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Abstract

As an aid to teachers and students who are learning to apply Geometric

Algebra to high-school-level physics, we provide this second installment in

our guide guide to Hestenes’s treatment of constant-acceleration motion.

Specifically, we present a more-detailed version of Hestenes’s solution to

the problem of finding the time and distance at which a projectile will

reach a specific point along a given line of sight. We begin by reviewing

the GA ideas that we will use, and finish by verifying the solution via a

GeoGebra worksheet.

The open turquoise point is at the maximum range (rm) that can be reached along

the line of sight r̂ by a projectile whose initial velocity is vo. The turquoise curve is the

trajectory of such a projectile. The blue curves are the two trajectories that hit a target at

range r < rmax along r̂.
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1 Introduction

This document continues our presentation and explanation of Hestenes’s “GA”

treatment of constant-acceleration motion. Like the introduction that we pre-

sented in a previous document ([1]), the present one has been prepared in the

spirit of Hestenes’s observation that students will need “judicious guidance” to
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get through his book New Foundations for Classical Mechanics.1. Therefore,

this document is intended to be understandable by students and teachers who

are still in the process of learning the basics of GA.

Our approach differs from what the reader may have experienced in mass-

market textbooks, whose authors (because of length restrictions imposed by

publishers) tend to present the most efficient possible derivations possible for

their formulas. This approach can be intimidating for students, who are seldom

aware that those formulas were almost never found via these efficient routes.

Instead, someone in the past had an insight, then “followed her nose”, thus

arriving at a useful result that she (or others) later found a way to derive more

efficiently. Indeed, that process is more or less the same way in which good

problem-solvers (including students) often work. For that reason, our approach

here will have a similar “exploratory” spirit.

The examples that are usually presented when teaching constant-acceleration

motion concern the trajectories of projectiles. That is the language that will be

used here, but the analyses, equations, and solutions hold for any situations in

which the acceleration is constant.

Please note that we don’t use the terms “division of vectors” or “division of

bivectors”. Those terms (as well as equations that are written in terms of such

divisions) can be ambiguous in ways that may confuse the student. Therefore,

we will use the multiplicative inverses that those “divisions” actually represent.

2 Comments on the Scope of this Document,

and on the Section Entitled “Maximum Range”

in Hestenes’s New Foundations for Classical

Mechanics (NFCM)

Because Hestenes’s “Maximum Range” section also treats many other aspects

of constant-acceleration motion, the material in that section might, with benefit,

have been structured differently, by dividing it into two or three shorter sections,

with a stronger “thread” to indicate the goal toward which the work was

proceeding at each point. One of our purposes here is to provide such structure.

In the present document, we treat only the portions that deal with maximum

range per se. Specifically, we will cover as far as Hestenes’s Eq. 2.14, p. 130.

The remainder of the material in the “Maximum range” section will be covered

1“Though my book has been a continual best seller in the series for well over a decade, it is

still unknown to most teachers of mechanics in the U.S. To be suitable for the series, I had

to design it as a multipurpose book, including a general introduction to GA and material of

interest to researchers, as well as problem sets for students. It is not what I would have written

to be a mechanics textbook alone. Most students need judicious guidance by the instructor to

get through it.” [3]
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Figure 1: The open turquoise point is at the maximum range (rm) that can be

reached along the line of sight r̂ by a projectile whose initial velocity is vo. The

turquoise curve is the trajectory of such a projectile. The blue curves are the two

trajectories that hit a target at range r < rmax along r̂.

in a subsequent document.

3 What We Will See in this Document

� Discussion of Hestenes’s derivation and transformation of an equation for

the range r at which the projectile will cross a line of sight r̂ if launched

with an initial velocity vo in the direction v̂o.

� Use of the transformed equation to solve the following problems.

– With reference to Figs. 1 and 2:

* What is the launch direction v̂o that gives the greatest range r

along a given direction r̂ ?

