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Abstract

This paper proposes and systematically elaborates a novel geometric framework—non-differential geom-
etry—whose core lies in entirely abandoning the reliance on smoothness (𝐶1 or higher continuity) required
by traditional differential geometry, demanding only 𝐶0 continuity for geometric objects. By introducing
new mathematical tools based on limits and infinite series, non-differential geometry overcomes the smooth-
ness constraints in calculating geometric quantities such as curvature. Furthermore, this paper constructs
a unique “integration tool” (distinct from classical integration theory) specific to non-differential geome-
try, providing a novel approach for analyzing geometric objects. Current research focuses on Euclidean
space, but the theoretical framework itself is not confined to any specific spatial structure and is applicable
across low- to high-dimensional spaces. Non-differential geometry completely resolves the contradiction
between continuity and differentiability and offers potential support for theoretical innovations in fields such
as physics.

Keywords: Non-differential geometry; 𝐶0 continuity; curvature calculation; limit methods; geometric
foundations

1 Introduction

As a cornerstone of modern mathematics, differential geometry has long relied on smoothness assumptions (e.g.,
differentiability and derivability) for geometric objects, significantly limiting its applicability and theoretical
universality. This paper proposes a groundbreaking geometric framework—non-differential geometry—which
requires only 𝐶0 continuity for geometric objects, thereby entirely eliminating the dependence on smooth-
ness. By developing new mathematical tools based on limits and infinite series, non-differential geometry not
only enables non-smooth calculations of geometric quantities like curvature but also establishes a distinctive
“integration tool,” opening new avenues for geometric analysis.

Current research is centered on Euclidean space, yet the theoretical framework of non-differential geometry
is not inherently tied to any specific spatial structure, exhibiting potential for generalization to broader spaces. Its
key advantage lies in its universality and generality: from low- to high-dimensional spaces, geometric objects
can be analyzed without any differentiability conditions, resolving the inherent conflict between continuity
and differentiability in traditional geometry. Although still in its pioneering stages, non-differential geometry
demonstrates the potential to reshape the foundational framework of geometry and provides new theoretical tools
for disciplines such as physics. This paper systematically presents its fundamental concepts and preliminary
results, laying the groundwork for future research.
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2 Construction of Core Mathematical Tools

2.1 Development of mathematical tools for non-differential geometry

In the one-dimensional coordinate system on the 𝑥-axis of Euclidean space, let 𝑂 denote the origin, with point
𝐴 located on the positive half-axis satisfying |𝑂𝐴| = 1, as shown in Figure 2.1.

Figure 2.1: The line segment 𝑂𝐴 lies on the 𝑥-axis

Figure 2.2: Partition the length of line segment 𝑂𝐴 into 𝛾 equal parts

As shown in Figure 2.2, the length of line segment 𝑂𝐴 is divided into 𝛾 equal parts 𝛾(𝛾 ∈ N+), with division
points sequentially marked from 𝑂 to 𝐴 as 𝑖 = −𝛾,−𝛾 + 1, · · · ,−2,−1, 1, 2, · · · , 𝛾 − 1, 𝛾, Since the essence of
divisibility is equipartition, we now establish the following formula:

|𝑂𝐴| = 1

=
1
𝛾
× 𝛾

=
1
𝛾
× (1 + 1 + · · · + 1︸           ︷︷           ︸

𝛾 ones

)

=
1
𝛾

𝛾∑︁
𝑖=1

1 . (2.1)

By introducing the limit concept and denoting the coordinate of point 𝐴 on the 𝑥-axis as 𝑥𝐴, we refine
Equation (2.1) as:

𝑥𝐴 = lim
𝛾→∞

1
𝛾

𝛾∑︁
𝑖=1

1 . (2.2)

Figure 2.3: Point 𝑃− lies on the negative 𝑥-axis, 𝑃+ on the positive 𝑥-axis

As shown in Figure 2.3, let point 𝑃+ on the positive 𝑥-axis have coordinate 𝑥𝑃+ (𝑥𝑃+ > 0), and point 𝑃− on
the negative 𝑥-axis have coordinate 𝑥𝑃− (𝑥𝑃− < 0). Along the positive 𝑥-direction, define:
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𝑥𝑃+

𝑥𝐴
= 𝜏1 . (2.3)

By transforming Equation (2.3), we obtain:

𝑥𝑃+ = 𝑥𝐴𝜏1 (2.4)

= 1 × 𝜏1

=
1
𝛾
× (𝜏1𝛾)

= lim
𝛾→∞

1
𝛾

⌊𝜏1𝛾⌋∑︁
𝑖=1

1 . (2.5)

From Equation (2.4), 𝜏1 is a scaling parameter where 𝜏1 = 0 is mathematically admissible, corresponding
to point 𝑃+ being located at the coordinate origin. We now examine the mathematical significance of Equation
(2.5) for the case 𝜏1 = 0.

When 𝜏1 = 0, let 𝑅𝐻𝑆 and 𝐿𝐻𝑆 denote the right-hand side and left-hand side of Equation (2.5) respectively.
The geometric interpretation is then:

𝑅𝐻𝑆 = lim
𝛾→∞

1
𝛾

0∑︁
𝑖=1

1 , (2.6)

𝐿𝐻𝑆 = 0 .

When considered in isolation, Equation (2.6) is mathematically meaningless but corresponds to a zero value
geometrically. To address this problem, we introduce a nonzero real variable 𝜇, from which it follows that:

lim
𝜇→0
𝛾→∞

1
𝛾

⌊𝜇𝛾⌋∑︁
𝑖=1

1 = 0 . (2.7)

We now analyze the case where point 𝑃− lies on the negative 𝑥-axis. Taking the orientation of line segment
𝑂𝐴 (not vector #   »

𝑂𝐴) as reference Similarly, define:

𝑥𝑃−

𝑥𝐴
= 𝜏2 . (2.8)

Transform Equation (2.8) into:

𝑥𝑃− = 𝑥𝐴𝜏2

=
1
𝛾
× (𝜏2𝛾)

= − lim
𝛾→∞

1
𝛾

⌈𝜏2𝛾⌉∑︁
𝑖=−1

1 . (2.9)
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In this paper, series summations are by default ordered by ascending absolute values, as demonstrated in
Equation (2.9).

To describe the position of any point on the 𝑥-axis, we introduce a scaling coefficient 𝜏. For this purpose, it
is necessary to unify Equations (2.5), (2.7) and (2.8) and define the following formula:

Let 𝜏 ∈ R, define:

𝑣 =


⌊𝑣⌋ , if 𝑣 > 0 ,

0 , if 𝑣 = 0 ,

⌈𝑣⌉ , if 𝑣 < 0 .

We further introduce a nonzero real variable 𝜆.

𝜄 ⟨𝜏⟩ = lim
𝜆→0

𝜏 + 𝜆

|𝜏 | + 𝜆
.

Hence, we obtain:

𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

1

= 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

cos 0 . (2.10)

At this stage, the embryonic form of the mathematical tool has emerged - though currently it merely
characterizes the 𝑥-axis coordinates. As for the intentional design of Equation (2.10)’s specific form, its
geometric significance will be revealed in the next chapter’s curve study.

Regarding the rounding operation rule in Equation (2.10): when the object to be rounded is a known real
number (e.g., 4.52), its integer part is taken directly (i.e., 4.52 = 4); when the object is an unspecified variable
𝑣, 𝑣 represents the definitional expression for performing the rounding operation on variable 𝑣, in which case
its value must be determined through the specific formula.

Regarding the computational method of the truncation function, trigonometric function expansion may be
employed for processing: By utilizing the characteristic periodicity of trigonometric functions, after adjusting
the period parameter to integer units, the rounding operation is achieved by subtracting the fractional part from
the original numerical value. The precise formulation is presented below:

Let 𝛿 ∈ R. We now define:

𝜏𝛾 = 𝑢 .

We obtain:
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⌊𝑢⌋ = lim
𝛿→𝑢+

〈
𝛿 − 1

𝜋
arctan

{
tan

[
𝜋

(
𝛿 − 1

2

)]}
− 1

2

〉
,

⌈𝑢⌉ = lim
𝛿→𝑢−

〈
𝛿 − 1

𝜋
arctan

{
tan

[
𝜋

(
𝛿 − 1

2

)]}
+

1
2

〉
.

