High Energy Particle Physics

Previous months:
2007 - 0702(7) - 0703(6) - 0704(2) - 0706(4) - 0708(1) - 0710(1) - 0712(1)
2008 - 0802(2) - 0803(1) - 0809(1) - 0810(1) - 0811(1) - 0812(1)
2009 - 0904(1) - 0907(8) - 0908(5) - 0909(4) - 0910(7) - 0911(10) - 0912(5)
2010 - 1001(4) - 1002(3) - 1003(13) - 1004(4) - 1005(4) - 1006(2) - 1007(3) - 1008(7) - 1009(6) - 1010(5) - 1011(5) - 1012(8)
2011 - 1102(5) - 1103(15) - 1104(4) - 1105(3) - 1106(2) - 1107(3) - 1108(6) - 1109(8) - 1110(9) - 1111(12) - 1112(5)
2012 - 1201(13) - 1202(6) - 1203(7) - 1204(5) - 1205(4) - 1206(8) - 1207(6) - 1208(14) - 1209(4) - 1210(13) - 1211(6) - 1212(14)
2013 - 1301(12) - 1302(15) - 1303(7) - 1304(7) - 1305(9) - 1306(11) - 1307(11) - 1308(11) - 1309(16) - 1310(12) - 1311(7) - 1312(13)
2014 - 1401(13) - 1402(18) - 1403(10) - 1404(20) - 1405(15) - 1406(14) - 1407(5) - 1408(15) - 1409(5) - 1410(12) - 1411(11) - 1412(15)
2015 - 1501(7) - 1502(12) - 1503(13) - 1504(11) - 1505(21) - 1506(5) - 1507(24) - 1508(21) - 1509(11) - 1510(5) - 1511(20) - 1512(5)
2016 - 1601(17) - 1602(15) - 1603(13) - 1604(13) - 1605(11) - 1606(17) - 1607(17) - 1608(21) - 1609(20) - 1610(24) - 1611(18) - 1612(15)
2017 - 1701(22) - 1702(10) - 1703(13) - 1704(21) - 1705(18) - 1706(16) - 1707(15) - 1708(18) - 1709(18) - 1710(13) - 1711(1)

Recent submissions

Any replacements are listed further down

[1078] viXra:1711.0337 [pdf] submitted on 2017-11-16 12:53:45

“Quantum Polyhedronic Concept of Gauge Particles and Gauge Fields in Correlations with Lepton–neutrino Particles Incorporated in Standard Model (SM)”

Authors: Imrich Krištof
Comments: 5 Pages.

This an expert text is focused on still unknown questions and answers of physics of elementary particles, elementary fields and its entangled particles. The text is built on new concept of theory of elementary particles in Standard Model, namely interactions of gauge bosons, hypothetically neutrinic gaugino – between lepton–neutrino and w (boson) wion and Z boson zion, and among vector bosons and scalar bosons, Higgs boson or graviton, gravitino and photino. Quantum theoretical particle Polyhedronic quantum prisma is possibly called Quantum Polyhedronic Soliton, and may lead to new point of view on TWISTOR THEORY, SUPERTWISTORS, TWISTOR STRING THEORY, GAUGE THEORY. Ending part of this text is dedicated to a Model situation of quantum gravity tunneling and entanglement of graviton and gravitinos. In this text is re–discovered scientifical work of scientists like Sir Roger Penrose, Cornelius Lanczos, Alan Faber, Kenneth G. Wilson, Alexander Polyakov.
Category: High Energy Particle Physics

[1077] viXra:1710.0328 [pdf] submitted on 2017-10-30 09:45:16

Formula for the Mass Spectrum of Charged Fermions and Bosons

Authors: Anatoli Kuznetsov
Comments: 12 Pages.

We present the formula for the mass spectrum of the charged composite particles (CP). This formula includes the renormalized fine-structure constant a =1/128.330593928, the rest mass of a new electrically charged particle m = 156.3699214 eV/c2 and two quantum numbers of n and k. The half–integer and integer quantum number n is the projection of an orbital angular momentum electrically charged particle on the symmetry axis of the CP, and the integer k defines the magnetic charges of two Dirac magnetic monopoles, which have opposite signs of magnetic charges and masses. The presented model predicts the values of spins, masses, charge orbit radii and magnetic moments for an infinite number of charged fermions and bosons in the infinite range of mass.
Category: High Energy Particle Physics

[1076] viXra:1710.0306 [pdf] submitted on 2017-10-28 17:41:13

Schrodinger Fundamentals for Mesons and Baryons

Authors: Gene H. Barbee
Comments: 49 Pages. Please contact me at genebarbee@msn.com

A mass model of the neutron and proton reported previously was successful in providing insights into physics and cosmology [9][13]. The equation E=e0*exp(N), where e0 is a constant, was used to characterize energy. This equation works but Edwin Klingman [17] indicated that it needed a clear derivation. This document presents the Schrodinger based fundamentals of the relationship and an understanding of N values for the proton mass model. The fundamentals indicate that zero energy, probability one and quanta found in the neutron model should apply to all mesons and baryons. To study this, data from the new Particle Data Group (PDG) 2016 Particle Physics Booklet [18] was placed in an Excel© spreadsheet and analyzed. The principles zero energy and probability one are consistent with PDG data (even though the particle accelerator must supply energy to create the particles). Understanding mesons and baryons including their properties and fields is important to physics (a subject known as chromodynamics). It is intriguing that results also extend Schrodinger’s equation to quantum gravity and cosmology. New in this document: 1. Nature is extremely simple at the most fundamental level. Schrodinger “quantum circles” at probability one are the source of Charge, Parity, Time (spin) and Fields. Nature creates everything by separating properties from zero (CPTF=0). Energy was originally zero and separated into mass+ kinetic energy and opposite field energy. Parity conjugation is involved in some separations. 2. Quark masses were correlated and their fields identified. It is proposed that “tunneling” allows mesons and baryons to form at various energies rather than their “ideal” energy (the energy where mass+ kinetic energy is equal and opposite the field energy). This explains the large number of mesons and baryons. 3. Fundamentals of decay time are presented and demonstrated for the neutron. Meson and baron decay times are based on N values for their quarks. Some mesons have positive and negative field components correlated with longer decay times (11 orders of magnitude longer). 4. Currently literature suggests that charge, parity and time (CPT) is violated in the weak interaction. New properties of the Up and Down quarks were discovered that cast doubt on this result. The new properties explain Iso-spin (I) and allow baryons to conserve CPTIF=0.
Category: High Energy Particle Physics

[1075] viXra:1710.0258 [pdf] submitted on 2017-10-23 04:14:05

On the Cosmic Number

Authors: John Smith
Comments: 4 Pages.

Richard Feynman: "There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!"  In this note, a "computational dance" from which this number emerges without any need to put it in secretly is identified...
Category: High Energy Particle Physics

[1074] viXra:1710.0239 [pdf] submitted on 2017-10-21 07:34:40

The Wave Function of the Electron

Authors: Arayik Emilevich Danghyan
Comments: 10 Pages. The article is a translation from the Russian language previously published work.

In this paper, by solving the equations of the relativistic M2 [2] it will show that elementary particles, such as electrons, can contain the wave process with very specific properties. The wave model of a stationary electron is represented in the form of a spherical wave process.
Category: High Energy Particle Physics

[1073] viXra:1710.0236 [pdf] submitted on 2017-10-21 14:55:42

Quantum-Interference Phenomena in the Femtometer Scale and the Description of Mass for Baryons in Terms of Confined Currents.

Authors: Osvaldo F. Schilling
Comments: 23 Pages. 2 tables, 3 figures

In a previous paper we have related rest energy to magnetodynamic energy for the baryons. The hypothesis of a zitterbewegung vibrating motion is essential to the scheme. To impose gauge invariance to the model and the continuity of the wavefunctions, we adopted the criterion that the magnetic flux linked through the region covered by the particle vibrations should be quantized in units n of hc/e. Our results, however, displayed some “scattering” of the data around the theoretical line, which was not analyzed in that previous work. To elucidate this point, the imposition of a fixed criterion on the possible values for n has been replaced in the present paper by the calculation of n from the model equations. Such procedure led to advances in our interpretation of mass in terms of magnetodynamic energy. It has now been shown that the data actually follow a sinusoidal pattern in a plot of mass against n. The previous criterion implied the exclusive existence of fully coherent wavefunctions ( several baryons indeed comply with strict flux quantization), but the sinusoidal behavior can be attributed to additional interference involving also incoherent waves, which are now introduced in the model. Therefore, confined magnetic flux modulates currents which cross through internal boundaries ( or topological constraints) inside baryons, in analogy with transport through Josephson Junctions between superconductors. This results in the undulations observed in our new plots of n against the magnetic moments of particles, and of the mass against n for all baryons. The proposal by A.O.Barut in the 1970s that every baryon contains a proton as constituent is also consistent with our data analysis, as well as the conclusion that inner constituents of baryons manifest as correlated unit-charged quasiparticles of topology dictated by the symmetry properties of each baryon.
Category: High Energy Particle Physics

[1072] viXra:1710.0234 [pdf] submitted on 2017-10-20 20:13:21

137

Authors: John Smith
Comments: 4 Pages.

"There is a most profound and beautiful question associated with the observed coupling constant, e \[Dash] the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" 
Category: High Energy Particle Physics

[1071] viXra:1710.0227 [pdf] submitted on 2017-10-20 07:42:54

Self-Consistent Generation of Quantum Fermions in Theories of Gravity

Authors: Risto Raitio
Comments: 25 Pages.