* What is that maximum r?

* How does the maximum attainable r vary with r̂?

* What is the region in space in which targets may be reached by

projectiles that are launched at initial velocity vo?

– (A calculation not treated by Hestenes) For a given initial velocity

vo, what is the direction v̂o in which a projectile must be launched

in order to hit a target at distance r < rmax along the direction r̂?

– What are the flight times for the projectiles in each of the above

problems?

� “Sanity checks” of intermediate results.

� Validations of solutions via a GeoGebra construction.
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Figure 2: The black dashed curve is the boundary of the region of space in which

a target can be hit by a projectile whose initial velocity is vo. Open circles along

that curve show the most-distant targets that can be reached along their respective

lines of sight (dotted red lines). Turquoise curves show the trajectories that reach

of those most-distant points.

4 Ideas that We Will Use

� Hestenes’s Eq. (2.8) ([2], p.128):

r =
(g ∧ vo) (r̂ ∧ vo)

(g ∧ r̂)
2 =

(g ∧ vo) · (vo ∧ r̂)

∥g ∧ r̂∥2
.

� The product ŵaŵ evaluates to the reflection of a with respect to w.

Therefore, in the equation x̂ax̂ = b, the vector x is parallel to the vector

a+ b.

� Any vector u can be written as the sum of its components with respect to

a second vector â and the vector âi. Specifically, u = (u · â) â+[u · (âi)] âi
(Fig. 3). Note that u2 = (u · â)2 + [u · (âi)]2.

– Consequently, if we know the magnitude of u, and if we know the

value of u · a, then we can identify the two possible vectors “u”. We

start by noting that u · â = [u · a] /a, after which the two possible

values of u · (âi) are (Fig. 4)

u · (âi) = ±
√

u2 − (u · â)2. (1)

This idea is often useful when solving problems that involve circles

([4]) .

� Three GA identities:
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Figure 3: An example of expressing a vector u as the sum of its projections upon

two mutually perpendicular unit vectors: u = (u · â) â+ [u · (âi)] âi .

– 2 (a ∧ b) · (b ∧ c) = b2a · c− a · (bcb) ([2], p. 71, Exercise 4.8d)

– a ∧ b = [(ai) · b] i = -[a · (bi)] i ([5])

– ∥a ∧ b∥2 = a2b2 − (a · b)2. This identity can be derived as follows:

∥a ∧ b∥2 = (a ∧ b) (b ∧ a) (by definition)

= (ab− a · b) (ba− a · b)

= abba− (a · b) [ab+ ba]︸ ︷︷ ︸
=2a·b

+(a · b)2

= a2b2 − (a · b)2 .

.

5 The v̂o that Gives the Maximum Range (rmax)

Along a Given Direction r̂

5.1 Preliminary Observations

It would be interesting to know how Hestenes found the key ideas that he needed

in order to derive the results that he presents in this section. Here, we will

follow what appears to have been his thought process. First, we recall that in

the previous section of NFCM (i.e., on p. 128), Hestenes had derived his Eq.

2.8, which allowed him to calculate the distance r at which a projectile that was
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Figure 4: If we know the inner product of an unknown vector u with a known

vector a, then the two possible vectors “u” are u1 = (u · â) â+
[√

u2 − (u · â)2
]
âi

and u2 = (u · â) â−
[√

u2 − (u · â)2
]
âi.

launched with velocity vector v would cross the line of sight r̂:

r =
2(g ∧ vo) (r̂ ∧ vo)

(g ∧ r̂)
2 . (2)

Now, at the beginning of his “Maximum range” section, Hestenes notes that

although his Eq. 2.8 (which is our Eq. (2)) allowed him to calculate r for a given

v̂o, that equation is not suitable for understanding how r will be affected by

variations in v̂o. This is because an increase in ĝ ∧ v̂o will be accompanied by a

decrease in r̂∧ v̂o, so their product might either increase or decrease. Therefore,

Hestenes sought to transform his Eq. (2.8) into a version that would make clear

the functional relationship between r and v̂o.

