Abstract: A Collatz sequence is a sequence of numbers generated by starting with a positive integer and repeatedly applying two rules: • If the number is even, divide it by two • If the number is odd, multiply it by 3 and add 1 let Collatz Sequence (n) = S(n), Loop of Collatz Sequence (n) = lS(n), let r = number of elements of lS(n), & $x, y, z, t, r, k, h, g, m, n \in N_+$ $[n even \rightarrow \frac{n}{2}, or n odd \rightarrow (3n + 1)] \Leftrightarrow S(n) = \{\frac{n}{2}or (3n + 1), ..., 4, 2, 1\} \Leftrightarrow lS(n) = \{4, 2, 1\}$ *Proof*

A) let $lS(n) = \{x\} \forall n \in N_+$,

Taha's Sketch of lS(n) to find equivalent expression (Cloud) to x

Cloud	Cloud = x	x
$\frac{x}{2}$	$\frac{x}{2} = x \Rightarrow x = 0 \notin lS(n)$	
3x + 1	$3x + 1 = x \Rightarrow x = -\frac{1}{2} \notin lS(n)$	

 $\therefore lS(\mathbf{n}) \neq \{x\} \, \forall n \in N_+$

B) let $lS(n) = \{x, y\} \forall n \in N_+$

Taha's Sketch of lS(n) to find equivalent expressions (Cloud) to x

Cloud	Cloud = x	x	У
$\frac{x}{4}$	$\frac{x}{4} = x \Rightarrow x = 0 \notin lS(n)$		
$\frac{3x+2}{2}$	$\frac{3x+2}{2} = x \Rightarrow 3x + 2 = 2x \Rightarrow x = -2 \notin lS(n)$		
$\frac{3x+1}{2}$	$\frac{3x+1}{2} = x \Rightarrow x = -1 \notin lS(n)$		

 $\therefore lS(n) \neq \{x,y\} \, \forall n \in N_+$

C) let $lS(n) = \{x, y, z\} \forall n \in N_+$

Taha's Sketch of lS(n) to find equivalent expressions (Cloud) to x

Cloud	Solve equation: $Cloud = x$	x	у	Ζ
$\frac{x}{8}$	$\frac{x}{8} = x \Rightarrow x = 0 \notin lS(n)$			
$\frac{3x+4}{4}$	$\frac{3x+4}{4} = x \Rightarrow x = 4 \in lS(n)$	4	$\frac{x}{2} = 2$	$\frac{x}{4} = 1$
$\frac{3x+2}{4}$	$\frac{3x+2}{4} = x \Rightarrow x = 2 \in lS(n)$	2	$\frac{x}{2} = 1$	$\frac{3x+2}{2} = 4$
$\frac{3x+1}{4}$	$\frac{3x+1}{4} = x \Rightarrow x = 1 \in lS(n)$	1	3x + 1 =3(1)+1=4	$\frac{3x+1}{2} = 2$
$\frac{9x+5}{2}$	$\frac{9x+5}{2} = x \Rightarrow x = -\frac{5}{7} \notin lS(n)$			

 $\therefore lS(n) = \{x, y, z\} = \{4, 2, 1\}, \forall n \in N_+$

 $D) \ let \ lS(n) = \{x, y, z, t\} \ \forall n \in N_+$

Cloud	Solve equation: $Cloud = x$	x	у	Ζ	t
$\frac{x}{16}$	$\frac{x}{16} = x \Rightarrow x = 0 \notin lS(n)$				
$\frac{3x+8}{8}$	$\frac{3x+8}{8} = x \Rightarrow x \notin lS(n)$				
$\frac{3x+4}{8}$	$\frac{3x+4}{8} = x \Rightarrow x \notin lS(n)$				
$\frac{3x+2}{8}$	$\frac{3x+2}{8} = x \Rightarrow x \notin lS(n)$				
$\frac{3x+1}{8}$	$\frac{3x+1}{8} = x \Rightarrow x \notin lS(n)$				
$\frac{9x+10}{4}$	$\frac{9x+10}{4} = x \Rightarrow x \notin lS(n)$				
$\frac{9x+7}{4}$	$\frac{9x+7}{4} = x \Rightarrow x \notin lS(n)$				
$\frac{9x+5}{4}$	$\frac{9x+5}{4} = x \Rightarrow x \notin lS(n)$				