I search for concepts that would allow self-consistent generation of dressed fermions in theories of gravitation. Self-consistency means here having the Compton wave lengths of the same order of magnitude for all particles and the four interactions. To build the quarks and leptons of the standard model preons of spin 1/2 and charge 1/3 or 0 have been introduced by the author. Classification of preons, quarks and leptons is provided by the two lowest representations of the quantum group SLq(2). Three extensions of general relativity are considered for self-consistency: (a) propagating and (b) non-propagating torsion theories in Einstein-Cartan spacetime and (c) a Kerr-Newman metric based theory in general relativity (GR). For self-consistency, the case (a) is not excluded, (b) is possible and (c) has been shown to provide it, reinforcing the preon model, too. Therefore I propose that semiclassical GR with its quantum extension (c) and the preon model will be considered a basis for unification of physics. The possibility remains that there are 'true' quantum gravitational phenomena at or near the Planck scale.
Category: High Energy Particle Physics

[1070] viXra:1710.0206 [pdf] submitted on 2017-10-19 01:55:50

Proton and Antiproton Share Fundamental Properties

Authors: George Rajna
Comments: 20 Pages.

An asymmetry must exist here somewhere but we simply do not understand where the difference is. What is the source of the symmetry break? [13] They have successfully deciphered the total angular momentum (spin) of the nucleon, determining how it's shared among its constituents. [12] The resulting values for the Rydberg constant and the proton radius are in excellent agreement with the muonic results (Nature 466, 213 (2010)), but disagree by 3.3 standard deviations with the average of the previous determinations from regular hydrogen. [11] In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the charge-to-mass ratio of protons and their antimatter counterparts, antiprotons. [10] The puzzle comes from experiments that aimed to determine how quarks, the building blocks of the proton, are arranged inside that particle. That information is locked inside a quantity that scientists refer to as the proton's electric form factor. The electric form factor describes the spatial distribution of the quarks inside the proton by mapping the charge that the quarks carry. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1069] viXra:1710.0111 [pdf] submitted on 2017-10-10 08:50:23

Solving the Proton Spin Puzzle

Authors: George Rajna
Comments: 18 Pages.

They have successfully deciphered the total angular momentum (spin) of the nucleon, determining how it's shared among its constituents. [12] The resulting values for the Rydberg constant and the proton radius are in excellent agreement with the muonic results (Nature 466, 213 (2010)), but disagree by 3.3 standard deviations with the average of the previous determinations from regular hydrogen. [11] In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the charge-to-mass ratio of protons and their antimatter counterparts, antiprotons. [10] The puzzle comes from experiments that aimed to determine how quarks, the building blocks of the proton, are arranged inside that particle. That information is locked inside a quantity that scientists refer to as the proton's electric form factor. The electric form factor describes the spatial distribution of the quarks inside the proton by mapping the charge that the quarks carry. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1068] viXra:1710.0089 [pdf] submitted on 2017-10-08 10:56:59

Shrinking the Proton

Authors: George Rajna
Comments: 16 Pages.

The resulting values for the Rydberg constant and the proton radius are in excellent agreement with the muonic results (Nature 466, 213 (2010)), but disagree by 3.3 standard deviations with the average of the previous determinations from regular hydrogen. [11] In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the charge-to-mass ratio of protons and their antimatter counterparts, antiprotons. [10] The puzzle comes from experiments that aimed to determine how quarks, the building blocks of the proton, are arranged inside that particle. That information is locked inside a quantity that scientists refer to as the proton’s electric form factor. The electric form factor describes the spatial distribution of the quarks inside the proton by mapping the charge that the quarks carry. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1067] viXra:1710.0069 [pdf] submitted on 2017-10-06 08:26:51

Quarks Never Found in Isolation

Authors: George Rajna
Comments: 14 Pages.

Nuclear physicists are now poised to embark on a new journey of discovery into the fundamental building blocks of the nucleus of the atom. [10] The drop of plasma was created in the Large Hadron Collider (LHC). It is made up of two types of subatomic particles: quarks and gluons. Quarks are the building blocks of particles like protons and neutrons, while gluons are in charge of the strong interaction force between quarks. The new quark-gluon plasma is the hottest liquid that has ever been created in a laboratory at 4 trillion C (7 trillion F). Fitting for a plasma like the one at the birth of the universe. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1066] viXra:1710.0059 [pdf] submitted on 2017-10-06 01:38:44

Grand Unification Equation

Authors: Nikola Perkovic
Comments: 7 Pages.

In my attempt to eliminate the Landau Pole from QED by “borrowing” asymptotic freedom from QCD, I was successful in uniting the coupling constants of the two, respectively. This equation, together with the already established electroweak unification forms a basis, within the Standard Model, to experimentally test Grand Unification. The part that can be tested experimentally is the value of the strong coupling constant for the energy value of the QCD integration parameter Λ, offering such a prediction for the first time. It should be also noted that I was successful in eliminating the Landau Pole.
Category: High Energy Particle Physics

[1065] viXra:1710.0026 [pdf] submitted on 2017-10-03 00:37:53

On Consistency in the Skyrme Topological Model

Authors: Syed Afsar Abbas
Comments: 7 Pages.

We point to a significant mismatch between the nature of the baryon number and of the electric charge of baryons in the Skyrme topological model. Requirement of consistency between these two then demands a significant improvement in how the electric charge is defined in this model. The Skyrme model thereafter has a consistent electric charge which has a unique colour dependence built into it. Its relationship with other theoretical model structures is also studied.
Category: High Energy Particle Physics

[1064] viXra:1709.0438 [pdf] submitted on 2017-09-30 06:57:27

Hexark and Preon Model #8 and the Unification of Forces

Authors: Austin J.Fearnley
Comments: 25 Pages.

Model#7 extended the previous model by including spin 2 gravitons which are now withdrawn in model#8 and replaced by spin 1 gravitons. The reason for the change to spin 1 gravitons was the realisation that spin 1 gravitons together with a unified use of colour charge can unite the forces of QCD, QED, Weak and gravitation in a way that shows the commonality of all charges (Figure A). This commonality is outside the range of the Standard Model as there is a symmetry at the level of preons which is broken by aggregation of preons into elementary particles. At the preon level, the QED charge on preons derives exactly from the QCD charge. Because of aggregation of preons into quarks, that symmetry is broken at the level of quarks. A red quark can be either positive or negatively charged which hides the symmetry present at the level of preons.
Category: High Energy Particle Physics

[1063] viXra:1709.0433 [pdf] submitted on 2017-09-29 09:14:28

A Brief Critique of Vixra 1709.0386

Authors: Ervin Goldfain
Comments: 2 Pages.

Contrary to the author’s account, the “sum of squares” equation of vixra 1709.0386 has been recorded and analyzed in at least one publication prior to his submission. We also object to his interpretation of this equation.
Category: High Energy Particle Physics

[1062] viXra:1709.0398 [pdf] submitted on 2017-09-26 20:41:25

The Terraformic Process

Authors: Miguel A. Sanchez-Rey
Comments: 2 Pages.

A much easier process
Category: High Energy Particle Physics

[1061] viXra:1709.0386 [pdf] submitted on 2017-09-25 16:24:08

On the Sum of the Squares of the Particle Masses

Authors: Cris A. Fitch
Comments: 2 Pages.

We observe that the sum of the squares of the three known fundamental massive bosons is within 0.4% of the square of the vacuum expectation value divided by 2. It is also well known that the top quark mass squared is also slightly less than this value. We put forth the conjecture that this is not a coincidence, and that these two facts are a result of a general principle for the Standard Model that the sum of the squares of the boson masses and the sum of the squares of the fermion masses actually equals the vacuum expectation value squared divided by two. Furthermore this foreshadows a coming particle desert at TeV energies, as the available reservoir of mass couplings has already been allocated to known particles.
Category: High Energy Particle Physics

[1060] viXra:1709.0385 [pdf] submitted on 2017-09-25 22:46:58

《Universal and Unified Field Theory》— 3. Photon, Light and Electromagnetism

Authors: Wei Xu
Comments: 3 Pages. The 2nd part of this series is available at http://vixra.org/abs/1709.0358

For the first time, Law of Conservation of Light is uncovered that consists of the seven principles including the wave-particle duality as well as the Photon Entanglements beyond the speed at constant c. In addition, another Law of Fluxion Continuity unfolds concisely the classical theory of Lorentz force and Maxwell's equations. With these applications to the classical physics, Universal Field Theory demonstrates and derives, but are not limited to, Electromagnetism given rise from the first horizon of Quantum Mechanics.

 


Category: High Energy Particle Physics

[1059] viXra:1709.0311 [pdf] submitted on 2017-09-20 13:33:26

Standard Model from Broken Scale Invariance in the Infrared

Authors: Ervin Goldfain
Comments: 8 Pages. Under construction, first draft.

As we have recently shown, the minimal fractal manifold (MFM) describes the underlying structure of spacetime near or above the electroweak scale. Here we uncover the connection between quantum field operators and the MFM starting from the operator product expansion of high-energy Quantum Field Theory (QFT). The approach confirms that the Standard Model of particle physics (SM) stems from a symmetry breaking mechanism that turns the spacetime continuum into a MFM.
Category: High Energy Particle Physics

[1058] viXra:1709.0306 [pdf] submitted on 2017-09-21 03:02:58

Relativistic Invariance in Direct Derivation of a 4x4 Diagonal Matrix Schrodinger Equation from Relativistic Total Energy

Authors: Han Geurdes
Comments: 5 Pages.

