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Abstract

This study derives formulas for the horizontal span of a catenary curve
formed by a string fixed at two points. Given the heights h; and hs at the
endpoints and the curve length [, we calculate the horizontal span s. We
consider two cases based on the position of the minimum point, proving
corresponding formulas. Theorems 1 and 2 provide complex logarithmic
expressions, while Theorems 3 and 4 offer concise forms using hyperbolic
functions. These results enhance the understanding of catenary curves and
support applications in engineering and physics, where precise calculations
of such curves are essential.

1 Introduction

A catenary curve is the curve formed by a string fixed at two arbitrary points,
commonly observed in nature. The catenary curve is expressed as

X
y = acosh —,
a

where its shape is determined by a single parameter a (a > 0).

The function y attains its minimum value ¢ at z = 0, and the curvature
decreases as a increases. This is illustrated in Figure 1.

This paper proves the following four theorems.

Theorem 1. For a catenary curve formed by a string fixed at two points, let
the heights from the minimum point at the endpoints be hy and ho, and the
curve length be [. When the minimum point lies between the two endpoints,
the horizontal span s is given by

12— (h hs)2 12— (hy — h9)2 +2Vh1h
6 — (h1 + h2) log\/ (h1 2)% + \/12.

hi 4+ ho + 21 712_&11}12;,2)2 b=h1—he

Theorem 2. For a catenary curve formed by a string fixed at two points, let the
heights from the minimum point at the endpoints be hy and hs, and the curve
length be [. When the minimum point does not lie between the two endpoints,
the horizontal span s is given by

12— (h hs)2 12 —(hy — h9)?2 —2+/hih
5 — (h1 + hs) 1Og\/ (h1 2) \/12.

hl + h2 - 21\/ 127(};7411}12]12)2 l N hl o h2
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Figure 1: Shape of the catenary curve and parameter a

Theorem 3. For a catenary curve formed by a string fixed at two points, let
the heights from the minimum point at the endpoints be h; and ho, and the
curve length be [. When the minimum point lies between the two endpoints,
the horizontal span s is given by

X
sinh X

12 - (hl - h2)27

where

VI = (h1 — h2)? 4+ 2v/h1 by

X =1
8 1= hy — hy

Theorem 4. For a catenary curve formed by a string fixed at two points, let the
heights from the minimum point at the endpoints be h; and hs, and the curve
length be [. When the minimum point does not lie between the two endpoints,
the horizontal span s is given by

X
- I = (hy — hy)?
5= Snh X (b = ha)?,

where
I+ hy+ he

X =log .
V1% = (h1 — h2)? + 2/hihy

2 Problem Formulation
For simplicity, we consider the curve

y:acoshg—a7 (1)



where y takes its minimum value 0 at x = 0. Since any catenary curve can be
reduced to this form via translation, this formulation does not lose generality.
Figure 2 illustrates the concepts of the heights h; and hy at the endpoints,
the curve length [, and the horizontal span s for a catenary curve formed by a
string fixed at two points. The height at the right endpoint is hy, and at the
left endpoint is ho, with I,s € RT, hy, ho € Rg, hi+ he >0, and [ > |hy — ha|.
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Figure 2: Conceptual diagram of heights hi, ha, curve length [, and horizontal span
s in a catenary curve

In this paper, we denote the z-coordinate of the right endpoint as s;, the
left endpoint as so, the curve length from 0 to s; as l;, and from s, to 0 as Is,
used in the proofs. Here, s1 > s3, s = s1 — s9, and [ = l; + l3. For generality,
we consider cases where s; and s, are positive or negative. This is depicted
in Figure 3. The case where the minimum point lies between the endpoints
corresponds to s; and sy having opposite signs, i.e., s152 < 0. Conversely, when
the minimum point does not lie between the endpoints, s; and ss have the same
sign, i.e., s152 > 0.
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(a) s1 >0,52<0 (b) s1 >0,s2 >0 (c) s1<0,s2<0

Figure 3: Conceptual diagram of si, s2,[1,12



The expressions for hq, ho,lq,l> are derived as follows. Since h; is the value

of y at = s1, from Equation (1),
s
hi = acosh 2L — q.
a
Similarly, ho is the value of y at = s3, so
S
ho = acosh 22 — a.
a

For [y, using the arc length formula,

S1 2
l1=/ 1/14— @ dx
2
/ 1+ acosh—a)) dx
:/ 1/1+Sinh2*d$

/ 1/cosh2 dx
= / cosh dzx
0 a

T
= {asmh f}
alo

. S1
= gsinh —.
a

12—/ 1/1+ dy

= [a sinh a}

Similarly, for Is,

2

. 52
= —qgsinh —=.
a

3 Related Work

(2)

Chatterjee et al. [1] proposed a method to derive the curve parameter a using

known hq, ho,l when s155 < 0. Speciﬁcally,

(bt ho) (12 = (1 = h2)?) = 20/Riha (1% = (1 — h2)?)