 $\therefore lS(n) \neq \{x, y, z, t\} \, \forall n \in N_+$

r is number of elements of lS(n), & let $x \in lS(n)$

r = 2	<mark>→</mark>	\rightarrow	<mark>→</mark>
	$\frac{x}{4}$	$\frac{3x+2}{2}$	$\frac{3x+1}{2}$
	4	2	2
	=e or odd	=e	=e or odd
	<mark>→</mark>	→	\rightarrow

	<mark>→</mark>	<mark>→</mark>	<mark>→</mark>	\rightarrow	\rightarrow
<i>r</i> = 3	<u>x</u>	3x + 4	3x + 2	3x + 1	9 <i>x</i> + 5
	8	4	4	4	2
	=e or odd	=e	=e or odd	=e or odd	=e
	→	\rightarrow	\rightarrow	\rightarrow	→

r = 4	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
	$\frac{x}{16}$	$\frac{3x+8}{8}$	$\frac{3x+4}{8}$	$\frac{3x+2}{8}$	$\frac{3x+1}{8}$	$\frac{9x+10}{4}$
	=e or	=e	=e or odd	=e or odd	=e or odd	=e
	odd	\rightarrow	\rightarrow	\rightarrow	<mark>→</mark>	→
	\rightarrow					

r = 5	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	<mark>↑</mark>
	<u>x</u>	3x + 16	3x + 8	3x + 4	3x + 2	3x + 1
	32	16	16	16	16	16
	=e or odd	=e or odd	=e or odd	=e or odd	=e or odd	=e or odd
	*	\$!	@	#	%
\rightarrow	\rightarrow	<mark>→</mark>	→	<mark>→</mark>	\rightarrow	\rightarrow
9x + 20	9x + 14	9x + 11	9x + 10	9x + 7	9 <i>x</i> + 5	27x + 19
8	8	8	8	8	8	4
=e	=e	=e	=e or odd	=e or odd	=e or odd	=e
@@	&	(({ {	[[**	***

<i>r</i> = 6	*	*	\$!	@	#	%
	$\frac{x}{64}$	$\frac{3x+32}{32}$	$\frac{3x+16}{32}$	$\frac{3x+8}{32}$	$\frac{3x+4}{32}$	$\frac{3x+2}{32}$	$\frac{9x+19}{16}$
%	\$	{{	@	#	%	\$!
$\frac{3x+1}{32}$	$\frac{9x+64}{16}$	$\frac{27x + 38}{8}$	$\frac{9x + 28}{16}$	$\frac{9x+22}{16}$	$\frac{3x+1}{32}$	$\frac{9x+64}{16}$	$\frac{9x+40}{16}$
(0	&	(({ {]]	[[**
<u>9x</u>	+ 20 16	$\frac{9x + 14}{16}$	$\frac{9x+11}{16}$	$\frac{9x+10}{16}$	$\frac{9x + 7}{16}$	$\frac{27x + 29}{16}$	$\frac{9x+5}{16}$
:	**	***					
<u>27</u> x	+ 23 8	$\frac{27x + 19}{8}$					