2.2 Temporal and spatial parametric representations of planar continuous curves

We now extend the framework to two dimensions by introducing an infinitely extended curve 𝛼, which is only
required to satisfy 𝐶0 continuity without any assumptions of smoothness, differentiability, or weak differentia-
bility. On curve 𝛼, select an arbitrary point 𝐵 as the origin, then designate one side of 𝐵 as the positive direction
along the curve and the opposite side as the negative direction. Let point 𝐵+ be the point at curve length 1
from 𝐵 in the positive direction, and point 𝐵− the point at curve length 1 from 𝐵 in the negative direction. This
geometric configuration is illustrated in Figure 2.4.

Figure 2.4: Curve 𝛼 with starting point 𝐵

Using the curve segment 𝐵𝐵+ as the baseline, insert 𝛾 − 1 equidistant points along 𝐵𝐵+, dividing it into
𝛾 curve segments of equal length. The remaining part of curve 𝛼 is proportionally partitioned accordingly.
Connecting the endpoints of these partitioned segments forms line segments of length ℓ𝑖 , where the direction
toward 𝐵𝐵+ is defined as the terminal end and the opposite direction as the initial end. The segments make an
angle 𝜃𝑖 with the 𝑥-axis in the counterclockwise direction, 𝜃𝑖 ∈ [0, 2𝜋), as illustrated in Figure 2.5 (for clarity,
the diagram shows the case 𝛾 = 2).

Figure 2.5: Partition the curve 𝛼 into equal segments
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Therefore, we obtain:

lim
𝛾→∞

1
𝛾

ℓ𝑖
= 1 .

Let 𝜏 be the proportionality coefficient, and let the coordinates of point 𝐵 be (𝑥0, 𝑦0). Then, the expression
for curve 𝛼 can be derived as follows:


𝑥 = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

cos 𝜃𝑖 + 𝑥0 ,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

sin 𝜃𝑖 + 𝑦0 .

(2.11)

Since Formula (2.11) inherently lacks any capability for differential or derivative operations, it achieves
perfect representation of planar continuous curves.

In Equation (2.11), if 𝜃𝑖 is identically equal to a constant 𝜃0, then it represents a straight line, namely:
𝑥 = 𝜏 cos 𝜃0 + 𝑥0 ,

𝑦 = 𝜏 sin 𝜃0 + 𝑦0 .

For a more intuitive understanding of non-linear curves, we introduce an example - curve 𝛼1 - where we
substitute 𝑛 for 𝑖, as shown below:



𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

©­­­­­­­­­­­«

©­­­­­­­­­­«

2
©­­«
©­«
(
27𝑛
8𝛾

+ 1
) 2

3
− 1ª®¬

3
2

− ©­«
(
27 (𝑛 − 1)

8𝛾
+ 1

) 2
3
− 1ª®¬

3
2 ª®®¬

3 ©­«
(
27𝑛
8𝛾

+ 1
) 2

3
− ©­«

(
27 (𝑛 − 1)

8𝛾
+ 1

) 2
3 ª®¬ª®¬

ª®®®®®®®®®®¬

2

+ 1

ª®®®®®®®®®®®¬

− 1
2

,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

©­­­­­­­­­­«

©­­­­­­­­­­«

3 ©­«
(
27𝑛
8𝛾

+ 1
) 2

3
− ©­«

(
27 (𝑛 − 1)

8𝛾
+ 1

) 2
3 ª®¬ª®¬

2
©­­«
©­«
(
27𝑛
8𝛾

+ 1
) 2

3
− 1ª®¬

3
2

− ©­«
(
27 (𝑛 − 1)

8𝛾
+ 1

) 2
3
− 1ª®¬

3
2 ª®®¬

ª®®®®®®®®®®¬

2

+ 1

ª®®®®®®®®®®¬

− 1
2

.

(2.12)

Given the series terms of curve 𝛼, since 𝛾 and 𝑛 cannot be arbitrarily combined, we introduce the symbol
‘≀’ to represent their constrained composition into curve elements. The series terms are respectively denoted by
Ψc ⟨𝛾 ≀ 𝑛⟩ and Ψs ⟨𝛾 ≀ 𝑛⟩ respectively, the curve 𝛼 can be expressed as:
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
𝑥 = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ + 𝑥0 ,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ + 𝑦0 .

(2.13)

Equation (2.13) represents the novel mathematical tool we have developed, although it is applicable only
to planar continuous curves. Here, |𝜏 | denotes the length of the curve segment from the initial point to the
corresponding point, indicating that Equation (2.13) gives the spatial parametric representation of curve 𝛼.

Figure 2.6: Curve 𝛼1 and curve 𝛼2

We now present the temporal parametric representation of curve 𝛼. Consider two infinitely extending
continuous curves 𝛼1 and 𝛼2, both satisfying the condition of having exactly one intersection point with any
line parallel to the 𝑦-axis (as shown in Figure 2.6). Following the methodology from the previous chapter, we
equidistantly partition the point at unit distance from the origin on the positive 𝑥-axis, thereby obtaining the
analytical expressions for curves 𝛼1 and 𝛼2.

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

tan 𝜃1,𝑖 + 𝑦′1 , (2.14)

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

tan 𝜃2,𝑖 + 𝑦′2 . (2.15)

Equation (2.14) provides the analytic expression for curve 𝛼1, where 𝑦′1 denotes the 𝑦-coordinate of its
intersection with the 𝑦-axis; Equation (2.15) gives the analytic expression for curve 𝛼2, with 𝑦′2 representing the
corresponding 𝑦-intercept coordinate.

Given that curve 𝛼 is composed of curves 𝛼1 and 𝛼2, and provided its general series term, replacing the
subscript 𝑖 with 𝑛 yields the expression for curve 𝛼 as:


𝑥 = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ + 𝑥1 ,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ + 𝑦1 .

(2.16)

Equation (2.16) gives the temporal parametric expression of curve 𝛼, where (𝑥1, 𝑦1) denotes the coordinates
corresponding to initial time 𝜏 = 0. Here 𝜏 represents relative time with respect to the coordinate origin and
may take negative values.
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2.3 Vectorized representation of planar continuous curves

Curve 𝛼 possesses a spatiotemporal parametric representation, hence the vectorized representation of its con-
tinuous curve carries significant geometric implications.

We define:


Φc ⟨𝜏⟩ = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ + 𝑥0 ,

Φs ⟨𝜏⟩ = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ + 𝑦0 .


Φ1 ⟨𝜏⟩ = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ + 𝑥1 ,

Φ2 ⟨𝜏⟩ = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ + 𝑦1 .

In the 𝑘-dimensional Euclidean space with a given coordinate system {𝑂; #»𝑒1,
#»𝑒2, · · · , #»𝑒 𝑘}, the curve can

be represented by the vector #»
𝜉 ⟨𝜏⟩ and #»

𝜁 ⟨𝜏⟩, namely:

#»
𝜉 ⟨𝜏⟩ = Φc ⟨𝜏⟩ #»𝑒1 + Φs ⟨𝜏⟩ #»𝑒2 ,
#»
𝜁 ⟨𝜏⟩ = Φ1 ⟨𝜏⟩ #»𝑒1 + Φ2 ⟨𝜏⟩ #»𝑒2 .

To ensure the meaning of 𝜏 is explicitly defined, let 𝑗 = 1, 2, ..., 𝑘 , and strictly require that #»𝑒 𝑗 forms an
standard orthonormal basis. For geometric objects in non-Euclidean spaces, the specification of an standard
orthonormal basis is not required.

2.4 Geometric analysis of planar continuous curves

Since this paper does not involve the calculation of differentials or derivatives, it is necessary to redefine concepts
such as tangents and curvature. Given that the curve may be non-smooth and traditional tangent lines might not
exist, the focus here is primarily on one-sided tangents.

Taking the spatial parametric representation of curve 𝛼 as an example, let 𝐷(Φc ⟨𝜏0⟩ ,Φs ⟨𝜏0⟩) be a fixed
point on the curve, and 𝑄 be a moving point on one side of 𝐷. When 𝑄 approaches 𝐷 unilaterally along the
curve indefinitely, if the line 𝐷𝑄 connecting 𝐷 and 𝑄 has a limiting position, then this limiting line is called
the unilateral tangent to the curve 𝛼 at point 𝐷 (see Figure 2.7).