(h1 h2)?
ll = h2 + 2ah1,

_
b= 18+ 2

h§—|—2ah2,
ll +h1 +a
S1 zalogi,
a
lg +h2+a
S9 zalogi,
a



and derived s from the sum of s; and s;. Note that the definitions of s; and sa
in [1] differ slightly, representing the horizontal spans on the h; and hy sides,
respectively.

By deriving a using the method in [1], s can be indirectly computed from
known hq, ho,l. However, [1] does not express s in a single formula and does
not consider the case s1s9 > 0.

4 Proof of Theorem 1

4.1 General Approach

First, compute s; and s», and obtain s from their difference. Then, eliminate
the unknown parameters l1, s, a.

4.2 Derivation of s
4.2.1 Derivation of s;

From Equation (4),

Iy 51
— =sinh —,
a a

51 . Iy
— = arsinh —,
a a

L

$1 = aarsinh —

a

=alo l—l—i- ﬁ—|—1 (6)
It a? '

For a, from Equations (2) and (4),

S1 S1
h? = a% cosh? = — 2a% cosh = + a2,
a a
. S1
l% = a?sinh® ==,
a

and solving for a,

51 . S1 51
hi — 12 = a? (cosh2 = —sinh? —) — 24 cosh == 4 a2,
a a a

= 2a? — 2a” cosh 8—1,
a
= —2a (acoshs—1 — a) ,
a
= —2ah1,

_G-n
2




Substituting Equation (7) into the logarithmic term of Equation (6),

i —n

272 2 _ h2\2
o2 (O

(I — ni)?
2h1ly (IF + hi)?
=alo + ,
g(@w (iF = 12
12 4+ 2hyly + b3

=alog ,
B 12
= alog (bt by’
(i +h)(lh = hy)’
—alo 1+ hy
TR T
4.2.2 Derivation of sy
Similarly,
-1
- 2hy ]
so = —alo l2 + 1
2T T hy

4.2.3 Derivation of s

Since s = s1 — sg, using Equations (8) and (10),

i+ h lo+ ho
S aogllihl—i—a 0g127h2,
(l1 + h1)(l2 + ho)
=alo
& (I3 — h2)

4.3 Elimination of [,

Express {1 in terms of [. From Equations (7) and (9),

B-1_B-h3
2h1 2hy

and substituting Io =1 — 1,

B—hi (—hL)*—n3
2h, 2hy
12— 200y +12 — h3

2hy

)

(10)

(11)



Multiplying both sides by 2h1hs,
hol? — h3hg = hyl?® — 2hylly + hyl? — hyh3,
and rearranging,
(hy — ho)l3 — 2hylly + hyl? + hihy — hyh3 = 0.

Solving for Iy,

 2hyl £ \/4h312 — 4(hy — ha)(h112 + h2hy — hyh3)
N 2(hy — hy) ’
 hal £ /B32 = (hy — ha)(h1l% + h3ho — hih3)
hi — ha ’
_ hyl £ \/hiho(I2 — B2 + 2k hy — h3)
hy — ho ’
~ hil £ /hiho (P — (hy — h2)?)
hi — ho '

Iy

Then, lo =1 —1; gives

hil & \/hiha(12 — (h1 — ho)?)

lo=1-
2 hl — hQ )
. (h1 — hg)l — hll F \/hth(l2 — (hl — h2)2)
N hi — ho ’
_ —hgl F \/hlhg(lz — (h1 — h2)2)
hi — ho '

Since hy > O7 hoy > O, > |h1—h2‘, we have hil > O, haol > 0, \/hth(ZQ — (hl — h2)2) >
0. If

_ hyl + \/hlhg(lQ — (hl — h2)2)

l

1 hl — hz )

I — —hol — \/hlhg(l2 — (h1 — ha)?)

