 − A3
ϵ . a

1

µ = 3 : C(1, 2)
ϵ = C3

ϵ = A1
ϵ . a

2 − A2
ϵ . a

1

...
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THREE-DIMENSIONAL SPACE.

One can write:
Bη
ϵ

=

Aη1 . C
1
ϵ + Aη2 . C

2
ϵ + Aη3 . C

3
ϵ

=

Aη1 . (A
2
ϵ . a

3 − A3
ϵ . a

2) + Aη2 . (A
1
ϵ . a

3 − A3
ϵ . a

1) + Aη3 . (A
1
ϵ . a

2 − A2
ϵ . a

1)

This writing allows the construction of the normalized version of matrix [C]:

C1
1 = A2

1 . a
3 − A3

1 . a
2 ; C1

2 = A2
2 . a

3 − A3
2 . a

2 ; C1
3 = A2

3 . a
3 − A3

3 . a
2

C2
1 = −(A3

1 . a
1−A1

1 . a
3) ; C2

2 = −(A3
2 . a

1−A1
2 . a

3) ; C2
3 = −(A3

3 . a
1−A1

3 . a
3)

C3
1 = A1

1 . a
2 − A2

1 . a
1 ; C3

2 = A1
2 . a

2 − A2
2 . a

1 ; C3
3 = A1

3 . a
2 − A2

3 . a
1

With an attentive observation, one recognizes that this normalized version is a
product of two matrices. The �rst one can be identi�ed with the help of results
which have been obtained at the end of subsection 1.3 whilst the second simply
is the normalized formulation of the deforming matrix [A]:

(3)[C⋄]

= 0 a3 −a2

a3 0 −a1

a2 −a1 0

 .

 A1
1 A1

2 A1
3

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3


=

−(3)[W ] . (3)[J ] . (3)[J ]Φ(
(3)a) . (3)[A⋄]

At the end, one gets the relation:

(3)[B⋄] = −(3)[A⋄] . (3)[W ] . (3)[J ] . (3)[J ]Φ(
(3)a) . (3)[A⋄]

There is a non-normalized formulation for it:

[B]

= {(3)[B⋄] . [W ]}t

= {{(3)[A⋄] . (3)[W ]} . {(3)[J ] . (3)[J ]Φ(−
(3)a)} . {(3)[A⋄] . [W ]}}t

= {(3)[A⋄] . [W ]}t . {(3)[J ]Φ(
(3)a) . [J ]t} . {(3)[A⋄] . [W ]}t

= [A] . {(3)[J ]Φ(
(3)a) . [J ]t} . [A]

The product:

(3)[J ]Φ(
(3)a) . [J ]t =

 a2 0 a3

−a1 a3 0
0 −a2 −a1


... is an isomorphic representation of a in M(3,R).

...
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1.5 Characterizing the deforming matrix (3)[B((3)[A], (3)
a)]

De�nition 1.4. The isomorphic function ⊙3.

The isomorphic function ⊙ is such that:

∀ (3)a ∈ V3
⊙3−−→ ⊙3(a) = (3)[J ]Φ(

(3)a) . [J ]t

De�nition 1.5. The function f2 = f o f.

The function f2 = f o f is such that:

∀ ((3)[A], (3)a) ∈ M(3, R) × V3
f2−→∈ M(3, R)

f2((3)[A], (3)a) = [A] . (3)[J ]Φ(
(3)a) . [J ]t . [A]

Remark 1.2. The determinant of [B].

It is known that:

� The determinant of the simplest decomposition of any classical cross prod-
uct is null.

|[J ]Φ((3)a)| = −a3 . (−a2 . a1) − a2 . (−a3 . − a1) = 0

� The determinant of any product of matrices is equal to the product of
their respective determinants.

Therefore, the determinant of [B] is obligatorily null too:

|(3)B| = 0, ∀ ((3)[A], (3)a)

And, as claimed:

Lemma 1.1. The matrix [B] is a speci�c and degenerated representation in
M(3,R) of a repetition of the action of f = [a, ...][A].

Proposition 1.6. The matrix [B⋄] is the sum of six kernels of class II (see [a]
for the de�nition and the theory concerning the kernels in a three-dimensional
space).