Figure 2.7: Definition of a one-sided tangent line
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As the point 𝑄 approaches point 𝐷, let 𝜔0 be the angle between line 𝑄𝐷 and the positive 𝑥-axis measured
counterclockwise. We now derive the equation for the one-sided tangent line:

𝑥 = 𝜏 cos𝜔0 + Φc ⟨𝜏0⟩ ,

𝑦 = 𝜏 sin𝜔0 + Φs ⟨𝜏0⟩ .

Whereas:

cos𝜔0 = lim
𝜇′→𝜏
𝜇→𝜏0
𝑄→𝐷

Φc ⟨𝜇′⟩ −Φc ⟨𝜇⟩
𝜇′ − 𝜇

,

sin𝜔0 = lim
𝜇′→𝜏
𝜇→𝜏0
𝑄→𝐷

Φs ⟨𝜇′⟩ −Φs ⟨𝜇⟩
𝜇′ − 𝜇

.

Let:

lim
𝜇′→𝜏

𝜇′ = lim
𝜇→𝜏0

𝜇 + Δ𝜏 .

Thus:

cos𝜔0 = lim
𝜇→𝜏0
Δ𝜏→0
𝑄→𝐷

Φc ⟨𝜇 + Δ𝜏⟩ −Φc ⟨𝜇⟩
Δ𝜏

, (2.17)

sin𝜔0 = lim
𝜇→𝜏0
Δ𝜏→0
𝑄→𝐷

Φs ⟨𝜇 + Δ𝜏⟩ −Φs ⟨𝜇⟩
Δ𝜏

. (2.18)

Equations (2.17) and (2.18) are not derivatives and do not support any differentiation operations. It employs
a distinct computational methodology.

Since 𝛾 ≫ 1, let 𝑐 ∈ N+.
We define:

± 𝑐

𝛾
⩽ Δ𝜏 ⩽ ±𝑐 + 1

𝛾
.

Therefore,

lim
Δ𝜏→0
𝑐→1
𝛾→∞

Δ𝜏

± 𝑐
𝛾

= 1 .

Replace Equations (2.17) and (2.18) with:

9



cos𝜔0 = lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

Φc

〈
𝜇 ± 1

𝛾

〉
−Φc ⟨𝜇⟩

± 1
𝛾

= ±𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩
)
,

sin𝜔0 = lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

Φs

〈
𝜇 ± 1

𝛾

〉
−Φs ⟨𝜇⟩

± 1
𝛾

= ±𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩
)
.

Therefore, the analytical expression for the one-sided tangent can be obtained as:



𝑥 = ±𝜏𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩
)

+ 𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ + 𝑥0 ,

𝑦 = ±𝜏𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩
)

+ 𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ + 𝑦0 .

If the curve𝛼 is expressed via temporal parametrization, the coordinates of point𝐷 are given as (Φ1 ⟨𝜏0⟩ ,Φ2 ⟨𝜏0⟩),
with all other given conditions remaining invariant.

At this stage, the expression for the one-sided tangent is:
𝑥 = 𝜏 cos𝜔0 + Φ1 ⟨𝜏0⟩ ,

𝑦 = 𝜏 sin𝜔0 + Φ2 ⟨𝜏0⟩ .

Now given:

cos𝜔0 = lim
𝜇′′→𝜏
𝜇→𝜏0
𝑄→𝐷

Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩√︃
(Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩)2 + (Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩)2

= lim
𝜇′′→𝜏
𝜇→𝜏0
𝑄→𝐷

𝜄 ⟨Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩⟩√︄
1 +

(
Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩
Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩

)2

= lim
𝜇′′→𝜏
𝜇→𝜏0
𝑄→𝐷

𝜄 ⟨Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩⟩
((
Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩
Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩

)2
+ 1

)− 1
2
.
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sin𝜔0 = lim
𝜇′′→𝜏
𝜇→𝜏0
𝑄→𝐷

Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩√︃
(Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩)2 + (Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩)2

= lim
𝜇′′→𝜏
𝜇→𝜏0
𝑄→𝐷

𝜄 ⟨Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩⟩√︄(
Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩
Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩

)2
+ 1

= lim
𝜇′′→𝜏
𝜇→𝜏0
𝑄→𝐷

𝜄 ⟨Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩⟩
((
Φ1 ⟨𝜇′′⟩ −Φ1 ⟨𝜇⟩
Φ2 ⟨𝜇′′⟩ −Φ2 ⟨𝜇⟩

)2
+ 1

)− 1
2
.

Similarly,

lim
𝜇′′→𝜏

𝜇′′ = lim
𝜇→𝜏0

𝜇 + Δ𝜏′ ,

±𝑐′

𝛾
⩽ Δ𝜏′ ⩽ ±𝑐′ + 1

𝛾
,

lim
Δ𝜏′→0
𝑐′→1
𝛾→∞

Δ𝜏′

± 𝑐′
𝛾

= 1 .

Therefore,

cos𝜔0 = lim
𝜇→𝜏0
Δ𝜇′→0
𝑄→𝐷

𝜄 ⟨Φ1 ⟨𝜇 + Δ𝜇′⟩ −Φ1 ⟨𝜇⟩⟩
((
Φ2 ⟨𝜇 + Δ𝜇′⟩ −Φ2 ⟨𝜇⟩
Φ1 ⟨𝜇 + Δ𝜇′⟩ −Φ1 ⟨𝜇⟩

)2
+ 1

)− 1
2

= lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

𝜄

〈
Φ1

〈
𝜇 ± 1

𝛾

〉
−Φ1 ⟨𝜇⟩

〉 ©­­­­«
©­­­­«
Φ2

〈
𝜇 ± 1

𝛾

〉
−Φ2 ⟨𝜇⟩

Φ1

〈
𝜇 ± 1

𝛾

〉
−Φ1 ⟨𝜇⟩

ª®®®®¬
2

+ 1
ª®®®®¬
− 1

2

= lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

𝜄

〈
1
𝛾

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩
)〉 ©­­­­­­«

©­­­­­­«

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩
)

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩
) ª®®®®®®¬

2

+ 1

ª®®®®®®¬

− 1
2

,
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sin𝜔0 = lim
𝜇→𝜏0
Δ𝜇′→0
𝑄→𝐷

𝜄 ⟨Φ2 ⟨𝜇 + Δ𝜇′⟩ −Φ2 ⟨𝜇⟩⟩
((
Φ1 ⟨𝜇 + Δ𝜇′⟩ −Φ1 ⟨𝜇⟩
Φ2 ⟨𝜇 + Δ𝜇′⟩ −Φ2 ⟨𝜇⟩

)2
+ 1

)− 1
2

= lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

𝜄

〈
Φ1

〈
𝜇 ± 1

𝛾

〉
−Φ1 ⟨𝜇⟩

〉 ©­­­­«
©­­­­«
Φ2

〈
𝜇 ± 1

𝛾

〉
−Φ2 ⟨𝜇⟩

Φ1

〈
𝜇 ± 1

𝛾

〉
−Φ1 ⟨𝜇⟩

ª®®®®¬
2

+ 1
ª®®®®¬
− 1

2

= lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

𝜄

〈
1
𝛾

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩
)〉 ©­­­­­­«

©­­­­­­«

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩
)

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩
) ª®®®®®®¬

2

+ 1

ª®®®®®®¬

− 1
2

.

Consequently, the analytic expression for the unilateral tangent is derived as follows:



𝑥 = 𝜏 lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

𝜄

〈
1
𝛾

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩
)〉 ©­­­­­­«

©­­­­­­«

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩
)

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩
) ª®®®®®®¬

2

+ 1

ª®®®®®®¬

− 1
2

+𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ + 𝑥1 ,

𝑦 = 𝜏 lim
𝜇→𝜏0
𝛾→∞
𝑄→𝐷

𝜄

〈
1
𝛾

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩
)〉 ©­­­­­­«

©­­­­­­«

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩
)

(𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ −
𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩
) ª®®®®®®¬

2

+ 1

ª®®®®®®¬

− 1
2

+𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ + 𝑦1 .

We now investigate the curvature at point 𝐷.