5.2 Transforming Hestenes’s Eq. 2.8 (Our Eq. (2)) to Find

rmax and the v̂o Necessary to Reach It

Where might we find ideas for effecting the necessary transformation? Many

possibilities are found in the extensive collection of GA identities that Hestenes

presented earlier in NFCM. The identity that Hestenes chose is

2 (a ∧ b) · (b ∧ c) = b2a · c− a · (bcb) . (3)

The numerator of Eq. (2) will coincide with the left-hand side of this identity

under two conditions: (1) If it is true that (g ∧ vo) (r̂ ∧ vo) = (g ∧ vo) · (r̂ ∧ vo)

, and (2) if we change r̂ ∧ vo to - (vo ∧ r̂). Fortunately, it is indeed true that
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(g ∧ vo) (r̂ ∧ vo) = (g ∧ vo) ·(r̂ ∧ vo) because vectors g, vo, and r̂ are all parallel

(“coplanar”). Making use of this fact, and that (g ∧ r̂)
2
= -∥g ∧ r̂∥2, Hestenes

took the preliminary step of putting Eq. (2) into the form that is necessary for

transforming it via the identity in Eq. (3). That is, he rewrote Eq. (2) as

r =
2(g ∧ vo) (r̂ ∧ vo)

(g ∧ r̂)
2 =

2(g ∧ vo) · (vo ∧ r̂)

∥g ∧ r̂∥2
. (4)

Now, applying Eq. (3),

r =
2(g ∧ vo) · (vo ∧ r̂)

∥g ∧ r̂∥2

=
v20 [(gĝ) · r̂]− (gĝ) · [(vov̂0) r̂] (vov̂0)

∥ (gĝ) ∧ r̂∥2

=
[

v2o
g∥ĝ ∧ r̂∥2

]
[ĝ · r̂− ĝ · (v̂0r̂v̂0)] . (5)

To identify the v̂o that gives the maximum r, Hestenes needed only to note that

because r̂, v0, ĝ, and g are all constant, the value of r is determined exclusively

by the value of ĝ · r̂. Furthermore, the product v̂0r̂v̂0 evaluates to a unit vector,

so the possible values of ĝ · (v̂0r̂v̂0) are -1 ≤ ĝ · (v̂0r̂v̂0) ≤ 1. Of these, “-1” is

the one that maximizes r.

At this, point we could plunge in and calculate the (supposedly) maximum

value of r by simply substituting -1 for ĝ · (v̂0r̂v̂0) in Eq. (5). But before we do

so, it is prudent to find out whether “ĝ · (v̂0r̂v̂0) = -1” is physically possible.

What is the specific v̂o that gives

rmax? Because v̂o bisects the

angle between r̂ and -ĝ, v̂o is

parallel to the vector (r̂+ -ĝ).

Also, v̂o is a unit vector, so

v̂o = ± (r̂− ĝ) /∥r̂−ĝ∥. For the
problem that we are treating here,

only the “+” solution is valid.

(Why is v̂o = -(r̂− ĝ) /∥r̂− ĝ∥
not a solution to our problem?)

To find out, we begin by noting that in order for ĝ · (v̂0r̂v̂0) to equal -1, it

is necessary that v̂0r̂v̂0 = -ĝ. From the Appendix, we can infer that v̂o must

bisect the angle between r̂ and -ĝ. That is, it must bisect the angle between r̂

and “vertically upward” (Fig. 5). Clearly, this is indeed physically possible. So,

yes, we are indeed justified in substituting -1 for ĝ · (v̂0r̂v̂0) in Eq. (5):

r =
[

v2o
g∥ĝ ∧ r̂∥2

]
[ĝ · r̂− ĝ · (v̂0r̂v̂0)] ;

∴ rmax =
[

v2o
g∥ĝ ∧ r̂∥2

]
[ĝ · r̂− (-1)]

=
[

v2o
g∥ĝ ∧ r̂∥2

]
[1 + ĝ · r̂] . (6)

We’ve now answered our first two questions, which were “What is the v̂o

that gives the greatest range r along a given direction r̂?, and “What is rmax?”