In this paper an algebraic method is presented to derive a non-Hermitian Schr{\"o}dinger equation from total relativistic energy. Here, $E=V+c\sqrt{m^2c^2+\left(\mathbf{p}-\frac{q}{c}\mathbf{A}\right)^2}$ with $E\rightarrow i\hbar \frac{\partial}{\partial t}$ and $\mathbf{p} \rightarrow -i\hbar \nabla$. In the derivation no use is made of Dirac's method of four vectors and the root operator isn't squared either. Instead, use is made of the algebra of operators. Proof is delivered that it is possible to derive Lorentz invariant forms in this way.
Category: High Energy Particle Physics

[1057] viXra:1709.0273 [pdf] submitted on 2017-09-18 08:23:30

Drops of Quark-Gluon Plasma

Authors: George Rajna
Comments: 18 Pages.

Particle collisions recreating the quark-gluon plasma (QGP) that filled the early universe reveal that droplets of this primordial soup swirl far faster than any other fluid. [11] Now, powerful supercomputer simulations of colliding atomic nuclei, conducted by an international team of researchers including a Berkeley Lab physicist, provide new insights about the twisting, whirlpool-like structure of this soup and what's at work inside of it, and also lights a path to how experiments could confirm these characteristics. [10] The drop of plasma was created in the Large Hadron Collider (LHC). It is made up of two types of subatomic particles: quarks and gluons. Quarks are the building blocks of particles like protons and neutrons, while gluons are in charge of the strong interaction force between quarks. The new quark-gluon plasma is the hottest liquid that has ever been created in a laboratory at 4 trillion C (7 trillion F). Fitting for a plasma like the one at the birth of the universe. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1056] viXra:1709.0265 [pdf] submitted on 2017-09-17 19:16:04

E8 Real Forms and Evolution of our Universe

Authors: Frank Dodd Tony Smith Jr
Comments: 13 Pages.

In E8 Physics, when our Planck Scale Universe emerged from its Parent Universe by Quantum Fluctuation, it was represented by Real Form E8(-248) with SO(16) symmetry; and during Octonionic NonUnitary Inflation our Universe was represented by Real Form E8(8) with SO(8,8) symmetry; and after the end of Octonionic Inflation with 8-dim Octonionic Spacetime, during the present era of (4+4)-dim Quaternionic Kaluza-Klein Spacetime and Unitary Quaternionic Quantum Processes our Universe has been represented by Real Form E8(-24) with SO*(8) symmetry.
Category: High Energy Particle Physics

[1055] viXra:1709.0264 [pdf] submitted on 2017-09-18 00:04:29

Zero.probabilystic Foundation Oftheoretyical Physics

Authors: Gunn Quznetsov
Comments: 54 Pages.

No need models - the fundamental theoretical physics is a part of classical probability theory (the part that considers the probability of dot events in the 3 + 1 space-time)
Category: High Energy Particle Physics

[1054] viXra:1709.0155 [pdf] submitted on 2017-09-12 21:11:20

Piercing the Veil of Modern Physics. Part 2 & Philosophy (in Chinese)

Authors: DING Jian
Comments: 14 Pages. I firmly believe that a single spark can start great creative conflagrations.

Based on Aristotle's definition, all the knowledge was able to be divided into three parts: natural science, metaphysics and mathematics. Among them, we can distinguish between natural science and metaphysics according to whether there exists in reality. And the principle of the limit in mathematics helps us to break the bondage of finite thought. From the quantitative changes of real space to have gone deep into a qualitative difference of ideal realm, it has accomplished the unity of opposites of all knowledge. Take the postulation as an example. This concept corresponds to limiting value, and is a hypothesis that humans can only be continually to modify the one-sided view to approach the truth but can't use empirical methods to prove or disprove it. Newton's First Law is such a postulation, which has invariance or absoluteness, can be called the absolute truth and belonged to the metaphysical category. According to the above philosophical principles we have found that in Einstein's special relativity there is a paradoxes, which is to use an absolute truth (the principle of constant light velocity in vacuum) to overthrow another absolute truth (the absoluteness of simultaneity) but one of them can't be proved to be false. And his mistake to be found out, which is to confuse the light speed in reality with the c. So, starting from the perspective of all knowledge, all the inertial systems are redefined, Galileo's coordinate transformations once again enabled; and in order to eliminate the false and retain the true, Einstein's two postulations in special relativity are reshaped, which can make them reasonably to return to the framework of absolute space-time. Finally to point out, it has been identified that so-called "Non-being" in Lao-tzu is the "metaphysics", which will certainly have great significance to unify the Eastern and Western Philosophy.
Category: High Energy Particle Physics

[1053] viXra:1709.0153 [pdf] submitted on 2017-09-13 03:37:11

Wherefrom Comes the Missing Baryon Number in the Eightfoldway Model?

Authors: Syed Afsar Abbas
Comments: 6 Pages.

An extremely puzzling problem of particle physics is, how come, no baryon number arises mathematically to describe the spin-1/2 octet baryons in the Eightfold way model. Recently the author has shown that all the canonical proposals to provide a baryon number to solve the above problem, are funda- mentally wrong. So what is the resolution of this conundrum? Here we show that the topological Skyrme-Witten model which takes account of the Wess- Zumino anomaly comes to our rescue. In contrast to the two avour model, the presence of this anomaly term for three avours, shows that the quantal states are monopolar harmonics, which are not functions but sections of a ber bun- dle. This generates a profoundly signicant "right hypercharges", which lead to making the adjoint representation of SU(3) as being the ground state. This provides a topologically generated baryon number for the spin-1/2 baryons in the adjoint representation, to connect to the Eightfold way model baryon octet states. This solves the mystery of the missing baryon number in the Eightfold way model.
Category: High Energy Particle Physics

[1052] viXra:1709.0143 [pdf] submitted on 2017-09-11 18:57:12

Piercing the Veil of Modern Physics. Part 2 & Philosophy

Authors: DING Jian
Comments: 19 Pages. I firmly believe that a single spark can start great creative conflagrations.

Based on Aristotle's definition, all the knowledge was able to be divided into three parts: natural science, metaphysics and mathematics. Among them, we can distinguish between natural science and metaphysics according to whether there exists in reality. And the principle of the limit in mathematics helps us to break the bondage of finite thought. From the quantitative changes of real space to have gone deep into a qualitative difference of ideal realm, it has accomplished the unity of opposites of all knowledge. Take the postulation as an example. This concept corresponds to limiting value, and is a hypothesis that humans can only be continually to modify the one-sided view to approach the truth but can't use empirical methods to prove or disprove it. Newton's First Law is such a postulation, which has invariance or absoluteness, can be called the absolute truth, and belonged to the metaphysical category. According to the above philosophical principles we have found that in Einstein's special relativity there is a paradoxes, which is to use an absolute truth (the principle of constant light velocity in vacuum) to overthrow another absolute truth (the absoluteness of simultaneity) but one of them can't be proved to be false. And his mistake to be found out, which is to confuse the light speed in reality with the c. So, starting from the perspective of all knowledge, all the inertial systems are redefined, Galileo's coordinate transformations once again enabled; and in order to eliminate the false and retain the true, Einstein's two postulations in special relativity are reshaped, which can make them reasonably to return to the framework of absolute space-time. Finally to point out, it has been identified that so-called "Nonbeing" in Lao-tzu is the "metaphysics", which will certainly have great significance to unify the Eastern and Western philosophy.
Category: High Energy Particle Physics

[1051] viXra:1709.0103 [pdf] submitted on 2017-09-09 16:45:47

The Higgs Boson and the "Leptonic Spectrum"

Authors: John A. Gowan
Comments: 4 Pages.

The conservation role of the Higgs boson is the creation of the "Leptonic Spectrum".
Category: High Energy Particle Physics

[1050] viXra:1709.0090 [pdf] submitted on 2017-09-08 08:33:52

Magic Nucleus of Lead-208

Authors: George Rajna
Comments: 21 Pages.

Scientists generally imagine atomic nuclei to be more or less spherical clusters of protons and neutrons, but always relatively chaotic. [12] At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. [11] The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[1049] viXra:1709.0086 [pdf] submitted on 2017-09-08 06:37:52

Laser Plasma Acceleration

Authors: George Rajna
Comments: 22 Pages.