Figure 2.8: Determination of curvature
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As illustrated in Figure 2.8, If the current curve 𝛼 is represented using spatial parameterization, let points 𝐹
and 𝐸 be moving points on opposite sides of point 𝐷 along the curve 𝛼, satisfying that both curve lengths 𝐹𝐷
and 𝐷𝐸 equal |Δ𝜏′′ |. As point 𝐺 approaches 𝐹 asymptotically along the curve 𝐷𝐹 and point 𝐻 approaches 𝐸
along the curve 𝐷𝐸 , we define the curve lengths 𝐹𝐺 and 𝐸𝐻 as second-order infinitesimals |Δ (Δ𝜏′′) |. Here,
the inclination angles of the one-sided tangent at 𝐸 (along the curve 𝐷𝐸 direction) and at 𝐹 (along the curve
𝐷𝐹 direction) are Δ𝜔1 and Δ𝜔2, respectively. Δ𝜔 denotes the directional angular variation of the one-sided
tangent.

Define the curvature 𝜅 at point 𝐷, which yields the following relation:

𝜅 =
���� lim
Δ𝜏′′→0

Δ𝜔

2Δ𝜏′′

����
=

1
2

lim
Δ𝜏′′→0

|Δ𝜔1 − Δ𝜔2 |
|Δ𝜏′′ | .

Analogously, let:

± 𝑐

𝛾2 ⩽ Δ (Δ𝜏′′) ⩽ ±𝑐 + 1
𝛾2 .

Consequently:

lim
Δ(Δ𝜏′′ )→0

𝑐→1
𝛾→∞

Δ (Δ𝜏′′)
± 𝑐

𝛾2
= 1 .

Hence,

cosΔ𝜔1 = lim
𝜇→𝜏0

Δ(Δ𝜏)′′→0
𝐻→𝐸

Φc ⟨𝜇 + Δ𝜏′′ + Δ(Δ𝜏′′)⟩ −Φc ⟨𝜇 + Δ𝜏′′⟩
Δ (Δ𝜏′′)

= lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

Φc

〈
𝜇 ± 1

𝛾
± 1

𝛾2

〉
−Φc

〈
𝜇 ± 1

𝛾

〉
± 1

𝛾2

= ±𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

𝛾
©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψc ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ª®¬ ,

cosΔ𝜔2 = lim
𝜇→𝜏0
𝛾→∞
𝐺→𝐹

Φc

〈
𝜇 ∓ 1

𝛾
∓ 1

𝛾2

〉
−Φc

〈
𝜇 ∓ 1

𝛾

〉
∓ 1

𝛾2

= ∓𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝐺→𝐹

𝛾
©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψc ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ª®¬ ,
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sinΔ𝜔1 = lim
𝜇→𝜏0

Δ(Δ𝜏)′′→0
𝐻→𝐸

Φs ⟨𝜇 + Δ𝜏′′ + Δ(Δ𝜏′′)⟩ −Φs ⟨𝜇 + Δ𝜏′′⟩
Δ (Δ𝜏′′)

= lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

Φs

〈
𝜇 ± 1

𝛾
± 1

𝛾2

〉
−Φs

〈
𝜇 ± 1

𝛾

〉
± 1

𝛾2

= ±𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

𝛾
©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψs ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ª®¬ ,

sinΔ𝜔2 = lim
𝜇→𝜏0
𝛾→∞
𝐺→𝐹

Φs

〈
𝜇 ∓ 1

𝛾
∓ 1

𝛾2

〉
−Φs

〈
𝜇 ∓ 1

𝛾

〉
∓ 1

𝛾2

= ∓𝜄 ⟨𝜏0⟩ lim
𝜇→𝜏0
𝛾→∞
𝐺→𝐹

𝛾
©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψs ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ª®¬ .

Regarding the angle between the unilateral tangent and the 𝑥-axis in the counterclockwise direction, there
exist at least two distinct computational approaches.

If 𝜂1, 𝜂2 ∈ R, let:

𝜄1 ⟨𝜂1, 𝜂2⟩ = lim
𝜆→0

𝜂1 + 𝜆

|𝜂1 | + 𝜆
− 𝜂2 + 𝜆

|𝜂2 | + 𝜆
+ 1���� 𝜂1 + 𝜆

|𝜂1 | + 𝜆
− 𝜂2 + 𝜆

|𝜂2 | + 𝜆
+ 1

���� ,
𝜄2 ⟨𝜂1, 𝜂2⟩ = lim

𝜆→0

1 − 𝜂1 + 𝜆

|𝜂1 | + 𝜆
− 𝜂2 + 𝜆

|𝜂2 | + 𝜆���� 𝜂1 + 𝜆

|𝜂1 | + 𝜆
+

𝜂2 + 𝜆

|𝜂2 | + 𝜆
− 1

���� .
Taking Δ𝜔1 as an example,

Δ𝜔1 = 𝜄 ⟨cosΔ𝜔1⟩ (arcsin (sinΔ𝜔1) + 𝜋) + 𝜄1 ⟨sinΔ𝜔1, cosΔ𝜔1⟩ ·
𝜋

2
+ 𝜄2 ⟨sinΔ𝜔1, cosΔ𝜔1⟩ ·

3𝜋
2

, (2.19)

Δ𝜔1 = 𝜋 + 𝜄 ⟨sinΔ𝜔1⟩ (arccos (cosΔ𝜔1) − 𝜋) . (2.20)

Since Equation (2.20) is significantly more concise than Equation (2.19), we consequently discard Equation
(2.20). Therefore,

Δ𝜔1 − Δ𝜔2 = 𝜄 ⟨sinΔ𝜔1⟩ (arccos (cosΔ𝜔1) − 𝜋) − 𝜄 ⟨sinΔ𝜔2⟩ (arccos (cosΔ𝜔2) − 𝜋) .
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𝜅 =
1
2

lim
𝜇→𝜏0
𝛾→∞

𝛾2

������𝜄
〈
±𝜄 ⟨𝜏0⟩ lim

𝐻→𝐸
𝛾
©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψs ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ª®¬
〉
×

©­«arccos ©­«±𝜄 ⟨𝜏0⟩ lim
𝐻→𝐸

𝛾
©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψc ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ª®¬ª®¬ − 𝜋
ª®¬ −

𝜄

〈
∓𝜄 ⟨𝜏0⟩ lim

𝐺→𝐹
𝛾
©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψs ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψs ⟨𝛾 ≀ 𝑛⟩ª®¬
〉
×

©­«arccos ©­«∓𝜄 ⟨𝜏0⟩ lim
𝐺→𝐹

𝛾
©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏0 ⟩
Ψc ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏0 ⟩

Ψc ⟨𝛾 ≀ 𝑛⟩ª®¬ª®¬ − 𝜋
ª®¬
������ .

For the temporally parametrized curve 𝛼, after substituting Δ𝜏′′ with Δ𝜏∗: the original condition indicating
equal segment lengths now denotes equal traversal time along curve segments.

By the same token,

±𝑐′′

𝛾2 ⩽ Δ (Δ𝜏∗) ⩽ ±𝑐′′ + 1
𝛾2 .

Therefore,

lim
Δ(Δ𝜏∗ )→0

𝑐′′→1
𝛾→∞

Δ (Δ𝜏∗)
± 𝑐′′

𝛾2

= 1 .

Namely:

𝜅 =

�����������
lim
𝜇→𝜏0
Δ𝜏∗→0

Δ𝜔√︄
2∑︁
𝑖=1

(Φ𝑖 ⟨𝜇 + Δ𝜏∗⟩ −Φ𝑖 ⟨𝜇⟩)2 +

√︄
2∑︁
𝑖=1

(Φ𝑖 ⟨𝜇 − Δ𝜏∗⟩ −Φ𝑖 ⟨𝜇⟩)2

�����������
= lim

𝜇→𝜏0
Δ𝜏∗→0

|Δ𝜔1 − Δ𝜔2 |√︄
2∑︁
𝑖=1

(Φ𝑖 ⟨𝜇 + Δ𝜏∗⟩ −Φ𝑖 ⟨𝜇⟩)2 +

√︄
2∑︁
𝑖=1

(Φ𝑖 ⟨𝜇 − Δ𝜏∗⟩ −Φ𝑖 ⟨𝜇⟩)2

= lim
𝜇→𝜏0
Δ𝜏∗→0

|𝜄 ⟨sinΔ𝜔1⟩ (arccos (cosΔ𝜔1) − 𝜋) − 𝜄 ⟨sinΔ𝜔2⟩ (arccos (cosΔ𝜔2) − 𝜋) |√︄
2∑︁
𝑖=1

(Φ𝑖 ⟨𝜇 + Δ𝜏∗⟩ −Φ𝑖 ⟨𝜇⟩)2 +

√︄
2∑︁
𝑖=1

(Φ𝑖 ⟨𝜇 − Δ𝜏∗⟩ −Φ𝑖 ⟨𝜇⟩)2

= lim
𝜇→𝜏0
𝛾→∞

|𝜄 ⟨sinΔ𝜔1⟩ (arccos (cosΔ𝜔1) − 𝜋) − 𝜄 ⟨sinΔ𝜔2⟩ (arccos (cosΔ𝜔2) − 𝜋) |√︄
2∑︁
𝑖=1

(
Φ𝑖

〈
𝜇 ± 1

𝛾

〉
−Φ𝑖 ⟨𝜇⟩

)2
+

√︄
2∑︁
𝑖=1

(
Φ𝑖

〈
𝜇 ∓ 1

𝛾

〉
−Φ𝑖 ⟨𝜇⟩

)2
.