But we can do a bit more by noting that ∥ĝ∧ r̂∥2 is the square of the magnitude

of bivector. Therefore, we transform Eq. (6) by making use of the very useful

GA identity that

∥a ∧ b∥2 = a2b2 − (a · b)2 .
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Figure 5: The v̂o that gives the maximum range along r̂ bisects the angle between

r̂ and “vertically upward” (-ĝ).

Specifically,

rmax =
[

v2o
g∥ĝ ∧ r̂∥2

]
[1 + ĝ · r̂]

=

[
v2o

g
[
(ĝ)

2
(r̂)

2 − (ĝ · r̂)2
]
]
[1 + ĝ · r̂]

=
(
v2o
g

)[
1 + ĝ · r̂

1− (ĝ · r̂)2

]
=

(
v2o
g

) [
1

1− ĝ · r̂

]
. (7)

Hestenes arrives at our Eq. (7)

(his Eq. 2.12) by substituting

(r̂− ĝ) /∥r̂− ĝ∥ for v̂o in his Eq.

2.8 (our Eq. (4)) .

Time for a “sanity check”. Can we test Eq. (7) by comparing its predictions

to known cases? For example, what is the maximum range for a projectile that

is launched vertically upward? In this case, ĝ · r̂ = -1, so Eq. gives rmax =
v2o
2g
.

By comparison, we know from introductory physics that at the projectile’s

maximum height (i.e., its rmax), its velocity is zero. Thus, from the familiar

formula v2 − v2o = 2as, 02 − v2o = 2 (-g) rmax, from which rmax =
v2o
2g
. ✓

What about rmax for a horizontal line of sight? In this case, ĝ · r̂ = 0, so Eq.

gives rmax =
v2o
g
. By comparison, the conventional treatment of this case uses the

equations x = vot cos θ and y = vot sin θ+
1

2
gt2, in which θ is the launch angle, x

is the horizontal distance of the projectile from the launch point at time t after

launch, and y is the vertical distance. When the projectile strikes the ground,

y = 0, giving t (at that instant)=
2vo sin θ

g
. Substituting that expression for t

in the ‘x” equation, x = vo cos θ
2vo sin θ

g
, which simplifies to x =

v2o
g
sin 2θ. The

maximum value if x is for sin 2θ = 1 (which occurs when θ = π/4). Thus,rmax

9



Figure 6: (This is Fig. 2, reproduced here for the reader’s convenience.)The black

dashed curve is a parabola. It is the boundary of the region of space in which a

target can be hit by a projectile whose initial velocity is vo. Open circles along that

curve show the furthest targets that can be reached along their respective lines of

sight (dotted red lines). Turquoise curves show the trajectories that reach those

most-distant points.

for a horizontal line of sight is indeed
v2o
g
. ✓

Because our “sanity checks” have shown that Eq. (7) gives correct values of

rmax for both extremes of the possible directions r̂ (i.e., for the horizontal and

vertical lines of sight), we’ll proceed to answer our third question by interpreting

that equation geometrically.

5.3 Identifying the Region in Space in which Targets May

be Reached by Projectiles that are Launched at Initial

Velocity vo

In Section 2-6 (“Analytic Geometry”) of NFCM, Hestenes showed that his Eq.

2.12 (our Eq. (7)) is the equation of a paraboloid of revolution. Therefore, the

black curve in Fig. 2 is a parabola.

No target that lies outside that paraboloid can be hit by a projectile whose

initial speed is vo. But does that statement mean that every target within that

paraboloid can be hit? If so, what is the launch direction needed to hit for a

target at a given r < rmax along a given line of sight r̂?