Proof. Since (recall previous proposition):

Bη
ϵ

=

Aη1 . C
1
ϵ + Aη2 . C

2
ϵ + Aη3 . C

3
ϵ

=

Aη1 . (A
2
ϵ . a

3 − A3
ϵ . a

2) + Aη2 . (A
1
ϵ . a

3 − A3
ϵ . a

1) + Aη3 . (A
1
ϵ . a

2 − A2
ϵ . a

1)

=

−a1 . (Aη2 . A
3
ϵ + Aη3 . A

2
ϵ ) + a2 . (Aη3 . A

1
ϵ + Aη1 . A

3
ϵ ) + a3 . (Aη1 . A

2
ϵ − Aη2 . A

1
ϵ )

...
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THREE-DIMENSIONAL SPACE.

One can now alternatively write the matrix [B⋄] as a weighted sum:

[B⋄]

=

−a1 . {T2(⊗)(a⋄2,a
⋄3) + T2(⊗)(a⋄3,a

⋄2)}

+ a2 . {T2(⊗)(a⋄3,a
⋄1) − T2(⊗)(a⋄1,a

⋄3)}

+ a3 . {T2(⊗)(a⋄1,a
⋄2) + T2(⊗)(a⋄2,a

⋄1)}

This is a sum of six Pythagorean tables which is weighted by the components
of vector a. These tables are built with the six-pack implicitly contained in the
normalized deforming matrix [A⋄].

It has been explained in [a] that each Pythagorean table might be a kernel
of class II for the non-trivial decomposition of some deformed cross product
when this decomposition is associated with a polynomial of which the Hessian
is degenerated.

Proposition 1.7. The matrix [B⋄] is associated with a degenerated linear sys-
tem:

|B⋄| = 0

Proof. This proposition is though as a basic exercise con�rming the statement
which has already been done at the end of proposition 1.5. Let consider any
pair (u1,u2) in V

2
3 = V3 × V3 and a second pair (w1,w2) in V

2
3 too. Let build

the Pythagorean tables T2(⊗)(u1,u2) and T2(⊗)(w1,w2). The determinant of
each of them is null. Now, let ask the question: "What is the determinant of the
sum of these tables?" Basic knowledge in linear algebra gives the well known
answer: zero.

One can verify this a�rmation in making all calculations in details:

|T2(⊗)(u1,u2) + T2(⊗)(w1,w2)|

=∣∣∣∣∣∣
u11 . u

1
2 + w1

1 . w
1
2 u21 . u

1
2 + w2

1 . w
1
2 u31 . u

1
2 + w3

1 . w
1
2

u11 . u
2
2 + w1

1 . w
2
2 u21 . u

2
2 + w2

1 . w
2
2 u31 . u

2
2 + w3

1 . w
2
2

u11 . u
3
2 + w1

1 . w
3
2 u21 . u

3
2 + w2

1 . w
3
2 u31 . u

3
2 + w3

1 . w
3
2

∣∣∣∣∣∣
=

(u11 . u
1
2 + w1

1 . w
1
2)

. {(u21 . u22 +w2
1 . w

2
2) . (u

3
1 . u

3
2 +w3

1 . w
3
2)− (u21 . u

3
2 +w2

1 . w
3
2) . (u

3
1 . u

2
2 +w3

1 . w
2
2)}

− (u21 . u
1
2 + w2

1 . w
1
2)

. {(u11 . u22 +w1
1 . w

2
2) . (u

3
1 . u

3
2 +w3

1 . w
3
2)− (u11 . u

3
2 +w1

1 . w
3
2) . (u

3
1 . u

2
2 +w3

1 . w
2
2)}

+(u31 . u
1
2 + w3

1 . w
1
2)

. {(u11 . u22 +w1
1 . w

2
2) . (u

2
1 . u

3
2 +w2

1 . w
3
2)− (u11 . u

3
2 +w1

1 . w
3
2) . (u

2
1 . u

2
2 +w2

1 . w
2
2)}

...
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1.6 Starting a systematization of the discussion

=

(u11 . u
1
2 + w1

1 . w
1
2) . (u

2
1 . w

3
1 − u31 . w

2
1) . (u

2
2 . w

3
2 − u32 . w

2
2)

− (u21 . u
1
2 + w2

1 . w
1
2) . (u

1
1 . w

3
1 − u31 . w

1
1) . (u

2
2 . w

3
2 − u32 . w

2
2)

+ (u31 . u
1
2 + w3

1 . w
1
2) . (u

1
1 . w

2
1 − u21 . w

1
1) . (u

2
2 . w

3
2 − u32 . w

2
2)

=

(u22 . w
3
2 − u32 . w

2
2)

. {(u11 . u12 + w1
1 . w

1
2) . (u

2
1 . w

3
1 − u31 . w

2
1)