Conventional electron accelerators have become an indispensable tool in modern research. [12] An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde. [11] Researchers at Lund University and Louisiana State University have developed a tool that makes it possible to control extreme UV light - light with much shorter wavelengths than visible light. [10] Tiny micro- and nanoscale structures within a material's surface are invisible to the naked eye, but play a big role in determining a material's physical, chemical, and biomedical properties. [9] A team of researchers led by Leo Kouwenhoven at TU Delft has demonstrated an on-chip microwave laser based on a fundamental property of superconductivity, the ac Josephson effect. They embedded a small section of an interrupted superconductor, a Josephson junction, in a carefully engineered on-chip cavity. Such a device opens the door to many applications in which microwave radiation with minimal dissipation is key, for example in controlling qubits in a scalable quantum computer. [8] Optical scientists from the Warsaw Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the Faculty of Physics of the University of Warsaw have generated ultrashort laser pulses in an optical fiber with a method previously considered to be physically impossible. [7] Researchers at the Max Planck Institute for the Science of Light in Erlangen have discovered a new mechanism for guiding light in photonic crystal fiber (PCF). [6] Scientists behind a theory that the speed of light is variable - and not constant as Einstein suggested - have made a prediction that could be tested. [5] Physicists’ greatest hope for 2015, then, is that one of these experiments will show where Einstein got off track, so someone else can jump in and get closer to his long-sought “theory of everything.” This article is part of our annual "Year In Ideas" package, which looks forward to the most important science stories we can expect in the coming year. It was originally published in the January 2015 issue of Popular Science. [4] The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Relativistic Quantum Theories.
Category: High Energy Particle Physics

[1048] viXra:1709.0021 [pdf] submitted on 2017-09-02 08:43:01

Hexark and Preon Model #8 and the Unification of Forces: a Summary

Authors: A.J.Fearnley
Comments: 7 Pages.

This paper summarises a model for building all elementary particles of the Standard Model plus the higgs, dark matter, dark energy and gravitons, out of preons and sub-preons. The preons are themselves built from string-like hexarks each with chiral values for the fundamental properties of elementary particles. The four forces are shown to be unified by hexarks being string-like objects comprising a compactified multiverse-like structure of at least 10^39 strands of string-like 4D space and time blocks (septarks). Despite the individual forces seeming very different from each another, they all derive from the same colour strands, either as net colour braids (QCD and attractive gravity) or as net neutral-colour braids/strands (electric charge, weak isospin and dark energy, or repulsive gravity). Different strength forces have different numbers of braids in them but QCD-colour is qualitatively, but not quantitatively, the same as gravitational colour while electric charge, weak isospin and dark energy are all qualitatively the same neutral-colour mix, but not quantitatively the same.
Category: High Energy Particle Physics

[1047] viXra:1709.0010 [pdf] submitted on 2017-09-01 09:03:32

ALPHA Antihydrogen Breakthrough

Authors: George Rajna
Comments: 16 Pages.

New research by a team from Aarhus, Swansea, and Purdue Universities has enabled recent experiments to make the first measurement of the 1S – 2S atomic state transition in antihydrogen. [12] The LHCb experiment has found hints of what could be a new piece of the jigsaw puzzle of the missing antimatter in our universe. [11] In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the charge-to-mass ratio of protons and their antimatter counterparts, antiprotons. [10] The puzzle comes from experiments that aimed to determine how quarks, the building blocks of the proton, are arranged inside that particle. That information is locked inside a quantity that scientists refer to as the proton's electric form factor. The electric form factor describes the spatial distribution of the quarks inside the proton by mapping the charge that the quarks carry. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1046] viXra:1708.0479 [pdf] submitted on 2017-08-31 12:36:34

Theory of Interactive Geometric Particles of the Field

Authors: M. D. Monsia
Comments: 2 pages

This work is devoted to investigate the types of interaction of physics by exchange particles, that are photon, W and Z bosons, gluon and graviton considered in terms of crystalline polyhedron of light.
Category: High Energy Particle Physics

[1045] viXra:1708.0378 [pdf] submitted on 2017-08-27 06:34:27

“The Quantum Computer Based on Lepton–neutrino Particles and Other “quanticles““

Authors: Imrich Krištof
Comments: 12 Pages.

This publication is based on studies of The Moravian Masaryk University, Professor RNDr. Josef Havel, Dr.Sc., from Department of Analytical Chemistry and Department of Physical Electronics. The significant subject of the work is an application of ANN (ARTIFICIAL NEURAL NETWORK, with MALDI–TOF SPECTROMETRY, HPLC (High Pressure Liquid Chromatography), Electrophoresis and Research of AAS (ATOMIC ABSORPTION SPECTROSCOPY). This text says about research of neutrinos and photons, wimp’s like an application of construction of QUANTUM ANN COMPUTER. The Article consists of study an introduction of Author and Prof. RNDr. J. Havel, Dr.Sc. theme of mineralogy and biology and geography and scientific cooperation from the year 2004, study generally could be known like soil computation. The second part of this publication is dedicated to short History of Computational Science. The third part says about Highlights of this article, concretely Author’s sketches of a quantum computer. The fourth part talks about results from continual measuring of statistical data from project SAGE 37Ar neutrino source experiment (SAGE -> SOVIET–AMERICAN– 71GERMANIUM–71GALIUM EXPERIMENT IN CAUCASCUS BAKSAN. Fifth part is connected with METHODS (KATRIN AND TROITSK NU–MASS). Sixth part is focused to conclusions of Research of neutrinos and other quanticles, namely photon proton, photon neutrino, neutrino photon and wimp’s.
Category: High Energy Particle Physics

[1044] viXra:1708.0369 [pdf] submitted on 2017-08-25 14:56:59

E8 Root Vectors from 8D to 3D

Authors: Frank Dodd Tony Smith Jr
Comments: 28 Pages.

This paper is an elementary-level attempt at discussing 8D E8 Physics based on the 240 Root Vectors of an E8 lattice and how it compares with physics models based on 4D and 3D structures such as Glotzer Dimer packings in 3D, Elser-Sloane Quasicrystals in 4D, and various 3D Quasicrystals based on slices of 600-cells.
Category: High Energy Particle Physics

[1043] viXra:1708.0337 [pdf] submitted on 2017-08-25 02:32:10

QCD Self-Consistent Only With a Self-Consistenct QED

Authors: Syed Afsar Abbas, Mohsin Ilahi, Sajad Ahmad Sheikh, Sheikh Salahudin
Comments: 6 Pages.

The Standard Model of particle physics, based on the group structure SU (N ) c ⊗ SU (2) L ⊗U (1) Y (f orN c = 3), has been very successful. However in it, the electric charge is not quantized and is fixed by hand to be 2/3 and -1/3. This is its major shortcoming. This model runs into conflict with another similarly structured, but actually quite different model, wherein the electric charge is fully quantized and depends upon colour degree of freedom as well. We study this basic conflict between these models and how they connect to a consistent study of Quantum Chromodynamics (QCD) for arbitrary number of colours. We run into a basic issue of consistency of Quantum Electrodynamics (QED) with these fundamentally different charges. Study of consistency of ( QCD + QED ) together, makes discriminating and conclusive statements about the relevance of these two model structures.
Category: High Energy Particle Physics

[1042] viXra:1708.0267 [pdf] submitted on 2017-08-22 23:03:33

Density Matrices and the Standard Model

Authors: C A Brannen
Comments: 59 Pages. As submitted to Foundations of Physics

We use density matrices to explore the possibility that the various flavors of quarks and leptons are linear superpositions over a single particle whose symmetry follows the finite subgroup $S_4$ of the simple Lie group SO(3). We use density matrices which allow modeling of symmetry breaking over temperature, and can incorporate superselection sectors. We obtain three generations each consisting of the quarks and leptons and an SU(2) dark matter doublet. We apply the model to the Koide mass equations and propose extensions of the theory to other parts of the Standard Model and gravitation.
Category: High Energy Particle Physics

[1041] viXra:1708.0219 [pdf] submitted on 2017-08-19 03:56:44

Instabilities in Fusion Devices

Authors: George Rajna
Comments: 17 Pages.

Scientists have discovered a remarkably simple way to suppress a common instability that can halt fusion reactions and damage the walls of reactors built to create a "star in a jar." [12] Particle collisions recreating the quark-gluon plasma (QGP) that filled the early universe reveal that droplets of this primordial soup swirl far faster than any other fluid. [11] Now, powerful supercomputer simulations of colliding atomic nuclei, conducted by an international team of researchers including a Berkeley Lab physicist, provide new insights about the twisting, whirlpool-like structure of this soup and what's at work inside of it, and also lights a path to how experiments could confirm these characteristics. [10] The drop of plasma was created in the Large Hadron Collider (LHC). It is made up of two types of subatomic particles: quarks and gluons. Quarks are the building blocks of particles like protons and neutrons, while gluons are in charge of the strong interaction force between quarks. The new quark-gluon plasma is the hottest liquid that has ever been created in a laboratory at 4 trillion C (7 trillion F). Fitting for a plasma like the one at the birth of the universe. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1040] viXra:1708.0217 [pdf] submitted on 2017-08-18 12:55:06

Light-By-Light Scattering as a Proof of at Least Incompleteness of the Perturbative Quantum Electrodynamics

Authors: Sylwester Kornowski
Comments: 3 Pages.

Here, within the Scale-Symmetric Theory (SST), we described the mechanism of the light-by-light scattering and we calculated the cross-section: 76.5 +- 59.5 nb - it is independent of transverse momentum. This result is very close to the ATLAS data. The SST shows that in reality light is scattered on the central condensates in virtual electrons. The maximum width +-59.5 nb follows from a natural phenomenon. On the other hand, the calculated within the Standard Model central value (too low) and width (too low) of the cross-section are inconsistent with the ATLAS data. We answered as well following question: Why the perturbative Quantum Electrodynamics is at least an incomplete theory?
Category: High Energy Particle Physics

[1039] viXra:1708.0211 [pdf] submitted on 2017-08-17 22:38:32

On the Evidence of the Number of Colours in Particle Physics

Authors: Syed Afsar Abbas, Sajjad Ahmad Sheikh, Sheikh Salahudin
Comments: 6 Pages.