We will address that question later (in Section 6). But first, we will finish

our discussion of Hestenes’s treatment of “maximum range”, by deriving an

equation for the time of flight to reach a given target.

5.4 Time of Flight t for the Projectile to Reach rmax

Here, again, Hestenes might have helped students by indicating where he was

heading with each step. First, why does he begin by deriving his Eq. 2.13
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(NFCM, p. 130),
1

2
t2 = (r ∧ vo) (g ∧ vo)

−1

when he’d already presented a perfectly adequate (and arguably better) equation Note that a simple equation for

t can be derived from the vector

equation

r̂ = vt+
1

2
gt2,

by taking the outer product of

both sides with ĝ. An equivalent

equation can be derived by tak-

ing the dot product of both sides

with ĝî: t = [r · (ĝi)] / [v · (ĝi)].
That is, that t is equal to the hor-

izontal component of r divided

by the horizontal component of

vo.

for t before beginning to treat “maximum range”? That equation was (NFCM,

p. 128, Eq. 2.6)

1

2
t (g ∧ r) = r ∧ vo

∴ t = 2 (r ∧ vo) (g ∧ r)
−1

.

As we shall soon see, Hestenes’ purpose in deriving his Eq. 2.13 was not to use

that equation for calculating t; instead, his intention was to obtain an expression

for t that could be transformed into one that would be especially convenient for

the special case of r = rmax. Let’s see how he did it. To obtain his Eq. 2.1, he

eliminated the product g ∧ r between his Eqs. 2.6 and 2.7:

Eq. 2.6 : t = 2 (r ∧ vo) (g ∧ r)
−1

Eq. 2.7 : g ∧ r = tg ∧ vo

∴ t = 2 (r ∧ vo)
[

tvo ∧ g

∥tg ∧ vo∥2

]
︸ ︷︷ ︸
=(g∧r)−1

, and

t2 = 2 (r ∧ vo)
[

vo ∧ g

∥g ∧ vo∥2

]
︸ ︷︷ ︸
=(g∧vo)

−1

.

Proceeding,

t2 = 2 (r ∧ vo) (g ∧ vo)
−1

= 2rvo (r̂ ∧ v̂o) (g ∧ vo)
−1

= 2rvo (r̂ ∧ v̂o)
[

vog (v̂o ∧ ĝ)

∥vog (v̂o ∧ ĝ) ∥2

]
=

2r

g
(r̂ ∧ v̂o) (ĝ ∧ v̂o)

−1
. (8)

Now we can see why Hestenes derived his Eq. 2.13: he’ll make a clever

substitution for the factor r̂ ∧ v̂o in that equation. What substitution might

that be? Recall that in the process of deriving his equation for the v̂o that gives

rmax, he had shown that

-ĝ · (v̂or̂v̂o) = 1

∴ -ĝ = v̂or̂v̂o

∴ -ĝv̂o = v̂or̂,

from which (again, for the v̂o that gives the maximum range),

r̂ ∧ v̂o = ĝ ∧ v̂o.

Making that substitution for r̂ ∧ v̂o in our Eq. (8),

t2 =
2rmax

g
(ĝ ∧ v̂o)︸ ︷︷ ︸
=r̂∧v̂o

(ĝ ∧ v̂o)
−1

=
2rmax

g
.
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Now, Hestenes makes another substitution: in his Eq. 2.12 (our Eq. (7)),

Hestenes showed that

rmax =
(
v2o
g

) [
1

1− ĝ · r̂

]
.

Thus we arrive at Hestenes’s Eq. 2.14 (NFCM, p. 130):

t2 for rmax along the direction r̂ =
(
2v2o
g2

) [
1

1− ĝ · r̂

]
, (9)

which is quite convenient for the case of r = rmax.

The reader is encouraged to “sanity-check” this result, using (for example)

r̂ = -ĝ and r̂ = 0.