− (u21 . u
1
2 + w2

1 . w
1
2) . (u

1
1 . w

3
1 − u31 . w

1
1)

+ (u31 . u
1
2 + w3

1 . w
1
2) . (u

1
1 . w

2
1 − u21 . w

1
1)}

=

(u22 . w
3
2 − u32 . w

2
2) . 0

=

0

Since [B⋄] is a linear combination of sums involving pairs of Pythagorean tables,
its determinant vanishes and this matrix can be associated with a degenerated
linear system. This fact is con�rming what has already been obtained in propo-
sition 1.5.

|(3)[B⋄((3)[A], (3)a)| = 0

1.6 Starting a systematization of the discussion

Remark 1.3. The reiteration of the action of f = [a, ...][A].

Let now calculate:

[a, [a, [a, x][A]][A]︸ ︷︷ ︸
=Y

][A] = ...

This is also:
[a, Y][A] =

∑
λ<µ

Aψλµ . (a
λ . Y µ − aµ . Y λ) . eψ

With:
Y λ =

∑
α<β

Bλ
αβ . (a

α . xβ − xα . aβ)

In the language of components, that is in the dual space V∗
3 (summations have

been omitted because the rules governing them here are clear):

{[a, Y][A]}ψ

=

...
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Aψλµ . (a
λ . Bµ

αβ . (a
α . xβ − xα . aβ) − aµ . Bλ

αβ . (a
α . xβ − xα . aβ))

=

Aψλµ . (a
λ . Bµ

αβ − aµ . Bλ
αβ) . (a

α . xβ − xα . aβ)

One recognizes a pattern similar to the one which has been observed in calculat-
ing [a,X][A]. Hence, in starting with the pair ([A], a) representing the function
f = [a, ...][A] acting on ..., and calculating f o f, one gets the pair ([B], a). In
continuing with the latter representing the function f o f = [a, ...][B ] acting on
..., and calculating f o (f o f), one gets a cube E such that:

Eψ
αβ = Aψλµ . (a

λ . Bµ
αβ − aµ . Bλ

αβ)

The cube E inherits from the anti-symmetry of cube B. Hence, as the cubes A
and B, it can be condensed inside an element [E] in M(3,R). This maneuver
can be repeated as meany times as desired and it would always bring the same
type of formal result. Therefore, at this stage, one can start a systematization
of the discussion.

The function f and its reiteration Representations in V ∗
3

[a, ...][J ] = a ∧ ... {[J ]t . [J ]}︸ ︷︷ ︸
= Id3

. |a ∧ ... >

[a, ...][0A] {[0A]t . [J ]} . |a ∧ ... >

[a, [a, ...][0A]][0A] = [a, ...][1A] {[1A]t . [J ]} . |a ∧ ... >

[a, [a, [a, ...][0A]][0A]][0A] = [a, ...][2A] {[2A]t . [J ]} . |a ∧ ... >

etc. etc.

With the correspondences:
[0A] = [A]

[1A] = [B] = [0A] . [0C], [0C] = [aλ . (0A)
µ
αβ − aµ . (0A)

λ
αβ]

[2A] = [E] = [0A] . [1C], [1C] = [aλ . (1A)
µ
αβ − aµ . (1A)

λ
αβ]

etc.

[pA] = [0A] . [p− 1C], [p− 1C] = [aλ . (p− 1A)
µ
αβ − aµ . (p− 1A)

λ
αβ]

The deforming matrix changes with the number p of iterations.

...
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1.6 Starting a systematization of the discussion

Remark 1.4. The e�ective deforming matrices.

In continuing the calculations, one gets:

Eψ
αβ

=

Aψ12 . (B
1
αβ . a

2−B2
αβ . a

1)+Aψ23 . (B
2
αβ . a

3−B3
αβ . a

2)+Aψ13 . (B
1
αβ . a

3−B3
αβ . a

1)

=

(Aψ12 . a
2+Aψ13 . a

3) . B1
αβ +(−Aψ12 . a

1+Aψ23 . a
3) . B2

αβ − (Aψ13 . a
1+Aψ23 . a

2) . B3
αβ

=∑
λ

(
∑
ϵ

Aψϵλ . a
ϵ) . Bλ

αβ

With:
Bλ
αβ

=

Aλ12 . (A
1
αβ . a

2−A2
αβ . a

1)+Aλ23 . (A
2
αβ . a

3−A3
αβ . a

2)+Aλ13 . (A
1
αβ . a

3−A3
αβ . a

1)

=

(Aλ12 . a
2+Aλ13 . a

3) . A1
αβ +(−Aλ12 . a

1+Aλ23 . a
3) . A2

αβ − (Aλ13 . a
1+Aλ23 . a

2) . A3
αβ

=∑
µ

(
∑
π

Aλπµ . a
π) . Aµαβ

Here too, one recognizes a pattern:

[B⋄] = AΦ(a) . [A
⋄] = 0AΦ(a) . [0A

⋄] = [1A
⋄]

[E⋄] = AΦ(a) . [B
⋄] = 0AΦ(a) . [1A

⋄] = 0AΦ
2(a) . [0A

⋄] = [2A
⋄]

Etc.