Whereas,
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cosΔ𝜔1 = lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

𝜄

〈
1
𝛾

©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ1 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ª®¬
〉 ©­­­­­­­­«

©­­­­­­­­«

©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ2 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ª®¬©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ1 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ª®¬

ª®®®®®®®®¬

2

+ 1

ª®®®®®®®®¬

− 1
2

,

sinΔ𝜔1 = lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

𝜄

〈
1
𝛾

©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ2 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ª®¬
〉 ©­­­­­­­­«

©­­­­­­­­«

©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ1 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ª®¬©­«
𝜇𝛾±1± 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ2 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾±1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ª®¬

ª®®®®®®®®¬

2

+ 1

ª®®®®®®®®¬

− 1
2

,

cosΔ𝜔2 = lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

𝜄

〈
1
𝛾

©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ1 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ª®¬
〉 ©­­­­­­­­«

©­­­­­­­­«

©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ2 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ª®¬©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ1 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ª®¬

ª®®®®®®®®¬

2

+ 1

ª®®®®®®®®¬

− 1
2

,

sinΔ𝜔2 = lim
𝜇→𝜏0
𝛾→∞
𝐻→𝐸

𝜄

〈
1
𝛾

©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ2 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ª®¬
〉 ©­­­­­­­­«

©­­­­­­­­«

©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ1 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ª®¬©­«
𝜇𝛾∓1∓ 1

𝛾
∑︁

𝑛= 𝜄⟨𝜏⟩
Ψ2 ⟨𝛾 ≀ 𝑛⟩ −

𝜇𝛾∓1∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ª®¬

ª®®®®®®®®¬

2

+ 1

ª®®®®®®®®¬

− 1
2

.

To avoid overly lengthy formulas, the full expression of curvature 𝜅 is not expanded here. Through a
theoretical breakthrough that completely abandons differentiability requirements, this study has successfully
established a universal curvature computation framework for arbitrary planar continuous curves (the complete
expressions are omitted here due to excessive length).

3 Characterization of Multidimensional Geometric Objects

3.1 Metric characterization of continuous surfaces

Building upon the 𝜏-proportional coefficient for the 𝑥-axis established in Section 2.1, we now extend the space
to a two-dimensional 𝑥𝑂𝑦 coordinate system, where the 𝑥-axis retains 𝜏 as its proportional coefficient, the 𝑦-axis
adopts 𝜈 as its proportional coefficient, and an additional non-zero variable 𝜐 is introduced. As shown in Figure
3.1, a unit circle centered at the origin 𝑂 is constructed, with the radius 𝑟 ⟨𝑥, 𝑦⟩ denoting the distance from any
point to the origin. An arbitrary point 𝐴′ is selected on the unit circle, and the line segment 𝑂𝐴′ is connected.
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Figure 3.1: The unit circle and its radius 𝑂𝐴′

Analogous to the operation in Section 2.1, divide 𝑂𝐴′ into 𝛾 equal parts, which yields:

𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

1 , (3.1)

𝑦 = 𝜄 ⟨𝜈⟩ lim
𝜐→𝜈
𝛾→∞

1
𝛾

𝜐𝛾∑︁
𝑖= 𝜄⟨𝜈⟩

1 . (3.2)

To construct the foundation for continuous surfaces, we integrate Formula 3.1 and Formula 3.2 to obtain:

𝑟 ⟨𝑥, 𝑦⟩ = lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

√𝜇2+𝜐2𝛾∑︁
𝑖=1

1 . (3.3)

Equation (3.3) fully characterizes the entire plane.
We now introduce a 𝑧-axis to extend the space to three dimensions, redefining the angle 𝜃 in Section 2.2

as the counterclockwise angle from the positive 𝑦-axis, while adding a new counterclockwise angle 𝜑 from the
positive 𝑥-axis, as illustrated in Figure 3.2.

Figure 3.2: Angle 𝜃 and angle 𝜑

Analogous to Formula 2.11, by reducing the two-dimensional case to a one-dimensional scenario, we obtain:
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

𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜏⟩√𝜇2+𝜐2𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

cos 𝜃𝑖 cos 𝜑𝑖 + 𝑥′0 ,

𝑦 = 𝜄 ⟨𝜈⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜈⟩√𝜇2+𝜐2𝛾∑︁
𝑖= 𝜄⟨𝜈⟩

cos 𝜃𝑖 sin 𝜑𝑖 + 𝑦′0 ,

𝑧 = 𝜄 ⟨𝜈⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜈⟩√𝜇2+𝜐2𝛾∑︁
𝑖= 𝜄⟨𝜈⟩

sin 𝜃𝑖 + 𝑧′0 .

Given an infinitely extended continuous surface 𝑆 (where S satisfies only 𝐶0 continuity), we establish its
parametric representation as follows:



𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜏⟩√𝜇2+𝜐2𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ𝑥 ⟨𝛾 ≀ 𝑛⟩ + 𝑥′0 ,

𝑦 = 𝜄 ⟨𝜈⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜈⟩√𝜇2+𝜐2𝛾∑︁
𝑛= 𝜄⟨𝜈⟩

Ψ𝑦 ⟨𝛾 ≀ 𝑛⟩ + 𝑦′0 ,

𝑧 = 𝜄 ⟨𝜈⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜈⟩√𝜇2+𝜐2𝛾∑︁
𝑛= 𝜄⟨𝜈⟩

Ψ𝑧 ⟨𝛾 ≀ 𝑛⟩ + 𝑧′0 .

Where (𝑥′0, 𝑦
′
0, 𝑧

′
0) denotes the initial point coordinates.

An alternative parametric representation of surface 𝑆 is given by:



𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜏⟩√𝜇2+𝜐2𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ + 𝑥′′0 ,

𝑦 = 𝜄 ⟨𝜈⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜈⟩√𝜇2+𝜐2𝛾∑︁
𝑛= 𝜄⟨𝜈⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ + 𝑦′′0 ,

𝑧 = 𝜄 ⟨𝜈⟩ lim
𝜇→𝜏
𝜐→𝜈
𝛾→∞

1
𝛾

 𝜄⟨𝜈⟩√𝜇2+𝜐2𝛾∑︁
𝑛= 𝜄⟨𝜈⟩

Ψ3 ⟨𝛾 ≀ 𝑛⟩ + 𝑧′′0 .

with 𝑥′′0 , 𝑦′′0 , 𝑧′′0 being constants.

3.2 Metric characterization of continuous space curves

For the infinitely extended continuous space curve 𝛽 (where 𝛽 satisfies only 𝐶0 continuity) with initial point
(𝑥′′′0 , 𝑦′′′0 , 𝑧′′′0 ), its spatial parametric representation can be directly established based on the construction theory
of continuous surfaces as follows:
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

𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ𝑥 ⟨𝛾 ≀ 𝑛⟩ + 𝑥′′′0 ,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ𝑦 ⟨𝛾 ≀ 𝑛⟩ + 𝑦′′′0 ,

𝑧 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ𝑧 ⟨𝛾 ≀ 𝑛⟩ + 𝑧′′′0 .

We can likewise express curve 𝛽 in parametric form with respect to time:



𝑥 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ + 𝑥∗0 ,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ + 𝑦∗0 ,

𝑧 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ3 ⟨𝛾 ≀ 𝑛⟩ + 𝑧∗0 .

where (𝑥∗0, 𝑦
∗
0, 𝑧

∗
0) denotes the spatial coordinates at 𝜏 = 0.