6 The v̂0 for a Given r < rmax along a Given

Direction r̂ (Fig. 1)

Where might we get an idea for solving this problem, which Hestenes does not

appear to have treated in NFCM ? A reasonable candidate for a starting point

is Eq. (5), —after all, that equation led us directly enough to an equation for

the v̂o that gives rmax. Here’s Eq. (5) again:

r =
[

v2o
g∥ĝ ∧ r̂∥2

]
[ĝ · r̂− ĝ · (v̂0r̂v̂0)] (5, revisited)

Unfortunately, the v̂o that we need to find is so thoroughly “buried” in

this equation that we’re unlikely to find a direct way to solve for it. So, let’s

think about that equation in a different way, bearing in mind the ideas that we

reviewed in Section 4. One of those ideas was that v̂0r̂v̂0 evaluates to a unit

vector. Do we know anything about that vector? Or can we identify anything

about it that might prove useful?

Yes, but before we list what we know about that vector, let’s represent it

via a single, convenient symbol. We’ll use “ŵ:

ŵ = v̂0r̂v̂0.

We’ll also write that equation “backwards” just in case that version might be

more suggestive as we look for an idea:

v̂0r̂v̂0 = ŵ.

Now, let’s list what we know about ŵ. First, we know that ŵ is the reflection

of r̂ with respect to the v̂o that we wish to find. To proceed in our search for an

idea, we’ll substitute ŵ for v̂0r̂v̂0 in Eq. (5):

r =
[

v2o
g∥ĝ ∧ r̂∥2

]
[ĝ · r̂− ĝ · ŵ] . (10)
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Upon examining that equation, one possibility that comes to mind is (as an

intermediate step) to find r̂− ŵ by rewriting the previous equation as

r =
[

v2o
g∥ĝ ∧ r̂∥2

]
[ĝ · (r̂− ŵ)] ,

so that we can find the value of ĝ · (r̂− ŵ), after which we then use another

idea from Section 4, and write r̂− ŵ as

Note that there are two possible

vectors “r̂ − ŵ”, and therefore

two ŵ’s.

r̂− ŵ = [ĝ · (r̂− ŵ)] ĝ ±
{√

∥r̂− ŵ∥2 − [ĝ · (r̂− ŵ)]
2

}
ĝi.

Unfortunately, we can’t make use of that idea because we don’t know ∥r̂− ŵ∥.
But we can indeed use that idea if we solve Eq. (10) for ŵ · ĝ, then write the

two ŵ’s as

ŵ1 = (ŵ · ĝ) ĝ +

{√
(ŵ)

2 − (ŵ · ĝ)2
}
ĝi

= (ŵ · ĝ) ĝ +

{√
1− (ŵ · ĝ)2

}
ĝi ;

ŵ2 = (ŵ · ĝ) ĝ −
{√

1− (ŵ · ĝ)2
}
ĝi. (11)

Having identified a strategy that’s workable (even if not particularly ele-

gant!), let’s proceed. First, we solve Eq. (10) for ŵ · ĝ:

ŵ · ĝ =
1

v20

[
v20ĝ · r̂− rg∥ĝ ∧ r̂∥2

]
=

1

v20rg

[
v20r · g − ∥r ∧ g∥2

]
. (12)

Next, we find

√
1− (ŵ · ĝ)2 . We’ll provide lots of details for the reader’s

r2g2 − (g · r)2 = ∥g ∧ r∥2.

convenience:√
1− (ŵ · ĝ)2 =

√
1−

{
1

v20rg
[v20r · g − ∥r ∧ g∥2]