r = 1 = 3(0) + 1	$x = \frac{3^0 x}{2^{1-0}} \Rightarrow x = 0 \notin N_+, 0 \notin lS(n) \Rightarrow lS(n) \neq \{x\}, \ \forall n \in N_+$
k = 0	
r = 2 = 3(0) + 2	$x = \frac{3^0 x}{2^{2-0}} \Rightarrow x = \frac{1}{2} \notin N_+ \Rightarrow x, y \notin lS(n) \Rightarrow lS(n) \neq \{x, y\}, \ \forall n \in N_+$
k = 0	2 3
r = 3 = 3(1)	$x = \frac{3^{1}x + 3^{0}2^{0}}{2^{3-1}} \Rightarrow x = 1, y = 4, z = 2 \Rightarrow lS(n) = \{4, 2, 1\}, \forall n \in N_{+}$
k = 1	
r = 4 = 3(1) + 1	$x = \frac{3^{1}x + 3^{0}2^{0}}{3^{1}x + 3^{0}x} \Rightarrow x \notin N_{1} \Rightarrow IS(n) = \emptyset, \forall n \in N_{1}$
k = 1	2^{4-1} 2^{4-1}
r = 5 = 3(1) + 2	$x = \frac{3^{1}x + 3^{0}2^{0}}{2^{5-1}} \Rightarrow x \notin N_{+} \Rightarrow lS(n) = \emptyset, \forall n \in N_{+}$
k = 1	2
r = 6 = 3(2)	$x = \frac{3^2 x + 3(2^0) + 3^0 2^2}{2^{6-2}} \Rightarrow x = 1, y = 4, z = 2 \Rightarrow lS(n) = \{1, 4, 2\}, \forall n \in N_+$
k = 2	
r = 7 = 3(2) + 1	$x = \frac{3^2 x + 3(2^0) + 3^0 2^2}{3^2} \Rightarrow x = \frac{7}{2} \notin N_1 \Rightarrow IS(n) = \emptyset \ \forall n \in N_2$
k = 2	
r = 9 = 3(3)	$x = \frac{3^3 x + 3^2 (2^0) + 3^1 (2^2) + 3^0 2^4}{2^{9-3}} \Rightarrow x = 1, y = 4, z = 2 \Rightarrow lS(n) = \{1, 4, 2\},$
<i>k</i> = 3	$\forall n \in N_{\perp}$
	· · · · ·
r = 12 = 3(4)	$x = \frac{3^4x + 3^3(2^0) + 3^2(2^2) + 3(2^4) + 3^02^6}{3^3} \Rightarrow x = 1 \Rightarrow$
k = 4	2^{12-4}
	$lS(n) = \{1,4,2\}, \forall n \in N_+$

Taha's Table to find lS(n) Pattern

Part A: *i*) *if* r = 3(k), $is x = \frac{3^{k}x + 3^{k-1}(2^{0}) + 3^{k-2}(2^{2}) + 3^{k-3}(2^{4}) + \dots + 3^{k-k+1}(2^{2(k-2)}) + (3^{0})2^{2(k-1)}}{2^{r-k}} = 1?$ Proof: $\therefore x = \frac{3^{k}x + 3^{k-1}(2^{0}) + 3^{k-2}(2^{2}) + 3^{k-3}(2^{4}) + \dots + 3^{k-k+1}(2^{2(k-2)}) + (3^{0})2^{2(k-1)}}{2^{3k-k}} \Rightarrow$ $(2^{2k} - 3^k)x = 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + (3^0)2^{2(k-1)} \dots eq1.$ let k = 4 $\therefore (2^{2k} - 3^k) = (2^8 - 3^4) = 175 \dots (Coefficient of x in LHS of eq1)$ $3^{3}(2^{0}) + 3^{2}(2^{2}) + 3^{1}(2^{4}) + 3^{0}(2^{6}) = 175 \dots (RHS \text{ of } eq1)$ $\therefore 175x = 175 \Rightarrow x = 1 \Rightarrow lS(n) = \{4,2,1\}, \forall n \in N_+ \text{ when } r = 3(k)$ *ii*) *if* r = 3(k + 1), $is x = \frac{3^{k+1}x + 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + (3^0)2^{2k}}{2^{r-(k+1)}} = 1?$ **Proof**: $x = \frac{3^{k+1}x + 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + (3^0)2^{2k}}{2^{3(k+1)-(k+1)}} \Rightarrow$ $(2^{2k+2} - 3^{k+1})x = 3^k(2^0) + 3^{k-1}(2^2) + 3^{k-2}(2^4) + \dots + 3^{k-k+1}(2^{2k-2}) + (3^0)2^{2k} \dots eq2.$ let k = 4 $\therefore (2^{2k+2} - 3^{k+1}) = (2^{10} - 3^5) = 781 \dots (Coefficient of x in LHS of eq2)$ $3^{4}(2^{0}) + 3^{3}(2^{2}) + 3^{2}(2^{4}) + 3^{1}(2^{6}) + 3^{0}(2^{8}) = 781 \dots (RHS \text{ of } eq2)$ $\therefore 781x = 781 \Rightarrow x = 1 \Rightarrow lS(n) = \{4, 2, 1\}, \forall n \in N_+ when r = 3(k+1)$ by $i \& ii \Rightarrow lS(n) = \{4,2,1\}, \forall n \in N_+ \text{ when } r \text{ is divisible by } 3.$