3.3 The metric characterization of geometric object in higher-dimensional spaces

Consider an infinitely extended continuous geometric object ℵ (where ℵ satisfies only 𝐶0 continuity) of di-
mension 𝑘 − 1 embedded in a 𝑘-dimensional Euclidean space. Let 𝑥 ( 𝑗 ) denote the 𝑗-th coordinate axis, with
nonzero variables 𝜇( 𝑗) and their corresponding parameters 𝜏( 𝑗 ) , 𝑥0, ( 𝑗 ) and 𝑥∗0, ( 𝑗 ) are constants. Through surface
extension, we obtain two parametric representations of the hypersurface ℵ:



𝑥 (1) = 𝜄
〈
𝜏(1)

〉
lim

𝜇(1)→𝜏(1)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(1)⟩√︃∑𝑘−1
𝑗=1 𝜇2

( 𝑗) 𝛾∑︁
𝑛= 𝜄⟨𝜏(1)⟩

Ψ𝑥(1) ⟨𝛾 ≀ 𝑛⟩ + 𝑥0, (1) ,

𝑥 (2) = 𝜄
〈
𝜏(2)

〉
lim

𝜇(2)→𝜏(2)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(2)⟩√︃∑𝑘−1
𝑗=1 𝜇2

( 𝑗) 𝛾∑︁
𝑛= 𝜄⟨𝜏(2)⟩

Ψ𝑥(2) ⟨𝛾 ≀ 𝑛⟩ + 𝑥0, (2) ,

· · · · · · · · · · · ·

𝑥 (𝑘−1) = 𝜄
〈
𝜏(𝑘−1)

〉
lim

𝜇(𝑘−1)→𝜏(𝑘−1)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(𝑘−1)⟩
√︃∑𝑘−1

𝑗=1 𝜇2
( 𝑗) 𝛾∑︁

𝑛= 𝜄⟨𝜏(𝑘−1)⟩
Ψ𝑥(𝑘−1) ⟨𝛾 ≀ 𝑛⟩ + 𝑥0, (𝑘−1) ,

𝑥 (𝑘 ) = 𝜄
〈
𝜏(𝑘 )

〉
lim

𝜇(𝑘)→𝜏(𝑘)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(𝑘)⟩√︃∑𝑘−1
𝑗=1 𝜇2

( 𝑗) 𝛾∑︁
𝑛= 𝜄⟨𝜏(𝑘)⟩

Ψ𝑥(𝑘) ⟨𝛾 ≀ 𝑛⟩ + 𝑥0, (𝑘 ) ,
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

𝑥 (1) = 𝜄
〈
𝜏(1)

〉
lim

𝜇(1)→𝜏(1)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(1)⟩√︃∑𝑘−1
𝑗=1 𝜇2

( 𝑗) 𝛾∑︁
𝑛= 𝜄⟨𝜏(1)⟩

Ψ(1) ⟨𝛾 ≀ 𝑛⟩ + 𝑥∗0, (1) ,

𝑥 (2) = 𝜄
〈
𝜏(2)

〉
lim

𝜇(2)→𝜏(2)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(2)⟩√︃∑𝑘−1
𝑗=1 𝜇2

( 𝑗) 𝛾∑︁
𝑛= 𝜄⟨𝜏(2)⟩

Ψ(2) ⟨𝛾 ≀ 𝑛⟩ + 𝑥∗0, (2) ,

· · · · · · · · · · · ·

𝑥 (𝑘−1) = 𝜄
〈
𝜏(2)

〉
lim

𝜇(𝑘−1)→𝜏(𝑘−1)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(𝑘−1)⟩
√︃∑𝑘−1

𝑗=1 𝜇2
( 𝑗) 𝛾∑︁

𝑛= 𝜄⟨𝜏(𝑘−1)⟩
Ψ(𝑘−1) ⟨𝛾 ≀ 𝑛⟩ + 𝑥∗0, (𝑘−1) ,

𝑥 (𝑘 ) = 𝜄
〈
𝜏(𝑘−1)

〉
lim

𝜇(𝑘−1)→𝜏(𝑘−1)
𝛾→∞

1
𝛾

 𝜄⟨𝜏(𝑘−1)⟩
√︃∑𝑘−1

𝑗=1 𝜇2
( 𝑗) 𝛾∑︁

𝑛= 𝜄⟨𝜏(𝑘−1)⟩
Ψ(𝑘 ) ⟨𝛾 ≀ 𝑛⟩ + 𝑥∗0,(𝑘) .

Multidimensional geometric objects can be either manifolds or hypersurfaces, but within a non-differential
geometric framework, only continuity is required without any smoothness conditions.

Since the determination of geometric quantities (such as curvature) for continuous surfaces, spatial con-
tinuous curves, and higher-dimensional continuous geometric objects requires new axiomatic theories and
interdisciplinary collaboration (e.g., with physics), this paper does not address the study of such quantities.

4 Theoretical paradigm breakthrough

4.1 Extensions and breakthroughs in integration theory through non-differential geometric
analysis tools

When exploring extensions and breakthroughs in integration theory through non-differential geometric tools, it
is necessary to first verify their compatibility with classical integration. This can be demonstrated by performing
just two types of constructions on classical planar continuous smooth curves 𝑦 = 𝑓 (𝑥), as higher-dimensional
geometric objects are inherently extensions of lower-dimensional cases. Selecting the initial point (𝑠0, 𝑓 (𝑠0))
and taking the positive 𝑥-axis direction as the reference orientation, we now construct the spatial parametric
form using non-differential geometry.

Let 𝑠 be an unknown real number. From the classical arc length formula, we obtain:

∫ 𝑠

𝑠0

√︃
1 + 𝑓 ′2 (𝑠0) d𝑥 =

𝑛

𝛾
. (4.1)

Since the integrand may be non-integrable, and even when integrable typically requires solving transcenden-
tal equations, Equation (4.1) is practically intractable for analytical solutions. Here, solving the transcendental
equation carries substantive significance — it’s not merely mathematical exercise but theoretical necessity.
Given that Formula (2.12) has established a paradigm through the construct 𝑦 = 𝑥

3
2 (leveraging its analytical

tractability), we postulate 𝑠𝑛(𝑛 > 0) as the solution to Equation (4.1).
Therefore,
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Ψc ⟨𝛾 ≀ 𝑛⟩ =
𝑠𝑛 − 𝑠𝑛−1√︃

(𝑠𝑛 − 𝑠𝑛−1)2 + ( 𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1))2

= 𝜄 ⟨𝑠𝑛 − 𝑠𝑛−1⟩
((

𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)
𝑠𝑛 − 𝑠𝑛−1

)2
+ 1

)− 1
2
,

Ψs ⟨𝛾 ≀ 𝑛⟩ =
𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)√︃

(𝑠𝑛 − 𝑠𝑛−1)2 + ( 𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1))2

= 𝜄 ⟨ 𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)⟩
((

𝑠𝑛 − 𝑠𝑛−1
𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)

)2
+ 1

)− 1
2
.

After the construction, the parameter 𝑛 now satisfies 𝑛 ∈ Z with 𝑛 ̸= 0, from which we obtain the non-
differential geometric expression for the curve 𝑦 = 𝑓 (𝑥) as:


𝑥 = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

𝜄 ⟨𝑠𝑛 − 𝑠𝑛−1⟩
((

𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)
𝑠𝑛 − 𝑠𝑛−1

)2
+ 1

)− 1
2

+ 𝑠0 ,

𝑦 = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

𝜄 ⟨ 𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)⟩
((

𝑠𝑛 − 𝑠𝑛−1
𝑓 (𝑠𝑛) − 𝑓 (𝑠𝑛−1)

)2
+ 1

)− 1
2

+ 𝑓 (𝑠0) .

The curve 𝑦 = 𝑓 (𝑥) intersects the 𝑦-axis at (0, 𝑓 (0)). We now investigate an alternative mathematical
representation of this curve based on a non-differential geometric framework.

Similarly,

Ψt ⟨𝛾 ≀ 𝑛⟩ =
𝑓

(
𝑛

𝛾

)
− 𝑓

(
𝑛 − 1
𝛾

)
1
𝛾

= 𝛾

(
𝑓

(
𝑛

𝛾

)
− 𝑓

(
𝑛 − 1
𝛾

))
.