It is commonly believed ( and as well reflected in current textbooks in particle physics ) that the R ratio in $e^+ e^-$ scattering and $\pi^0 \rightarrow \gamma \gamma$ decay provide strong evidences of the three colours of the Quantum Chromodynamics group ${SU(3)}_c$. This is well documented in current literature. However, here we show that with a better understanding of the structure of the electric charge in the Standard Model of particle physics at hand, one rejects the second evidence as given above but continues to accept the first one. Thus $\pi^0 \rightarrow \gamma \gamma$ decay is not a proof of three colours anymore. This fact is well known. However unfortunately some kind of inertia has prevented this being taught to the students. As such the textbooks and monographs should be corrected so that more accurate information may be transmitted to the students.
Category: High Energy Particle Physics

[1038] viXra:1708.0168 [pdf] submitted on 2017-08-15 05:43:15

Conversion of Kinetic Energy Into an Electromagnetic Pulse by Means of Control of the Gravitational Mass

Authors: Fran De Aquino
Comments: 3 Pages.

It is shown a system that, if launched radially into the Earth’s gravitational field, it can acquires a ultra high amount of kinetic energy, which can generate a highly intense pulse of electromagnetic energy (EMP) with magnitude of the order of 10 Megatons or more.
Category: High Energy Particle Physics

[1037] viXra:1708.0124 [pdf] submitted on 2017-08-11 09:32:14

Protons Shock Front

Authors: George Rajna
Comments: 29 Pages.

In experimental campaigns using the OMEGA EP laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, Lawrence Livermore National Laboratory (LLNL), University of California San Diego (UCSD) and Massachusetts Institute of Technology (MIT) researchers took radiographs of the shock front, similar to the X-ray radiology in hospitals with protons instead of X-rays. [22] Researchers generate proton beams using a combination of nanoparticles and laser light. [21] Devices based on light, rather than electrons, could revolutionize the speed and security of our future computers. However, one of the major challenges in today's physics is the design of photonic devices, able to transport and switch light through circuits in a stable way. [20] Researchers characterize the rotational jiggling of an optically levitated nanoparticle, showing how this motion could be cooled to its quantum ground state. [19] Researchers have created quantum states of light whose noise level has been “squeezed” to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12]
Category: High Energy Particle Physics

[1036] viXra:1708.0115 [pdf] submitted on 2017-08-10 19:49:52

The Higgs Troika

Authors: Wei Lu
Comments: 21 Pages.

There are three composite electroweak Higgs bosons stemming from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three cohorts are dictated by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the LHC, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel. Tau neutrino condensation may contribute substantially to the muon anomalous magnetic moment. On the other hand, a feeble antisymmetric condensation might be gravitationally relevant and reflected as large-scale CMB anisotropies.
Category: High Energy Particle Physics

[1035] viXra:1708.0087 [pdf] submitted on 2017-08-07 14:42:32

Velocity of Cosmic Muons Most Likely Much Higher Than C

Authors: Sjaak Uitterdijk
Comments: 3 Pages.

It seems to be the most attractive experiment for physicists, who strongly believe in the validity of the STR, to refer to: the supposed half-life time, in combination with their supposed velocity, of muons entering the atmosphere. The crucial part of the experiment is the application of the equation E=mc2. This article shows that, by applying this equation, the one error in STR is used to prove the apparent validity of another error in this theory.
Category: High Energy Particle Physics

[1034] viXra:1708.0086 [pdf] submitted on 2017-08-08 01:55:24

Conditions of Stellar Interiors

Authors: George Rajna
Comments: 25 Pages.

For the first time, scientists have conducted thermonuclear measurements of nuclear reaction cross-sections under extreme conditions like those of stellar interiors. [19] Astronomers like to say we are the byproducts of stars, stellar furnaces that long ago fused hydrogen and helium into the elements needed for life through the process of stellar nucleosynthesis. [18] But for rotating black holes, there's a region outside the event horizon where strange and extraordinary things can happen, and these extraordinary possibilities are the focus of a new paper in the American Physical Society journal Physical Review Letters. [17] Astronomers have constructed the first map of the universe based on the positions of supermassive black holes, which reveals the large-scale structure of the universe. [16] Astronomers want to record an image of the heart of our galaxy for the first time: a global collaboration of radio dishes is to take a detailed look at the black hole which is assumed to be located there. [15] A team of researchers from around the world is getting ready to create what might be the first image of a black hole. [14] "There seems to be a mysterious link between the amount of dark matter a galaxy holds and the size of its central black hole, even though the two operate on vastly different scales," said Akos Bogdan of the Harvard-Smithsonian Center for Astrophysics (CfA). [13] If dark matter comes in both matter and antimatter varieties, it might accumulate inside dense stars to create black holes. [12] For a long time, there were two main theories related to how our universe would end. These were the Big Freeze and the Big Crunch. In short, the Big Crunch claimed that the universe would eventually stop expanding and collapse in on itself. This collapse would result in…well…a big crunch (for lack of a better term). Think " the Big Bang " , except just the opposite. That's essentially what the Big Crunch is. On the other hand, the Big Freeze claimed that the universe would continue expanding forever, until the cosmos becomes a frozen wasteland. This theory asserts that stars will get farther and farther apart, burn out, and (since there are no more stars bring born) the universe will grown entirely cold and eternally black. [11] Newly published research reveals that dark matter is being swallowed up by dark energy, offering novel insight into the nature of dark matter and dark energy and what the future of our Universe might be. [10] The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: High Energy Particle Physics

[1033] viXra:1708.0057 [pdf] submitted on 2017-08-06 09:21:13

Quantum-Interference Phenomena in the Femtometer Scale of Baryons. Inclusion of all Baryon Octet and Decuplet Particles

Authors: Osvaldo F. Schilling
Comments: 3 pages, 1 figure

Evidence for quantum interference due to internal currents is presented for all baryons of the octet and decuplet, through the joint analysis of their rest energy and magnetic moments data. This work supplements the paper vixra: 1706.0040, and corrects the approximate equation used to fit data in a Figure in that paper( and in vixra:1706.0287). The fully correct expression, plotted here in a new Figure, clearly displays instability and the tendency of the number of flux quanta n to “reach for” integer values whenever the magnetic moment of a particle ( in nuclear magneton units) becomes an integer number. The overall conclusion of this set of papers in vixra is that mass is essentially determined by kinetic( and magnetic) energies associated with angular momentum. The fine details, however, depend upon the magnetic moments ( consistent with SU(3) symmetry), their self-magnetic fields, and the resulting currents whose intereference will determine the correct energies that consitute the so-called rest masses.
Category: High Energy Particle Physics

[1032] viXra:1708.0056 [pdf] submitted on 2017-08-06 09:33:37

The π-Meson and the μ-Meson

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[1031] viXra:1708.0036 [pdf] submitted on 2017-08-03 14:15:11

Smallest Neutrino Detector

Authors: George Rajna
Comments: 39 Pages.

Neutrinos are a challenge to study because their interactions with matter are so rare. Particularly elusive has been what's known as coherent elastic neutrino-nucleus scattering, which occurs when a neutrino bumps off the nucleus of an atom. [12] Lately, neutrinos – the tiny, nearly massless particles that many scientists study to better understand the fundamental workings of the universe – have been posing a problem for physicists. [11] Physicists have hypothesized the existence of fundamental particles called sterile neutrinos for decades and a couple of experiments have even caught possible hints of them. However, according to new results from two major international consortia, the chances that these indications were right and that these particles actually exist are now much slimmer. [10] The MIT team studied the distribution of neutrino flavors generated in Illinois, versus those detected in Minnesota, and found that these distributions can be explained most readily by quantum phenomena: As neutrinos sped between the reactor and detector, they were statistically most likely to be in a state of superposition, with no definite flavor or identity. [9] A new study reveals that neutrinos produced in the core of a supernova are highly localised compared to neutrinos from all other known sources. This result stems from a fresh estimate for an entity characterising these neutrinos, known as wave packets, which provide information on both their position and their momentum. [8] It could all have been so different. When matter first formed in the universe, our current theories suggest that it should have been accompanied by an equal amount of antimatter – a conclusion we know must be wrong, because we wouldn't be here if it were true. Now the latest results from a pair of experiments designed to study the behaviour of neutrinos – particles that barely interact with the rest of the universe – could mean we're starting to understand why. [7] In 2012, a tiny flash of light was detected deep beneath the Antarctic ice. A burst of neutrinos was responsible, and the flash of light was their calling card. It might not sound momentous, but the flash could give us tantalising insights into one of the most energetic objects in the distant universe.
Category: High Energy Particle Physics

[1030] viXra:1708.0028 [pdf] submitted on 2017-08-02 13:28:09

Liquid Quark-Gluon Plasma

Authors: George Rajna
Comments: 16 Pages.

Particle collisions recreating the quark-gluon plasma (QGP) that filled the early universe reveal that droplets of this primordial soup swirl far faster than any other fluid. [11] Now, powerful supercomputer simulations of colliding atomic nuclei, conducted by an international team of researchers including a Berkeley Lab physicist, provide new insights about the twisting, whirlpool-like structure of this soup and what's at work inside of it, and also lights a path to how experiments could confirm these characteristics. [10] The drop of plasma was created in the Large Hadron Collider (LHC). It is made up of two types of subatomic particles: quarks and gluons. Quarks are the building blocks of particles like protons and neutrons, while gluons are in charge of the strong interaction force between quarks. The new quark-gluon plasma is the hottest liquid that has ever been created in a laboratory at 4 trillion C (7 trillion F). Fitting for a plasma like the one at the birth of the universe. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1029] viXra:1708.0002 [pdf] submitted on 2017-08-01 06:43:13

Sedeonic Duality-Invariant Field Equations for Dyons

Authors: Victor L. Mironov, Sergey V. Mironov
Comments: 11 Pages.