[pA
⋄] = 0AΦ

p(a) . [0A
⋄]

If one prefers, this relation can be written with non-normalized matrices:

{[W ] . [pA]}t = 0AΦ
p(a) . {[W ] . [0A]}t ⇐⇒ [W ] . [pA] = [W ] . [0A] . {0AΦ

p(a)}t

And one gets in general:

[pA] = [0A] . {0AΦ
p(a)}t

Hence, the e�ective deforming matrix for the pth iteration is:

[pA]
t . [J ] = 0AΦ

p(a) . {[0A]t . [J ]}

...
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Example 1.1. The case p = 1 and the involution of f.

In that case:

{[B]t . [J ]} = [1A]
t . [J ] = 0AΦ(a) . {[0A]t . [J ]}

It follows that:

� The matrix:

0AΦ(a) . {[0A]t . [J ]} . 0AΦ(a)

... is the simplest representation of f2 = f o f (equivalently: of a unique
iteration of the action of f);

� The function f is an involution when:

0AΦ(a) . {[0A]t . [J ]} . 0AΦ(a) = Id3

For example, when the cube 0A is equivalent to the matrix [A] = [J], the
function f = [a, ...][A] is an involution when:

[J ]Φ
2(a) = T2(⊗)(a, a)− < a, a >Id3 . Id3 = Id3

Is it possible? When? This condition means that the matrix T2(⊗)(a,a) -
(1 + <a,a>Id3) . Id3 is degenerated; equivalently, that its determinant is
null:

|T2(⊗)(a, a) − (1+ < a, a >Id3) . Id3| = 0

An involution can only be envisaged when the components of vector a are
not free. With di�erent words, the involution f exists only when there is a
speci�c constraint on the components of a. Since the determinant of any
Pythagorean table is null, it is easy to identify this constraint:

1+ < a, a >Id3 = 0

This constraint cannot be realized with a vector a in E(3, R), but it can
when this vector has components in C or, only for the pedagogy, when
this vector has components in H, e.g.:

a1 =
I√
3
, a2 =

J√
3
, a3 =

K√
3

... with:
I2 = J2 = K2 = −1

This constraint will be con�rmed later in this document; please see remark
1.7 and lemma 1.2 below.

...
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1.6 Starting a systematization of the discussion

De�nition 1.6. The weighting and the weighted vectors.

Let consider any element a in E(3, R) acting as projectile inside a deformed
cross product [a, ...][A]. Per convention, this vector is also called a weighting
vector. Any pair ([A], a) generates a set of seven vectors: the weighting vector a
plus the six-pack associated with the deforming matrix [A]. These seven vectors
can always be organized to form a weighted vector S[X ]([A], a) which is the sum
of all mixed cross products that can be built with the six-pack when these cross
products are simultaneously deformed by some element [X] in M(3R); precisely:

S[X]([A], a)

=

−a1 . ([a2, a
3][X] + [a3, a

2][X])

+ a2 . ([a1, a
3][X] − [a3, a

1][X])

+ a3 . ([a1, a
2][X] + [a2, a

1][X])

Example 1.2. The classical Euclidean cross product.

Let suppose that [A] = [J] because this eventuality may concern our own
three-dimensional Euclidean space E(3, R); in that case:

[A] = [J ] =

 0 0 1
1 0 0
0 −1 0


↓

|a1 >≡

∣∣∣∣∣∣
A1

1 = 0
A2

1 = 1
A3

1 = 0

〉
; |a2 >≡

∣∣∣∣∣∣
A1

2 = 0
A2

2 = 0
A3

2 = −1

〉
; |a3 >≡

∣∣∣∣∣∣
A1

3 = 1
A2

3 = 0
A3

3 = 0

〉
and:

[J ] =

 0 0 1
1 0 0
0 −1 0


↓

|a1 >≡

∣∣∣∣∣∣
A1

1 = 0
A1

2 = 0
A1

3 = 1

〉
; |a2 >≡

∣∣∣∣∣∣
A2

1 = 1
A2

2 = 0
A2

3 = 0

〉
; |a3 >≡

∣∣∣∣∣∣
A3

1 = 0
A3

2 = −1
A3

3 = 0

〉
This is implying:

a1 = −a3; a2 = −a1; a3 = a2

|a1 ∧ a2 >= |a1 ∧ a3 >=

∣∣∣∣∣∣
0
0
1

〉
= −|a2 >

|a2 ∧ a3 >= −|a2 ∧ a1 >=

∣∣∣∣∣∣
−1
0
0

〉
= −|a3 >

...
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THREE-DIMENSIONAL SPACE.

|a3 ∧ a1 >= −|a3 ∧ a2 >=

∣∣∣∣∣∣
0
−1
0

〉
= −|a1 >

and:

|a1 ∧ a3 >=

∣∣∣∣∣∣
0
0
0

〉
; |a3 ∧ a2 >=

∣∣∣∣∣∣
0
0
0

〉
; |a2 ∧ a1 >=

∣∣∣∣∣∣
0
0
0

〉
; (1)

A �rst immediate consequence is the possibility to calculate the weighted vector
in that special space:

S[J ]([J ],a)

=

−a1 . [a2,a
3][J ] + a2 . [a3,a

1][J ] + a3 . [a1,a
2][J ]

=

−a1 . (a2 ∧ a3) + a2 . (a3 ∧ a1) + a3 . (a1 ∧ a2)

=

a1 .a3 − a2 .a1 − a3 .a2

Since there is a simple correspondence between the vectors composing [A] = [J]
and the canonical basis Ω of E(3, R), precisely:

e3 = −a2; e1 = a3; e2 = a1;

it becomes obvious that:

∀a : S[J ]([J ],a)= a1 . e1 − a2 . e2 + a3 . e3

One state that:

[W ] . [J ] . |S[J ]([J ],a) >=

 1 0 0
0 −1 0
0 0 1

 .

 a1

−a2

a3

 = |a >

1.7 Deformed cross product and its non-trivial decomposition
in case of involution

Question: "What happens when f = [a, ...][A] (i) is an involution and (ii) owns
at least one non-trivial decomposition?"

Remark 1.5. First try

When f is an involution (recall):

[(3)a, [(3)a, (3)x](3)[A]](3)[A] = [(3)a,(3) x](3)[B((3)[A], (3)a)] =
(3)x

Or, equivalently (recall the basic result of proposition 1.1):

{ (3)[B((3)[A], (3)a)]t . [J ]} . |(3)a ∧ (3)x >= |(3)x >

...
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1.7 Deformed cross product and its non-trivial decomposition in case of
involution

When there exists at least one non-trivial decomposition denoted ([K], z)1:

{(3)[B((3)[A], (3)a)]t . [J ]} . {[K] . |(3)x > + |(3)z >} = |(3)x >

This situation forces to work with:

{ (3)[B((3)[A], (3)a)]t . [J ] . [K] − Id3} . |(3)x >= −|(3)z >

As consequence of proposition 1.5 and remark 1.2, one must recall that:

(3)[B((3)[A], (3)a)]t . [J ] . [K] ̸= Id3

... because, whatever the decomposition of |a ∧ x> is (i.e.: simple or not) the
determinant of [B] is null whilst the determinant of the identity matrix is of
course equal to 1R.

The decomposition ([K], z) depends on the nature of a polynomial Λ(a) de-
scribing the behavior of the components of a. For more technical details, please
see [a] and [b]. Any way, as usual, (i) when:

|(3)[B((3)[A], (3)a)]t . [J ] . [K] − Id3| ̸= 0

... and (ii) if the decomposition ([K], z) is known, then one can always �nd a
vector x on which a given function [a, ...][A] acts like an involution... even if the
calculations are tedious.

Remark 1.6. Second try

One could make a logical objection concerning the approach exposed in pre-
vious remark. More precisely: "Why should the cross product a ∧ x have a
non-trivial decomposition and not f(x) = [a,x][A]? And if the latter has e�ec-
tively a non-trivial decomposition, how does it impact f2(x) = [a, [a,x][A]][A]?"