2 = )
hy — ho

either /3 or ls becomes negative, which is invalid. Thus,

_ hal = /hihe (B = (In — h2)?)

l
1 hl—h2 ) (12)
—hol hiho(12 — (hq — ho)?2
Iy — 2+\/12( (h1 2)) (13)
hi — ho

Dividing Equation (12) by hq,

Lol \/%(12 — (h1 — hs)?)
hy o hi — ho ’




yielding

b l+h1—h2—\/2—f(12—(h1—h2)2) y
hil + - hl o h2 9 ( )
b L=l ha = /12(2 = (b — h2)?) -
hi hi — ho ’ (15)
Dividing Equation (13) by hs,
b R ()
hy hy — ha ’
yielding
Iy —l+h1—h2+\/%(l2—(h1—h2)2)
ha hy — hy
Tl @ - (- k) ,
hy hi — hy ' ()

Substituting Equations (14), (15), (16), and (17) into Equation (11),

)
))( l+h1—h2+\/h l2—(h1—h2)2))
)) (1= hrhe+ 102 = (1 h2)?))

(1 b= ha =122 = (= ha)?
(l—h1 thy— \/Z—f(ﬁ (hy —

)

s =alog

2
I+ hy — hy)
)

h)?
A )~ ( VI = (= h2)?) = =+ h) [ (02 = (= ho)?)
=alog .
2312 — (hy — h2)2) — (I — hy + ha \/%(F — (h1 — h2)?) — (L + hy — hQ)\/%(P — (b1 — h2)?)
Multiplying the numerator and denominator of the logarithmic term by — %,

—2y/h1ha(12 — (h1 — h2)?) + ha(l + hy — ha) + ha(l — hy + hs)
—2y/h1ha(12 — (hy — h2)?) 4+ h1(l — hy + h2) + ha(l + hy — hQ)7

(\/hl(l +hy —ha) = \/ha(l = b1 + h2))2

(\/hl(l — hi + ho) — \/hz(l+h1 — h2)>2’

\/hl(l+h1 - hz) — \/hg(l —hy +h2)
VIl = hy + ha) — /ha(L+ h1 — ha)

s = alog

=alog

= 2alog

Multiplying the numerator and denominator by \/hl (I—hy+ h2)+\/h2(l + h1 — ho),

— ho) \/l2 ho)2 + 2v/hihs(hy — h2)
(h1 — hz)l—(h1 h2)(h1 + hs)

s = 2alog

Dividing the numerator and denominator by hy — ho,

VI - hs)? +2\/h1h2
l—h1 ha

s = 2alog



4.4 Elimination of «a
From Equation (7),
_B-n
=
(I1 + h1)(l1 — h)
hy ’

I I
=hy | —=+1 ——1].
1(h1+)<h1 )

Substituting Equations (14) and (15),

2a

[+ hy—hy— \/Z—j(ﬂ (b —h2)?)\ [l —h1+ho— \/%(12 — (h1 — h2)?)

= hi— o b — s

(1 + ’,;—) (12 = (hy — hs)?) — 21\/%@2 — (hy — ho)?)

= h i
! (h1 — ha)?

(hy + ha) (1% — (hy — h)?) — 20\/Trha (B — (hy — 2)?)
(h1 — h2)? '

Dividing the numerator and denominator by /12 — (hy — ho)?,

(h1 + h2)\/12 — (h1 — h2)? — 2ly/h1hy
(h1—h2)? ’

1\ l2—(h1—h2)2

Multiplying the numerator and denominator by (h; + ha)\/12 — (h1 — h2)? +

2lv/hiha,

(h1 + h2)?(1? — (h1 — h2)?) — 412h1hy

20y/Fiihz(hi—h2)?
(ha + ha)(hy = ho)? + 2Rt

(hl — h2)2l2 — (h1 + hg)z(hl — h2)2

2/t (hi—hs)®
(h1 + h2)(h1 — h2)* + ﬁ

20 =

Dividing by (h1 — hs)2,
12 — (hy + ho)?

h1+h2+21\/%

Substituting Equation (19) into Equation (18),

2 2 72— (b1 — ha)? + 2Rk
5 1? — (h1 + h2) 1og\/ (hy — h2)?2 +2Vhy 2

h1+h2+211/% l—hy—hy

Thus, the theorem is proved. For hy = hy = h,

_Boan? 142k
ST Tan % Ton

20 =




If either hy or hy is 0, say ho = 0 and hy = h,
12 —h21 l+h

on BT h

S =

5 Proof of Theorem 2

5.1 General Approach

Consider the alternative solutions for Equations (12) and (13) that were deemed
invalid.

