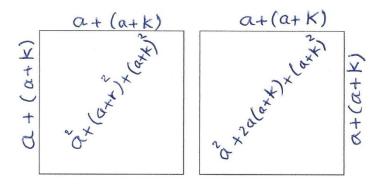
Euler Perfect Box (Final)

Proof

Taha's Complete Square Fact (TCSF)

is

The Only Tool to Solve Euler Perfect Box let $a^2+(a+r)^2+(a+k)^2 \in N_S \Rightarrow [a+(a+k)]^2$ $a^2+2a(a+k)+(a+k)^2 \in N_S \Rightarrow [a+(a+k)]^2$



: The above sequares have same sides

 $Author: Taha\ M. Muhammad --- USA\ Kurd\ Iraq$

Abstract

$$[a, b, c, d, e, f, g \in N_+ \Leftrightarrow Euler\ Perfect\ Box] \dots (EPB)$$

let a, b, c, d, e, f, r, $k \in N_+$, & let $N_{Square} = N_S$.

Is $g \in N_+$?

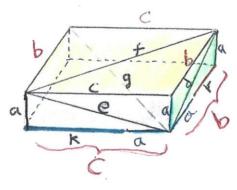
A)

Let a < b < c, & $[(a < r < k), Or (a > r, and r < k)] \Rightarrow a \neq r \neq k$

& let
$$b = a + r$$
, $c = a + k$

 $g^2 = d^2 + c^2$, ... Pythagorean theorem

& $d^2 = a^2 + b^2$, ... Pythagorean theorem



$$\therefore g^2 = a^2 + b^2 + c^2 \dots by$$
 substitution of d^2

$$\therefore g^2 = a^2 + (a+r)^2 + (a+k)^2 \dots by substitution of b, \& c$$

let
$$g^2 = [a^2 + (a+r)^2 + (a+k)^2] \in N_S$$

$$: [a^2 + 2a(a+k) + (a+k)^2] \in N_S$$

$$\therefore (a+r)^2 = 2a(a+k) \iff a = r = k \dots (TCSF).$$

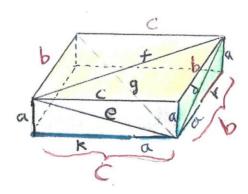
Contradiction to $a \neq r \neq k$

$$(a+r)^2 \neq 2(a+k) \text{ for all } a,r,k \in [N_+/\{a=r=k\}].$$

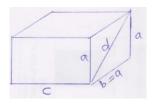
$$\therefore g^2 = [a^2 + (a+r)^2 + (a+k)^2] \notin N_S \Rightarrow g \notin N_+$$

 \Rightarrow The Euler Perfect Box does not exist... (EPB)

B) a < b < c, let b = a + r, & a = r



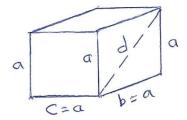
C) if a = b < c



$$\therefore d^2 = a^2 + b^2$$

 \Rightarrow The Euler Perfect Box does not exist ... (EPB)

D) if a = b = c



$$: d^2 = a^2 + b^2$$

$$d^2 = a^2 + a^2 = 2a^2$$

$$\therefore d^2 = 2a^2 \implies d = a\sqrt{2} \implies d \notin \mathbb{N}_+$$

 \Rightarrow The Euler Perfect Box does not exist... (EPB)