We discuss the theoretical description of dyons having simultaneously both electric and magnetic charges on the basis of space-time algebra of sixteen-component sedeons. We show that the sedeonic equations for electromagnetic field of dyons can be reformulated in equivalent form as the equations for renormalized field potentials, field strengths and single renormalized source. The relations for energy and momentum as well as the relations for Lorentz invariants of renormalized electromagnetic field are derived. Additionally, we discuss the sedeonic second-order Klein-Gordon and first-order Dirac wave equations describing the quantum behavior of dyons in an external electromagnetic field.
Category: High Energy Particle Physics

[1028] viXra:1707.0415 [pdf] submitted on 2017-07-31 13:02:33

Subatomic Particles in Computer Simulations

Authors: George Rajna
Comments: 23 Pages.

Predicting the properties of subatomic particles before their experimental discovery has been a big challenge for physicists. [14] There's a new particle in town, and it's a double-charmingly heavy beast. Researchers working on the LHCb experiment at CERN's Large Hadron Collider have announced the discovery of the esoterically named Xicc++ particle. [13] One of the fundamental challenges in nuclear physics is to predict the properties of subatomic matter from quantum chromodynamics (QCD)—the theory describing the strong force that confines quarks into protons and neutrons, and that binds protons and neutrons together. [12] At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. [11] The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[1027] viXra:1707.0385 [pdf] submitted on 2017-07-28 13:15:02

The Seven Higgs Bosons and the Heisenberg Uncertainty Principle Extended to D Dimensions

Authors: Angel Garcés Doz
Comments: 2 Pages.

The proof of the existence of seven dimensions compacted in circles: the principle of uncertainty of Heisenberg extended to d dimensions; Allows us to obtain the masses of the seven Higgs bosons, including the known empirically (125.0901 GeV = mh (1)); And theorize the calculation of the mass of the boson stop quark (745 GeV)
Category: High Energy Particle Physics

[1026] viXra:1707.0384 [pdf] submitted on 2017-07-28 13:34:57

Vortical Accelerator of Atomic Particles

Authors: Solomon Budnik
Comments: 7 Pages. Search for Graviton

The Large Hadron Collider (LHC) is a linear collider. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Inside the accelerator, two high-energy particle beams travel at close to the speed of light before they are made to collide. The beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum. Note that all experiments in that collider are subject to gravity and to thereby associated defects in superconducting. Moreover, the collision of particles is artificially induced in that collider, while in our accelerator they won’t collide but would naturally propel themselves at high kinetic energy due to inherent repulsion and thereby created gravitational wave to then split in duality. Gravity has indeed a repulsive force with vortical repulsion effect as in illustrations of our accelerator model on p. 2. The first theory of repulsive gravity was a quantum theory published by Kowitt. In this modified Dirac theory, Kowitt postulated that the positron is not a hole in the sea of electrons-with-negative-energy as in usual Dirac hole theory, but instead is a hole in the sea of electrons-with-negative-energy-and-positive-gravitational-mass: this yields a modified C-inversion, by which the positron has positive energy but negative gravitational mass. Repulsive gravity is then described by adding extra terms (mgΦg and mgAg) to the wave equation. The idea is that the wave function of a positron moving in the gravitational field of a matter particle evolves such that in time it becomes more probable to find the positron further away from the matter particle. Kowitt, M. (1996). "Gravitational repulsion and Dirac antimatter". International Journal of Theoretical Physics. 35 (3): 605–631. doi:10.1007/BF02082828. To summarize, our concept device and technology enable to create a vortical flow spiral accelerator as occurs in spiral galaxies like M101. Note that our vortical particles accelerator has nothing to do with common cyclotron or synchrotron.
Category: High Energy Particle Physics

[1025] viXra:1707.0367 [pdf] submitted on 2017-07-27 22:18:52

Atlas: LHC 2016: 240 Gev Higgs Mass State at 3.6 Sigma

Authors: Frank Dodd Tony Smith Jr
Comments: 6 Pages.

5 July 2017 ATLAS released ATLAS-CONF-2017-058 saying: “... A search for heavy resonances decaying into a pair of Z bosons leading to l+ l- l+ l- ... is presented. [ that includes the Higgs -> ZZ* -> 4l channel ] The search uses proton–proton collision data at 13 TeV corresponding to an integrated luminosity of 36.1 fb-1 collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider ... excess ...[is]... observed in the data for m4l around 240 ... GeV ... with a local significance of 3.6 sigma ...". E8-Cl(16) Physics Model ( viXra 1602.0319 ) has a Nambu-Jona-Lasinio (NJL) type structure for the Higgs-Tquark system resulting in 3 Higgs mass states: around 125 GeV (observed) and 200 and 250 GeV. 240 GeV is close enough to 250 GeV that the ATLAS 3.6 sigma peak should not be suppressed by LEE and does constitute significant support for the validity of the NJL sector of the model.
Category: High Energy Particle Physics

[1024] viXra:1707.0340 [pdf] submitted on 2017-07-25 13:29:10

Supercollider

Authors: Solomon Budnik
Comments: 3 Pages. NextGen high energy physics

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC consists of a 27-kilometre ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles along the way. Inside the accelerator, two high-energy particle beams travel at close to the speed of light before they are made to collide. The beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum. Note that all experiments in that collider are subject to gravity and thereby associated defects in superconducting. Our concept device and technology enable to create a supercollider in NextGen patricides engineering.
Category: High Energy Particle Physics

[1023] viXra:1707.0283 [pdf] submitted on 2017-07-21 09:54:40

Atomic Nucleus Grimace

Authors: George Rajna
Comments: 17 Pages.

To some degree of approximation, atomic nuclei are spherical, though distorted to a greater or lesser extent. When the nucleus is excited, its shape may change, but only for an extremely brief moment, after which it returns to its original state. [13] What is the mass of a proton? Scientists from Germany and Japan have made an important step toward better understanding this fundamental constant. [12] In a paper published today in the journal Science, the ASACUSA experiment at CERN reported new precision measurement of the mass of the antiproton relative to that of the electron. [11] When two protons approaching each other pass close enough together, they can " feel " each other, similar to the way that two magnets can be drawn closely together without necessarily sticking together. According to the Standard Model, at this grazing distance, the protons can produce a pair of W bosons. [10] The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1022] viXra:1707.0275 [pdf] submitted on 2017-07-20 07:18:32

Measurement of Proton Mass

Authors: George Rajna
Comments: 16 Pages.

In a paper published today in the journal Science, the ASACUSA experiment at CERN reported new precision measurement of the mass of the antiproton relative to that of the electron. [11] When two protons approaching each other pass close enough together, they can " feel " each other, similar to the way that two magnets can be drawn closely together without necessarily sticking together. According to the Standard Model, at this grazing distance, the protons can produce a pair of W bosons. [10] The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[1021] viXra:1707.0233 [pdf] submitted on 2017-07-17 08:09:39

Beyond the Standard Model

Authors: George Rajna
Comments: 13 Pages.

Although the discovery of the Higgs boson by the ATLAS and CMS Collaborations in 2012 completed the Standard Model, many mysteries remain unexplained. For instance, why is the mass of the Higgs boson so much lighter than expected, and why is gravity so weak? [9] Last week, the detectors of the Large Hadron Collider (LHC) witnessed their first collisions of 2017. [8] As physicists were testing the repairs of LHC by zipping a few spare protons around the 17 mile loop, the CMS detector picked up something unusual. The team feverishly pored over the data, and ultimately came to an unlikely conclusion—in their tests, they had accidentally created a rainbow universe. [7] The universe may have existed forever, according to a new model that applies quantum correction terms to complement Einstein's theory of general relativity. The model may also account for dark matter and dark energy, resolving multiple problems at once. [6] This paper explains the Accelerating Universe, the Special and General Relativity from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the moving electric charges. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The Big Bang caused acceleration created the radial currents of the matter and since the matter composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces. The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.
Category: High Energy Particle Physics

[1020] viXra:1707.0218 [pdf] submitted on 2017-07-16 06:07:42

The First Big Question Facing Physics and Science

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: show the viewpoint with regards to first big question facing physics and science.
Category: High Energy Particle Physics

[1019] viXra:1707.0163 [pdf] submitted on 2017-07-12 03:52:25

Hints of TeV-Scale Black Holes

Authors: Bernard Riley
Comments: 8 Pages.

By application of the 10D/4D correspondence, the radii of nearby stars have been shown to map onto the masses of stable atomic nuclei. The correspondence is now used to calculate the mass m and radius r of the subatomic object that corresponds to a typical 1.4 solar mass neutron star. The mass m is found to be 4.0 TeV. Using natural units, r/m is precisely 2.
Category: High Energy Particle Physics

[1018] viXra:1707.0143 [pdf] submitted on 2017-07-11 04:05:08

New Physics Resulting from Far Too Large a Mass Distance Between the Doubly Charmed Baryons Xi

Authors: Sylwester Kornowski
Comments: 4 Pages.