Let 𝜘 be the nonzero real variable corresponding to 𝑥, from which we obtain another parametric expression:

𝑦 = 𝜄 ⟨𝑥⟩ lim
𝜘→𝑥
𝛾→∞

𝜘𝛾∑︁
𝑛= 𝜄⟨𝑥⟩

(
𝑓

(
𝑛

𝛾

)
− 𝑓

(
𝑛 − 1
𝛾

))
+ 𝑓 (0) .

It follows that the mathematical tools of non-differential geometry are fully compatible with classical
differential geometry, and all problems in classical differential geometry can be transformed into non-differential
geometric formulations for solution. Notably, when classical differential geometry only satisfies 𝐶1 continuity
yet requires computation of geometric quantities like curvature (which typically demands 𝐶2 continuity),
conversion to the non-differential geometric framework becomes advantageous—the latter requires merely 𝐶0

continuity to achieve equivalent computations. However, if classical differential geometry inherently meets
computational requirements (e.g., with 𝐶2 continuity), conversion is unnecessary as non-differential geometric
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methods incur higher computational complexity. Therefore, the non-differential geometric tools in this study
are by default applied to cases that cannot be addressed by classical differential geometry.

While differential geometry and non-differential geometry are theoretically compatible, and all conclusions
in the differential geometry framework can be translated into non-differential formulations, the converse generally
does not hold. Typical counterexamples include:

𝑦 = 𝜄 ⟨𝑥⟩ lim
𝜘→𝑥
𝛾→∞

1
𝛾

𝜘𝛾∑︁
𝑛= 𝜄⟨𝑥⟩

4𝑛3 + 𝑛2 + 3𝑛 + sin 𝑛
𝛾𝑛2 + 𝛾 + 𝑛

+ 2 .

In non-differential geometry, the rejection of differential structures necessitates discarding the integral
symbol ‘

∫
’. However, to ensure compatibility when reducing to classical differential geometry, the symbol

‘
⨋

’ is adopted for two essential reasons: (1) it inherently embodies infinite series (a fundamental feature of
non-differential geometry), and (2) its visual similarity maintains conceptual linkage with classical integration
theory. It must be expressly noted that while resembling an integral, ‘

⨋
’ constitutes a fundamentally distinct

operation.
Given a constant 𝜎0, define:

𝜎 ⟨𝑥⟩ = 𝜄 ⟨𝑥⟩ lim
𝜘→𝑥
𝛾→∞

1
𝛾

𝜘𝛾∑︁
𝑛= 𝜄⟨𝑥⟩

Ψ ⟨𝛾 ≀ 𝑛⟩ + 𝜎0 .

Since the curve 𝑦 = 𝜎 ⟨𝑥⟩ merely satisfies 𝐶0 continuity, its tangent may not exist, thus precluding the
definition of any concept analogous to the indefinite integral. Consequently, the symbol ‘

⨋
’ must explicitly

specify upper and lower bounds, with 𝛾−1 defined as a non-differential operator, and its properties studied on
the interval [𝑎, 𝑏].

There must exist a definite real number 𝑇 satisfying the following formula:

⨋𝑏

𝑎

𝜎 ⟨𝑥⟩ 𝛾−1𝑥 = 𝑇 . (4.2)

Analogous in form to a definite integral but distinct in nature, in Equation (4.2), 𝛾−1 acts as a non-differential
operator, where its operand 𝛾−1𝑥 must be treated as an indivisible entity, precluding any internal operations.
Since the left-hand side of Equation (4.2) is not a definite integral, and 𝑦 = 𝜎 ⟨𝑥⟩ does not constitute a function
(merely satisfying 𝐶0 continuity), the Newton-Leibniz formula is clearly inapplicable. We therefore must
investigate its mathematical properties anew.
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Figure 4.1: To perform computations based on non-differential operators

Distinct from conventional definite integrals (see Figure 4.1), we must employ non-differential operators for
analytical computation. Therefore:

⨋𝑏

𝑎

𝜎 ⟨𝑥⟩ 𝛾−1𝑥 =
⨋𝑏

0
𝜎 ⟨𝑥⟩ 𝛾−1𝑥 −

⨋𝑎

0
𝜎 ⟨𝑥⟩ 𝛾−1𝑥 .

Whereas:

⨋𝑏

0
𝜎 ⟨𝑥⟩ 𝛾−1𝑥 = lim

𝛾→∞

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

1
𝛾
𝜎

〈
𝑛

𝛾

〉
. (4.3)

Let 𝑚 = −𝑛, · · · ,−2,−1, 1, 2, · · · , 𝑛. It follows that:

𝜎

〈
𝑛

𝛾

〉
= 𝜄 ⟨𝑛⟩ lim

𝛾→∞
1
𝛾

𝑛∑︁
𝑚= 𝜄⟨𝑛⟩

Ψ ⟨𝛾 ≀ 𝑚⟩ + 𝜎0 .

Substitute it into Equation (4.3), i.e.,

⨋𝑏

0
𝜎 ⟨𝑥⟩ 𝛾−1𝑥 = lim

𝛾→∞
1
𝛾

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

(
𝜄 ⟨𝑛⟩ 1

𝛾

𝑛∑︁
𝑚= 𝜄⟨𝑛⟩

Ψ ⟨𝛾 ≀ 𝑚⟩ + 𝜎0

)
= lim

𝛾→∞
1
𝛾2

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

𝜄 ⟨𝑛⟩
𝑛∑︁

𝑚= 𝜄⟨𝑛⟩
Ψ ⟨𝛾 ≀ 𝑚⟩ + 𝑏𝜎0

= lim
𝛾→∞

1
𝛾2

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

(𝑏𝛾 − 𝑛 + 𝜄 ⟨𝑏⟩)Ψ ⟨𝛾 ≀ 𝑛⟩ + 𝑏𝜎0 .

Therefore,

⨋𝑎

0
𝜎 ⟨𝑥⟩ 𝛾−1𝑥 = lim

𝛾→∞
1
𝛾2

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

(𝑎𝛾 − 𝑛 + 𝜄 ⟨𝑎⟩)Ψ ⟨𝛾 ≀ 𝑛⟩ + 𝑎𝜎0 .

We immediately obtain:
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⨋𝑏

𝑎

𝜎 ⟨𝑥⟩ 𝛾−1𝑥 = lim
𝛾→∞

1
𝛾2

( 𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

(𝑏𝛾 − 𝑛 + 𝜄 ⟨𝑏⟩)Ψ ⟨𝛾 ≀ 𝑛⟩ −
𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

(𝑎𝛾 − 𝑛 + 𝜄 ⟨𝑎⟩)Ψ ⟨𝛾 ≀ 𝑛⟩
)

+ (𝑏 − 𝑎) 𝜎0 .

Let the curve 𝑦 = 𝜎⟨𝑥⟩ have length 𝑙 over the interval [𝑎, 𝑏]. We now proceed to determine 𝑙, i.e.:

𝑙 = lim
𝛾→∞

©­«𝜄 ⟨𝑏⟩
𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︄(
1
𝛾

)2
+

(
𝜎

〈
𝑛

𝛾

〉
− 𝜎

〈
𝑛 − 1
𝛾

〉)2
− 𝜄 ⟨𝑎⟩

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︄(
1
𝛾

)2
+

(
𝜎

〈
𝑛

𝛾

〉
− 𝜎

〈
𝑛 − 1
𝛾

〉)2ª®¬ .

Since:

𝜎

〈
𝑛

𝛾

〉
− 𝜎

〈
𝑛 − 1
𝛾

〉
= 𝜄 ⟨𝑛⟩ lim

𝛾→∞
1
𝛾

𝑛∑︁
𝑚= 𝜄⟨𝑛⟩

Ψ ⟨𝛾 ≀ 𝑚⟩ + 𝜎0 −
(
𝜄 ⟨𝑛⟩ lim

𝛾→∞
1
𝛾

𝑛−1∑︁
𝑚= 𝜄⟨𝑛⟩

Ψ ⟨𝛾 ≀ 𝑚⟩ + 𝜎0

)
= 𝜄 ⟨𝑛⟩ lim

𝛾→∞
1
𝛾

𝑛∑︁
𝑚= 𝜄⟨𝑛⟩

Ψ ⟨𝛾 ≀ 𝑚⟩ − 𝜄 ⟨𝑛⟩ lim
𝛾→∞

1
𝛾

𝑛∑︁
𝑚= 𝜄⟨𝑛⟩

Ψ ⟨𝛾 ≀ 𝑚⟩ + 𝜄 ⟨𝑛⟩ lim
𝛾→∞

1
𝛾
Ψ ⟨𝛾 ≀ 𝑛⟩

= 𝜄 ⟨𝑛⟩ lim
𝛾→∞

1
𝛾
Ψ ⟨𝛾 ≀ 𝑛⟩ .