In accordance with the results which have been obtained in [a] and [b], one
can envisage the existence of a non-trivial decomposition for the image of f(x)
in V∗

3:

|f(x) >= |[a, x][A] >= {[A]t . [J ]} . {[K] . |x > + |z >}

Therefore, one can also envisage to calculate the image of f2(x) in V∗
3:

|f2(x) >

=

|[a, [a, x][A]][A] >

=

{[A]t . [J ]} . {[K] . |[a, x][A] > + |z >}
1Where [K] is the kernel -also called main part- and where z is the residual part of the

decomposition.

...
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1 DEFORMED LIE PRODUCTS AND INVOLUTION IN A
THREE-DIMENSIONAL SPACE.

=

{[A]t . [J ]} . {[K] . {[A]t . [J ]} . {[K] . |x > + |z >} + |z >}

=

{[A]t . [J ]} . [K] . {[A]t . [J ]} . [K] . |x > + {[A]t . [J ]} . {Id3+ [K] . {[A]t . [J ]}} . |z >

As consequence, when f2 is an involution, one can write:

{{[A]t . [J ]} . [K] . {[A]t . [J ]} . [K] − Id3} . |x >

=

−{[A]t . [J ]} . {Id3 + [K] . {[A]t . [J ]}} . |z >

This relation represents a very classical linear system containing three equations
depending on the three components of x. One can treat it as usual when the
deforming matrix [A] and the polynomial Λ(a) are known through the local
physical circumstances.

1.8 The classical cross product and the involution

The classical cross product, as already mentioned in proposition 1.2, is a de-
formed Lie product acting in a three-dimensional space which has been deformed
by the matrix [A] = [J]. Hence - if the approach which is promoted in this docu-
ment is plausible- to know if and when this cross product acts like an involution,
one should consider the system:

{{[J ]t . [J ]} . [K] . {[J ]t . [J ]} . [K] − Id3} . |x >

=

−{[J ]t . [J ]} . {Id3 + [K] . {[J ]t . [J ]}} . |z >

And this system is equivalent to:

{[K]2 − Id3} . |x >= −[K] . |z >

Where [K] is the kernel of a given non-trivial decomposition whilst z is its
residual part.

Remark 1.7. Confrontation with the classical approach within a three-dimensional
Euclidean context.

Before going further and eventually before making unnecessary calculations,
let consider what happens in calculating a repeated cross product (a ∧ ...)
within a three-dimensional Euclidean context; as usual:

a ∧ (a ∧ x) =< a, x >Id3 .a − < a, a >Id3︸ ︷︷ ︸
= ||a||2

.x

...
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1.8 The classical cross product and the involution

Proposition 1.8. The classical cross product is an involution when it is plau-
sible to write:

a ∧ (a ∧ x) =< a, x >Id3 .a − ||a||2 .x = x

This is impossible as long as the discussion is developed with elements in E(3,R).

Proof. There are two arguments justifying this a�rmation:

� The condition representing the involution contains the information that x
must be proportional to a; in that case, the cross product (a ∧ x) vanishes
and asking if it is an involution becomes totally meaningless.

� Envisaging the sub-case for which x is orthogonal to a would avoid the
dependence between both vectors and the �rst obstruction, but the real-
ization of the involution would impose a negative Euclidean norm: this is
not allowed within a discussion with elements in E(3,R).

In opposition:

Lemma 1.2. The involution of a classical cross product can be envisaged in
developing the mathematical discussion in a three-dimensional space where the
vectors have components in C. The existence of an involution imposes four
necessary conditions:

� The de�nition of what is called the scalar product between two vectors, here
between a and x, is similar to the de�nition which is used with elements
in E(3,R), but the result is now in C. Therefore this scalar product can
no more be involved in the de�nition of a classical Euclidean norm and
the misleading notation ||...|| will be up to now discarded. The existence
of an involution will be written:

a ∧ (a ∧ x) =< a, x >Id3 .a− < a, a >Id3 .x = x

With:

< a, x >Id3 =< a, x >Id3 = a1 . x1 + a2 . x2 + a3 . x3 ∈ C

� The vector a must not vanish and it must be di�erent from the vector x
on which it is acting:

∀ z ∈ C − {0C} : a ̸= z .x

� The vector a must act on a vector x which is "orthogonal" to it:

a ⊥ x ⇐⇒ < a, x >Id3 = 0C

� The vector a must be chosen to respect the relation:

< a, a >Id3 +1 = 0C

...
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2 BIBLIOGRAPHY

1.9 Conclusion

There is much more to say about the involution in three-dimensional spaces,
especially if vectors have representations in C3 or in H3. But the topic deserves
an entire chapter and it will be developed later elsewhere. This document was
only though as a pedagogical introduction and warm up to make students want
to study the subject in more depth.
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