The Standard Model (SM) and experimental data show that the change of the up quark for down quark increases the mass of nucleon by about 1 MeV. On the other hand, SM and experimental results show that the same change in the doubly charmed baryons Xi decreases the mass by about 100 MeV. Within the SM we cannot explain such two major inconsistencies (i.e. 100 MeV instead 1 MeV and the increase-decrease asymmetry) so such problems suggest new physics. To save the SM, some scientists suggest that the first doubly charmed Xi, detected by the SELEX collaboration based at Fermilab, should disappear! Here, applying the atom-like structure of baryons that follows from the Scale-Symmetric Theory (SST), we calculated masses and I, J and P of many charmed Xi baryons and masses of the two doubly charmed baryons Xi. Calculated mass of Xi_cc+ is 3519.08 MeV whereas of Xi_cc++ is 3621.90 MeV - the results are consistent with experimental data. The other theoretical masses obtained here are very close to experimental results. We present a generalized scheme that is very helpful in calculating masses and other physical quantities that characterize baryons. Charmed baryons contain relativistic, positively charged pion in the d = 0 state which mass is 1256.6 MeV - this mass is close to the mass of the charm quark (in SST it is 1267 MeV) so the quark model can mimic presented here the atom-like theory of baryons. On the other hand, relativistic mass of charged kaon in the d = 0 state is 4444.9 MeV so it can mimic the mass of the bottom quark (in SST it is 4190 MeV).
Category: High Energy Particle Physics

[1017] viXra:1707.0138 [pdf] submitted on 2017-07-10 05:31:29

Higgs Boson and Neutrinos

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: show the viewpoint with regards to Higgs boson and neutrinos.
Category: High Energy Particle Physics

[1016] viXra:1707.0107 [pdf] submitted on 2017-07-07 06:54:57

New Particle of the Strong Force

Authors: George Rajna
Comments: 22 Pages.

There's a new particle in town, and it's a double-charmingly heavy beast. Researchers working on the LHCb experiment at CERN's Large Hadron Collider have announced the discovery of the esoterically named Xicc++ particle. [13] One of the fundamental challenges in nuclear physics is to predict the properties of subatomic matter from quantum chromodynamics (QCD)—the theory describing the strong force that confines quarks into protons and neutrons, and that binds protons and neutrons together. [12] At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. [11] The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[1015] viXra:1707.0021 [pdf] submitted on 2017-07-02 05:27:39

Faster-Than-Light Particles

Authors: George Rajna
Comments: 40 Pages.

A new theory proposes that faster-than-light particles known as tachyons could answer a lot of questions about the universe, writes Robyn Arianrhod. [29] In a recent publication, Aalto University researchers show that in a transparent medium each photon is accompanied by an atomic mass density wave. [28] New research has made it possible for the first time to compare the spatial structures and positions of two distant objects, which may be very far away from each other, just by using a simple thermal light source, much like a star in the sky. [27] In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. [26] At EPFL, researchers challenge a fundamental law and discover that more electromagnetic energy can be stored in wave-guiding systems than previously thought. [25] The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. [24] An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy. [23] Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new level of optical isolation necessary to advance on-chip optical signal processing. The technique involving light-sound interaction can be implemented in nearly any photonic foundry process and can significantly impact optical computing and communication systems. [22] City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. [21] Experiments at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw prove that chemistry is also a suitable basis for storing information. The chemical bit, or 'chit,' is a simple arrangement of three droplets in contact with each other, in which oscillatory reactions occur. [20]
Category: High Energy Particle Physics

[1014] viXra:1707.0013 [pdf] submitted on 2017-07-01 07:28:54

Tease Out the Strong Force

Authors: George Rajna
Comments: 21 Pages.

One of the fundamental challenges in nuclear physics is to predict the properties of subatomic matter from quantum chromodynamics (QCD)—the theory describing the strong force that confines quarks into protons and neutrons, and that binds protons and neutrons together. [12] At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. [11] The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[1013] viXra:1706.0532 [pdf] submitted on 2017-06-29 05:07:49

Accurate Expression of the Mass of Charged Leptons and Neutrinos

Authors: Bingzhuo Liu
Comments: 6 Pages.

Through the long-term extensive research on the experimental data of the fundamental physical constants and the mass of elementary particles such as charged leptons and neutrinos, the present study defines the source of "generation" difference generated from leptons, which thereby allows the accurate expression of the lepton mass to be derived. It is particularly important to point out that the data at the best fitting point Δm^2_32= 1.59·10^-3 eV^2 obtained in "Study of the wave packet treatment of neutrino oscillation at Daya Bay" reached an accuracy of 96%.
Category: High Energy Particle Physics

[1012] viXra:1706.0527 [pdf] submitted on 2017-06-29 10:15:30

E8 Cohomology and Physics

Authors: Frank Dodd Tony Smith Jr
Comments: 2 Pages.

Cohomology structure of E8 represents realistic E8 Lagrangian Physics.
Category: High Energy Particle Physics

[1011] viXra:1706.0517 [pdf] submitted on 2017-06-27 21:56:54

A Visible Neutrinos Agglomerate Body

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: showing an image of a visible neutrinos agglomerate body.
Category: High Energy Particle Physics

[1010] viXra:1706.0510 [pdf] submitted on 2017-06-27 12:35:08

Preons, Gravity and Black Holes

Authors: Risto Raitio
Comments: 18 Pages.

A previous preon model for the substructure of the the standard model quarks and leptons is completed to provide a model of Planck scale gravity and black holes. Gravity theory with torsion is introduced in the model producing an axial-vector field W coupled to preons with an attractive preon-preon interaction. This is suggested to be the leading term of UV gravity. The boson has an estimated mass near the Planck scale. It can materialize above that threshold and become the center of a black hole. Chiral phase preons are proposed to form a dynamical horizon with thickness of Planck length. Using quantum information theoretic concepts this is seen to lead to an area law of black hole entropy.
Category: High Energy Particle Physics

[1009] viXra:1706.0489 [pdf] submitted on 2017-06-26 12:03:10

Piercing the Veil of Modern Physics. Part 1 & Basics (in Chinese)

Authors: DING Jian, HU Xiuqin
Comments: 10 Pages. I firmly believe that a single spark can start great creative conflagrations.

This article is part 1 in the "Piercing the Veil of Modern Physics", which is to lay the foundation for the full text. First, it should be clearly pointed out that a particle moving at the value c of the light speed in vacuum, its static mass can only be equal to 0, but doesn't exist in reality. Therefore, it is vital that how can we correctly make a distinction between the speed of light in vacuum and that in reality. Then, by the aid of the law of conservation of mass-energy, we know that the energy convergence phenomena of high-speed electrons are the result of the binding energy inside them to be lost gradually in the form of electromagnetic radiation. So, according to the related electromagnetic theories and the kinetics formulas of the special relativity theory, the study concluded that the charge of a moving electron will follow along with its static mass to be lost synchronously, and its charge-mass ratio whose value remains unchanged. Since an electron can be further broken down, then there should be a kind of more fundamental particles, the electro-ultimate particles, which can compose electrons and whose charge-mass ratio should be equal to the electronic physical constant. Besides, if nature's background (ether) is also composed of the electro-ultimate particles, Maxwell's electromagnetic theory should be true. A corollary is that all photons radiating from the electrons in a storage ring are composed of the electro-ultimate particles. Then, combining with de Broglie's matter wave formula, it is pointed out that the energy convergence phenomena of high-speed particles are the primary factor causing the spectrum redshift. And through this formula, the average force suffered by a high-speed particle moving along the direction of its wavelength can be obtained. Thus, according to Newton's third law to make a judgment, the ether must exist. Finally, point out the essence of so-called wave-particle duality: No matter where, as long as there is energy, there must be mass. And vice versa. The two as a unity of opposites present in front of us in the form of wave. They must exist at the same time, carry each other, be short of one cannot. In reality, both values can be close to zero, but never equal to zero.
Category: High Energy Particle Physics

[1008] viXra:1706.0423 [pdf] submitted on 2017-06-21 23:46:42

With Regard to Elementary Particles and Nucleus

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: showing a catalog of articles related elementary particles and Nucleus.
Category: High Energy Particle Physics

[1007] viXra:1706.0412 [pdf] submitted on 2017-06-21 05:33:09

Runaway Fusion Electrons

Authors: George Rajna
Comments: 23 Pages.