Therefore,

𝑙 = lim
𝛾→∞

(
𝜄 ⟨𝑏⟩

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︄
1
𝛾2 +

1
𝛾2Ψ

2 ⟨𝛾 ≀ 𝑛⟩ − 𝜄 ⟨𝑎⟩
𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︄
1
𝛾2 +

1
𝛾2Ψ

2 ⟨𝛾 ≀ 𝑛⟩
)

= lim
𝛾→∞

1
𝛾

(
𝜄 ⟨𝑏⟩

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩ − 𝜄 ⟨𝑎⟩

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩

)
.

Whereas:

⨋𝑏

𝑎

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩𝛾−1𝑥 =

⨋𝑏

0

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩𝛾−1𝑥 −

⨋𝑎

0

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩𝛾−1𝑥

= lim
𝛾→∞

1
𝛾

(
𝜄 ⟨𝑏⟩

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩ − 𝜄 ⟨𝑎⟩

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩

)
.

Thus it follows that:

𝑙 =
⨋𝑏

𝑎

√︁
1 + Ψ2 ⟨𝛾 ≀ 𝑛⟩𝛾−1𝑥 .

Let 𝜎0,𝑥 and 𝜎0,𝑦 be constants. If the curve is defined by the following expression:
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
𝜎𝑥 ⟨𝜏⟩ = 𝜄 ⟨𝜏⟩ lim

𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ1 ⟨𝛾 ≀ 𝑛⟩ + 𝜎0,𝑥 ,

𝜎𝑦 ⟨𝜏⟩ = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑛= 𝜄⟨𝜏⟩

Ψ2 ⟨𝛾 ≀ 𝑛⟩ + 𝜎0,𝑦 .

We now determine the length 𝑙∗ of the curve segment over the closed interval [𝑎, 𝑏]:

𝑙∗ = lim
𝛾→∞

𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

(√︄(
𝜎𝑥

〈
𝑛

𝛾

〉
− 𝜎𝑥

〈
𝑛 − 1
𝛾

〉)2
+

(
𝜎𝑦

〈
𝑛

𝛾

〉
− 𝜎𝑦

〈
𝑛 − 1
𝛾

〉)2

−
𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︄(
𝜎𝑥

〈
𝑛

𝛾

〉
− 𝜎𝑥

〈
𝑛 − 1
𝛾

〉)2
+

(
𝜎𝑦

〈
𝑛

𝛾

〉
− 𝜎𝑦

〈
𝑛 − 1
𝛾

〉)2
)

= lim
𝛾→∞

( 𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︄
1
𝛾2Ψ

2
1 ⟨𝛾 ≀ 𝑛⟩ +

1
𝛾2Ψ

2
2 ⟨𝛾 ≀ 𝑛⟩ −

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︄
1
𝛾2Ψ

2
1 ⟨𝛾 ≀ 𝑛⟩ +

1
𝛾2Ψ

2
2 ⟨𝛾 ≀ 𝑛⟩

)
= lim

𝛾→∞
1
𝛾

( 𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︃
Ψ2

1 ⟨𝛾 ≀ 𝑛⟩ + Ψ2
2 ⟨𝛾 ≀ 𝑛⟩ −

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︃
Ψ2

1 ⟨𝛾 ≀ 𝑛⟩ + Ψ2
2 ⟨𝛾 ≀ 𝑛⟩

)
.

Similarly:

⨋𝑏

𝑎

√︃
Ψ2

1 ⟨𝛾 ≀ 𝑛⟩ + Ψ2
2 ⟨𝛾 ≀ 𝑛⟩𝛾−1𝑥 = lim

𝛾→∞
1
𝛾

( 𝑏𝛾∑︁
𝑛= 𝜄⟨𝑏⟩

√︃
Ψ2

1 ⟨𝛾 ≀ 𝑛⟩ + Ψ2
2 ⟨𝛾 ≀ 𝑛⟩ −

𝑎𝛾∑︁
𝑛= 𝜄⟨𝑎⟩

√︃
Ψ2

1 ⟨𝛾 ≀ 𝑛⟩ + Ψ2
2 ⟨𝛾 ≀ 𝑛⟩

)
.

Therefore,

𝑙∗ =
⨋𝑏

𝑎

√︃
Ψ2

1 ⟨𝛾 ≀ 𝑛⟩ + Ψ2
2 ⟨𝛾 ≀ 𝑛⟩𝛾−1𝑥 .

Since this study is of a pioneering nature, the rigorous definition of “integration” on curved surfaces and
higher-dimensional geometric objects (note: the term “integration” here does not refer to the classical theory
but to an analogue of definite integrals outside the framework of differential geometry) will most likely require a
new axiomatic system for support. Therefore, this paper will refrain from delving into the discussion for now.

4.2 Generalized proof of the shortest property of straight line segments between two points in
Euclidean space: application of non-differential geometric tools

In a 𝑘-dimensional Euclidean space, consider a point 𝑂 (the origin) and an arbitrary point 𝑊 . We aim to
prove that among all continuous curves connecting 𝑂 and 𝑊 , the straight-line segment is the shortest path. For
simplicity in the proof, we assume 𝑂 to be the coordinate origin.

Let the coordinates of point 𝑊 be (𝑤1, 𝑤2, . . . , 𝑤𝑘). Then:
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|𝑂𝑊 | =

√√
𝑘∑︁
𝑗=1

𝑤2
𝑗
.

Construct a 𝑘-dimensional sphere centered at the origin 𝑂 with radius |𝑂𝑊 |. On this sphere, take a point
𝑊 ′ such that the vector

#      »

𝑂𝑊 ′ is parallel to the first coordinate axis 𝑥1, and moreover,
#      »

𝑂𝑊 ′ is codirectional with
the 𝑥1-axis. Let the sphere’s radius be 𝑟 = |𝑂𝑊 |= |𝑂𝑊 ′ |.

To prove that among all continuous curves connecting 𝑂 and 𝑊 , the straight-line segment is the shortest, it
is equivalent to prove: For any rectifiable continuous curve Ω connecting 𝑂 and𝑊 ′, its arc length 𝐿 (Ω) satisfies
𝐿 (Ω) ⩾ |𝑂𝑊 ′ | (the linear distance). We now parameterize the curve Ω using spatial parameter 𝜏, expressed as:



𝑥 (1) = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

𝑘−1∏
𝑗=1

cos 𝜃 ( 𝑗 ) ,𝑖 ,

𝑥 (2) = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

𝑘−2∏
𝑗=1

cos 𝜃 ( 𝑗 ) ,𝑖 sin 𝜃 (𝑘−1) ,𝑖 ,

· · · · · · · · · · · ·

𝑥 (𝑘−1) = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

cos 𝜃 (1) ,𝑖 sin 𝜃 (2) ,𝑖 ,

𝑥 (𝑘 ) = 𝜄 ⟨𝜏⟩ lim
𝜇→𝜏
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏⟩

sin 𝜃 (1) ,𝑖 .

Let 𝜏𝑤(𝜏𝑤 > 0) denote the value of parameter 𝜏 at point 𝑊 ′. Then we have:

𝐿 (Ω) = 𝜏𝑤

= lim
𝜇→𝜏𝑤
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏𝑤 ⟩

1 ,

|𝑂𝑊 ′ | = lim
𝜇→𝜏𝑤
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏𝑤 ⟩

𝑘−1∏
𝑗=1

cos 𝜃 ( 𝑗 ) ,𝑖 .

Since:

lim
𝜇→𝜏𝑤
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏𝑤 ⟩

1 ⩾ lim
𝜇→𝜏𝑤
𝛾→∞

1
𝛾

𝜇𝛾∑︁
𝑖= 𝜄⟨𝜏𝑤 ⟩

𝑘−1∏
𝑗=1

cos 𝜃 ( 𝑗 ) ,𝑖 .

Hence:

𝐿 (Ω) ⩾ |𝑂𝑊 ′ | .

Thus, by ingeniously employing the properties of multidimensional spheres and non-differential geometric
methods, we have concisely and intuitively demonstrated the minimality of straight-line segments between two
points in Euclidean space.
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