}2

=
1

v20rg

√
v4or

2g2 − v4o (r · g)
2
+ 2v2or · g∥r ∧ g∥2 − ∥r ∧ g∥4

=
1

v20rg

√
v4o

[
r2g2 − (r · g)2

]
+ 2v2or · g∥r ∧ g∥2 − ∥r ∧ g∥4

=
1

v20rg

√
v4o∥r ∧ g∥2 + 2v2og · r∥g ∧ r∥2 − ∥r ∧ g∥4

=
1

v20rg

√
∥r ∧ g∥2 {v4o + 2v2or · g − ∥r ∧ g∥2}

=
1

v20rg

√
∥r ∧ g∥2

{
v4o + 2v2or · g −

[
r2g2 − (r · g)2

]}
=

1

v20rg

√
∥r ∧ g∥2

{
v4o + 2v2og · r+ (r · g)2 − r2g2

}
=

1

v20rg

√
∥r ∧ g∥2

{
[v2o + r · g]2 − r2g2

}
(13)
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Thus, the two ŵ’s, as defined in Eq. (11), are

ŵ1 =

{
1

v20rg

[
v20r · g − ∥r ∧ g∥2

]}
ĝ

+

{
1

v20rg

√
∥r ∧ g∥2

{
[v2o + r · g]2 − r2g2

}}
(ĝi) ;

ŵ2 =

{
1

v20rg

[
v20r · g − ∥r ∧ g∥2

]}
ĝ

−

{
1

v20rg

√
∥r ∧ g∥2

{
[v2o + r · g]2 − r2g2

}}
(ĝi) . (14)

To find the v̂o for each ŵ, we use the method that is presented in the

Appendix. We’ll use the notation (v̂o,i) to represent the v̂o that corresponds to

vector ŵi.

(v̂o,i) (r̂) (v̂o,i) = ŵi → (v̂o,i) =
ŵi + r̂

∥ŵi + r̂∥
. (15)

Interestingly, v̂o,1 and v̂o,2 are symmetric to each other with respect to the

v̂o for maximum range (Fig. 7). The proof of that relationship is a corollary

of Hestenes’s Eq. 2.22 (NFCM, p. 132), which is derived in a later part of the

“Maximum Range” section that falls outside the scope of the present document.

14



Figure 7: Hestenes demonstrates (NFCM, p. 132) that the angle between v̂0,1

and r̂ is equal to the angle between v̂0,2 and -ĝ. Because v̂0 for rmax bisects the

angle between r̂ and -ĝ, v̂0,1 and v̂0,2 are symmetric to each other with respect to

the v̂0 for rmax.

The times of flight for each (v̂o,i) can be found via the equation t =

[r · (ĝi)] / [v · (ĝi)]. (See the margin note on p. 11).

7 The GeoGebra Construction for Testing the

Formulas

Fig. 8 shows the interactive GeoGebra construction ([6]) for verifying the

formulas that have been derived in this document.

15



Figure 8: Screenshot of the interactive GeoGebra construction for verifying the

formulas that have been derived in this document.
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A Regarding the Equation x̂ux̂ = z

A.1 Proof that if ŵaŵ = b, then ∥a∥ = ∥b∥

ŵaŵ = b

(ŵaŵ)
2
= b2

(ŵaŵ) (ŵaŵ) = b2

ŵa (ŵŵ)aŵ = b2

ŵa (1)aŵ = b2

ŵaaŵ = b2

ŵa2ŵ = b2

a2ŵŵ = b2

a2 = b2

∴ ∥a∥ = ∥b∥.

A.2 Proof that if ûaû = b, then û = ± a+ b

∥a+ b∥

ûaû = b

ûaûû = bû

ûa = bû

û · a+ û ∧ a = b̂ · u+ b̂ ∧ u

∴ û ∧ a = b̂ ∧ u

û ∧ a− b̂ ∧ u = 0

û ∧ a+ û ∧ b = 0

û ∧ (a+ b) = 0

∴ û ∥ (a+ b) → û = k (a+ b) ;

û2 = [k (a+ b)]
2
;

1 = k2∥a+ b∥2;

k = ± 1

∥a+ b∥
;

û = ± a+ b

∥a+ b∥
.
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