Part B:
i) if
$$r = 3(k) + 1$$
, eq1 below:
is $x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 3^0 2^{2(k-1)}}{2^{r-k}} \notin N_+$?
Proof:
 $x = \frac{3^k x + 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 3^0 2^{2(k-1)}}{2^{(3k+1)-k}}$
 $(2^{2k+1} - 3^k)x = 3^{k-1}(2^0) + 3^{k-2}(2^2) + 3^{k-3}(2^4) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 3^0 2^{2(k-1)} \dots eq1$
let $k = 4$
 $\therefore (2^{2k+1} - 3^k) = (2^9 - 3^4) = 431... (Coefficient of x in LHS of eq1)$
RHS of eq1: $2^3(2^0) + 3^2(2^2) + 3^1(2^4) + 3^0(2^6) = 156$
 $\therefore 431x = 156 \Rightarrow x \notin N_+ \Rightarrow \nexists lS(n), \forall n \in N_+ when r = 3(k) + 1$

ii) if
$$r = 3(k) + 2$$
, is eq2 below:

$$x = \frac{3^{k}x + 3^{k-1}(2^{0}) + 3^{k-2}(2^{2}) + 3^{k-3}(2^{4}) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 3^{0}2^{2(k-1)}}{2^{r-k}} \notin N_{+}?$$
Proof:

$$x = \frac{3^{k}x + 3^{k-1}(2^{0}) + 3^{k-2}(2^{2}) + 3^{k-3}(2^{4}) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 3^{0}2^{2(k-1)}}{2^{(3k+2)-k}}$$

$$(2^{2k+2} - 3^{k})x = 3^{k-1}(2^{0}) + 3^{k-2}(2^{2}) + 3^{k-3}(2^{4}) + \dots + 3^{k-k+1}(2^{2(k-2)}) + 3^{0}2^{2(k-1)} \dots eq2$$

$$let k = 4$$

$$\therefore (2^{2k+2} - 3^{k}) = (2^{10} - 3^{4}) = 943 \dots (Coefficient of x in LHS of eq2)$$

$$RHS of eq2: 2^{3}(2^{0}) + 3^{2}(2^{2}) + 3^{1}(2^{4}) + 3^{0}(2^{6})$$

$$\therefore 943x = 156 \Rightarrow x \notin N_{+} \Rightarrow \nexists lS(n), \forall n \in N_{+} when r = 3(k) + 2$$

$$by i \ⅈ: \nexists lS(n), \forall n \in N_{+} r = 3(k) + h, h \in \{1, 2\}$$

$$\therefore Final Conclusion by parts A \& B \Rightarrow lS(n) = \{1, 2, 4\}, \forall n \in N_{+}$$

Taha's Graph to find S(n) and lS(n)