5.2 Elimination of [,y

Consider
h1l hiho(12 — (hy — ho)?
l1: 1+\/12( (1 2) )’ (20)
hl — }LQ
—hol — \/h1ho(I12 — (h1 — h3)?
ZQZ 2 \/ 1 2( ( 1 2) ) (21)
h1 — ho
Dividing Equation (20) by hq,
Lot V(2 = (= h2)?)
hi hi — ho ’
yielding
L LRy = hy (/1202 = (b1 — ha)?)
1= 7 (22)
hi h1 — ha
L L= Ry by /1202 = (b — ha)?)
R . (23)
hl hl - h2
Dividing Equation (21) by ha,
L - \/%(12 — (h1 — h2)?)
hy hi — hs ’
yielding
b b=y = /102 = (b h)?) -
ho N hi1 — ho ’
Lo hthe o SR (- e -
hs B hi — ho '

10



9

)
s = alog (1 h = ha 122 = (1 = R2))) (=04 = hp = ([0 = (1 — D2)?))
(

(l i+ ho \/%(12 — (= h2)2)) (=1 = hy + by — \/%(12 —(hy - h2)2))
2012 — (hy — ha)?) + (I + hy — hg)\/% 12— (hy — h2)2) + (I — hy + hQ)\/’,%(p — (h1 — hs)?)
\/ 12— (hi—h2)?)+ (I+h — hz)\/%(lz — (h1 — h2)2).

= alog

2(12 = (h1 — h2)?) + (I — hy + h2)

Multiplying the numerator and denominator by ,/ %,

2\ /T ha (2 — (hy — 72)?) + hy(1+ hy — h) + ho(l — hy + ho)
2\/hha (12 — (hy — h2)?) + ha(l — hy + ha) + ha(l + hy — ha)’

(\/hl(l Yy — o)+ /ha(l— by + h2))2
<\/h1(l “hy + ho) + Rl + oy — hg))w
Vhi(L+h1 = ha) + v/ha(l — hy + h2)
V(L= hy + ha) + /ha(l+ h1 — ha)
Multiplying by /A1 (I — hn + h2) — \/ha(l + h1 — ha),

(h1 — h2)\/12 — (hy — h2)? — 2y/hiha(hy — h2)
(h1 — h2)l — (h1 — ha)(h1 + h2) ’

=alog

= 2alog

s = 2alog

Dividing by hy — hs,

12— (h1 —he)?2 —2vh1h
s = 2alog U1 = hs) 12 (26)
l—hi— he
5.3 Elimination of «
From Equation (7),
l2 _ h2
9q — A 1
a T
_ (i 4+ h)(ly = ha)
hy ’

Iy Iy
(L) (1),
' (hl i ) (hl )
Substituting Equations (22) and (23),

9g — hl (l+h1 _h2+ \/%(ZQ — (hl _h2)2)) (l—hl —|—h2 + \/%(12 _ (hl _ h2)2)) |

hl—hg hl_hQ

(14 52) (2 = (= h2)?) + 20/ 122 = (1 = h2)?)
(h1 — h2)?

:hl

(hy + ha) (1% = (hy — h2)?) + 20\/h1ha(12 — (hy — hy)?)

(h1 — h2)?

11



Dividing by +/12 — (h1 — h2)?,

(h1 + h2)\/12 — (h1 — ha)? + 21\/hihs
(h1—h2)? ’
12—(h1—h2)?

2a =

Multlplymg by (hl + h2) 12 - (hl - h2)2 - 2[\/ hlhg,

(h1 + ho)2(1? — (h1 — h2)?) — 412h1hs
20 /hiha(hy—hs)? ’

(h1 + ha)(hy — h2)? — ﬁ

(hy — h2)?1? — (b1 + h2)?(h1 — ha)?

. 2 21v/hiha(hi—h2)2 "
(hl + h2)(h1 h2) \/m

2a =

Dividing by (h; — ho)?,

2 2
20 = = (U + h) . (27)

b+ hy = 20\ |

Substituting Equation (27) into Equation (26),
12— (hy + hy)? 12— (h1 — h2)? —2vhih
6 — (h1 + h2) log\/ (hy 2) \/12'

h,l + h2 - 211 / 12_(};111}1_2;@)2 l - hl - h2

For | = hy + hs, the expression becomes indeterminate, and

12— (hy + hs)? 12— (hy —h2)?2 —2v/h1h
s— lim (h1 + ha) log\/ (h1 2) Vhihs

I=hiths o4 g 9] /lz_(i}zlllh_zh2)2 l—hy—hs )
_ 8h1h2(h1 + hg) 10g hy + ho

(hy — hg)? 2Vhihs

Thus, the theorem is proved. For hy = hy = h,

o 142
ST Tan % Tan

If either hy or hy is 0, say ho = 0 and hy = h,

_e-w l+h
5T Ton %I Tw

Due to the difficulty in determining the minimum point from the curve * s ap-
pearance, the practical applicability of this theorem is limited.

12



6 Proof of Theorems 3 and 4

6.1 General Approach
Define
I+hi+hy=A
l—hy —he =B,
V12 = (hy — h2)2 4 2y/h1hy = C,
V12 = (hy — h)? — 2/h1hy = D,

to simplify the expressions. Here,

AB=CD =1 — (h + h2)?,

and
A_B
C D’
¢_B
A D’
A4_¢C
D B’
D_B
A C
Also,
,_A+B
==
A—-B
hi+hy = 5
D
12—(h1—h2)2:C; ,
2 hth:C*TD.

6.2 Proof of Theorem 3

Expressing

12— (hl + h2)2 10g \/ 2 — (h1 — h2)2 + 2vhiha

I —hy — he

s =

13



in terms of A, B, C,

AB

log —
A-B ., AfBC-D )
7 t %5 oD B

_ 2AB(C + D) 1og C
(A—B)(C+D)+(A+B)(C—-D) °B
2AB(C + D) 10g &
AC+AD - BC-BD+AC —AD+ BC—BD ° B’
24B(C+D), C
2AC — 2BD B’

B C+D10gc
— C _D n’
5—a1 B
B O—l—DlOgC
=T _ B85
5—-¢c B
Letting log & = log 12_(hl1__hhf_)222‘ ke _ x
_C+D
~ 2sinh X ’
2/ — (hy — )2
= 'X
2sinh X ’
X
= 12— (h1 — ho)2.
sinh X (h 2)

Thus, the theorem is proved.

6.3 Proof of Theorem 4

Expressing

12 — (h1 + hs)? 12— (h1 — h9)? — 2/h1h
5 — (h1 + he) log\/ (h1 2) Vhihy

h1+h2721Q/% l_h’l_hQ

in terms of A, B, C, D,

AB

§= —— — log —,
P-4 B
2AB(C + D) :
_ oo
(A—B)(C+D)—(A+B)(C—-D) ®¢C

B 2AB(C + D) oA
T ACTAD-BC—-BD—_-AC+AD—-BC+BD 8¢’
_24B(C+D) A

T 924D —2BC B

_C+Dy A
- D _C Yok
-5 0
_C+D A
4 _C ok
c—a ¢

14



—lo l+hi+ho - X
8 V12— (h1—h2)2+2v/h1ha ’

Letting log %

_C+D
T 9sinhx
24/12 — (h1 — hg)?
- 2sinh X X
X
= 12 — (hy — ho)2.
sinh X (R 2)

Thus, the theorem is proved.

7 Conclusion

This paper derives formulas for the horizontal span s of a catenary curve using
the endpoint heights h1, hy and the curve length . We distinguish between cases
where the minimum point lies between the endpoints and where it does not, pre-
senting corresponding formulas in Theorems 1 and 2. These formulas involve
complex logarithmic expressions, while Theorems 3 and 4 provide more concise
representations using hyperbolic functions. These results enable explicit com-
putation of the horizontal span, previously unavailable as a single formula, and
are applicable to engineering designs such as suspension bridges and power lines.
However, the practicality of Theorem 2 is limited when identifying the minimum
point ’ s position is challenging. Future work includes developing methods to
easily determine the minimum point ’ s position and simplifying formulas under
specific boundary conditions. Additionally, applying these results to real-world
engineering problems to verify their effectiveness is anticipated.
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