When the electrons collide with the high charge in the nuclei of the ions, they encounter resistance and lose speed. [10] More than seven years later, that collaboration could result in an inexpensive tabletop device to detect elusive neutrinos more efficiently and inexpensively than is currently possible, and could simplify scientists' ability to study the inner workings of the sun. [9] Scientists in Germany have flipped the switch on a €60 million (US $66 million) device designed to help determine the mass of the universe's lightest particle. [8] Neutrinos are tricky. Although trillions of these harmless, neutral particles pass through us every second, they interact so rarely with matter that, to study them, scientists send a beam of neutrinos to giant detectors. And to be sure they have enough of them, scientists have to start with a very concentrated beam of neutrinos. To concentrate the beam, an experiment needs a special device called a neutrino horn. [7] The ultra-low background KamLAND-Zen detector, hosted by research institutes inside and outside Japan demonstrates the best sensitivity in the search for neutrinoless double-beta decay, and sets the best limit on the effective Majorana neutrino mass. [6] Now, researchers from the University of Tokyo, in collaboration with a Spanish physicist, have used one of the world's most powerful computers to analyse a special decay of calcium-48, whose life, which lasts trillions of years, depends on the unknown mass of neutrinos. This advance will facilitate the detection of this rare decay in underground laboratories. [5] To measure the mass of neutrinos, scientists study radioactive decays in which they are emitted. An essential ingredient is the decay energy which corresponds to the mass difference between the mother and daughter nuclei. This decay energy must be known with highest precision. A team of scientists now succeeded to resolve a severe discrepancy of the decay energy for the artificial holmium (Ho) isotope with mass number 163. [4] The Weak Interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and Time reversal symmetry. The Neutrino Oscillation of the Weak Interaction shows that it is a General electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures.
Category: High Energy Particle Physics

[1006] viXra:1706.0369 [pdf] submitted on 2017-06-16 16:38:23

Condensate Structure of Higgs and Spacetime

Authors: Frank Dodd Tony Smith Jr
Comments: 9 Pages.

For the Higgs as a Fermion-AntiFermion condensate, the most massive fermions, the Truth Quark - AntiQuark pairs would be so dominant that the Higgs could be effectively considered as a condensate of Truth Quark - Truth AntiQuark pairs. As to Spacetime in the E8 physics model ( viXra 1602.0319 ), consider a generalized Nambu Jona-Lasinio model in which 8-dim Classical Lagrangian Spacetime is a condensate of Geoffrey Dixon’s 64-dim Particle spinor T = RxCxHxO = Real x Complex x Quaternion x Octonion and its corresponding 64-dim AntiParticle spinor Tbar. The T - Tbar pairs of the condensate form the 128-dim part of E8 that lives in the Cl(16) Real Clifford Algebra as 248-dim E8 = 120-dim bivector D8 + 128-dim half-spinor D8. Each cell of E8 Classical Lagrangian Spacetime corresponds to 65,536-dim Cl(16) which contains 248-dim E8 = 120-dim D8 bivectors +128-dim D8 half-spinors. Human Brain Microtubules 40 microns long have 65,536 Tubulin Dimers and so can have Bohm Quantum Resonance with Cl(16) Spacetime cells.
Category: High Energy Particle Physics

[1005] viXra:1706.0287 [pdf] submitted on 2017-06-15 08:00:25

Evidence for Quantum-Interference Phenomena in the Femtometer Scale of Baryons. Part II: Inclusion of all Baryon Octet and Decuplet Particles

Authors: Osvaldo F. Schilling
Comments: 3 Pages. 1 figure

This work supplements the paper vixra: 1706.0040. It contains a single Figure in which quantum interference is demonstrated for all particles of the octet and decuplet, through the joint analysis of their rest energy and magnetic moments data. Some tendency for alignment on Shapiro step-like structures is also present. This analysis serves as a proof of the importance of dominating electromagnetic effects in the nuclear scale of particles.
Category: High Energy Particle Physics

[1004] viXra:1706.0208 [pdf] submitted on 2017-06-13 09:26:28

Piercing the Veil of Modern Physics. Part 1 & Basics

Authors: DING Jian, HU Xiuqin
Comments: 14 Pages. I firmly believe that a single spark can start great creative conflagrations.

This article is part 1 in the "Piercing the Veil of Modern Physics", which is to lay the foundation for the full text. First, it should be clearly pointed out that a particle moving at the value c of the light speed in vacuum, its static mass can only be equal to 0, but doesn't exist in reality. Therefore, it is vital that how can we correctly make a distinction between the speed of light in vacuum and that in reality. Then, by the aid of the law of conservation of mass-energy, we know that the energy convergence phenomena of high-speed electrons are the result of the binding energy inside them to be lost gradually in the form of electromagnetic radiation. So, according to the related electromagnetic theories and the kinetics formulas of the special relativity theory, the study concluded that the charge of a moving electron will follow along with its static mass to be lost synchronously, and its charge-mass ratio whose value remains unchanged. Since an electron can be further broken down, then there should be a kind of more fundamental particles, the electro-ultimate particles, which can compose electrons and whose charge-mass ratio should be equal to the electronic physical constant. Besides, if nature's background (ether) is also composed of the electro-ultimate particles, Maxwell's electromagnetic theory should be true. A corollary is that all photons radiating from the electrons in a storage ring are composed of the electro-ultimate particles. Then, combining with de Broglie's matter wave formula, it is pointed out that the energy convergence phenomena of high-speed particles are the primary factor causing the spectrum redshift. And through this formula, the average force suffered by a high-speed particle moving along the direction of its wavelength can be obtained. Thus, according to Newton's third law to make a judgment, the ether must exist. Finally, point out the essence of so-called wave-particle duality: No matter where, as long as there is energy, there must be mass. And vice versa. The two as a unity of opposites present in front of us in the form of wave. They must exist at the same time, carry each other, be short of one cannot. In reality, both values can be close to zero, but never equal to zero.
Category: High Energy Particle Physics

[1003] viXra:1706.0138 [pdf] submitted on 2017-06-09 15:55:11

Calculating Breit-Wigner Width of Hadrons

Authors: M. J. Germuska
Comments: 47 Pages.

This paper shows how Breit-Wigner width of hadrons may be calculated using Vir Theory of Particles. The theory provides formulas for the relationship between mass and spin as well as for width and spin. The width of over 150 particles are calculated with such accuracy that the errors from the actual width are entirely attributable to the width measurement errors. The particles come from 16 families including the lightest family N and the heaviest family Y.
Category: High Energy Particle Physics

[1002] viXra:1706.0136 [pdf] submitted on 2017-06-09 11:07:48

Tweezers to Nuclear Interactions

Authors: George Rajna
Comments: 19 Pages.

Bochum have developed numerical "tweezers" that can pin a nucleus in place, enabling them to study how interactions between protons and neutrons produce forces between nuclei. [12] At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. [11] The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[1001] viXra:1706.0130 [pdf] submitted on 2017-06-09 08:44:29

On e-mu-Tau Universality

Authors: Cvavbc Chandra Raju, C.prudhvi Raju
Comments: 3 Pages. recent experiments at CERN indicate non-universality

using e-mu universality and with the help of mixing parameters obtained from e-mu masses,the masses of the charged W(R) boson and the neutral D-boson are shown to be73.39 GeV and 86.16 GeV respectively.The weak interaction constant of the tau-lepton and its neutrino is shown to be related to the Fermi constant through an angle of 5.6 degrees, which also happens to be the angle with Cabibbo type of mixing among leptons
Category: High Energy Particle Physics

[1000] viXra:1706.0113 [pdf] submitted on 2017-06-07 13:27:02

Finding Charge-Parity Violation

Authors: George Rajna
Comments: 37 Pages.

The different rates of neutrino and anti-neutrino oscillations recorded by an international collaboration of researchers in Japan—including from Kavli IPMU—is an important step in the search for a new source of asymmetry in the laws that govern matter and antimatter.[12] Results from a new scientific study may shed light on a mismatch between predictions and recent measurements of ghostly particles streaming from nuclear reactors—the so-called "reactor antineutrino anomaly," which has puzzled physicists since 2011. [11] Physicists have hypothesized the existence of fundamental particles called sterile neutrinos for decades and a couple of experiments have even caught possible hints of them. However, according to new results from two major international consortia, the chances that these indications were right and that these particles actually exist are now much slimmer. [10] The MIT team studied the distribution of neutrino flavors generated in Illinois, versus those detected in Minnesota, and found that these distributions can be explained most readily by quantum phenomena: As neutrinos sped between the reactor and detector, they were statistically most likely to be in a state of superposition, with no definite flavor or identity. [9] A new study reveals that neutrinos produced in the core of a supernova are highly localised compared to neutrinos from all other known sources. This result stems from a fresh estimate for an entity characterising these neutrinos, known as wave packets, which provide information on both their position and their momentum. [8] It could all have been so different. When matter first formed in the universe, our current theories suggest that it should have been accompanied by an equal amount of antimatter – a conclusion we know must be wrong, because we wouldn't be here if it were true. Now the latest results from a pair of experiments designed to study the behaviour of neutrinos – particles that barely interact with the rest of the universe – could mean we're starting to understand why. [7] In 2012, a tiny flash of light was detected deep beneath the Antarctic ice. A burst of neutrinos was responsible, and the flash of light was their calling card. It might not sound momentous, but the flash could give us tantalising insights into one of the most energetic objects in the distant universe.
Category: High Energy Particle Physics

[999] viXra:1706.0099 [pdf] submitted on 2017-06-06 08:26:26

The Higgs Boson in a Physical Reality Perspective.

Authors: W.Berckmans
Comments: 2 Pages.

As goes for any elementary particle, a Higgs boson's properties as observed by Physics and the equivalent hypothetical values logically deduced within a valid Physical Reality (PhR) model must correspond.
Category: High Energy Particle Physics

[998] viXra:1706.0040 [pdf] submitted on 2017-06-05 07:52:21

Evidence for Quantum-Interference Phenomena in the Femtometer Scale of Baryons.

Authors: Osvaldo F. Schilling
Comments: 2 figues and 10 pages

In a series of papers we have shown that through the imposition of gauge invariance conditions to the wavefunctions representing each particle, it is possible to relate rest energy to magnetic moment for the baryons. A key point of this model is the requirement that the magnetic flux linked through the region covered by the particle be quantized in units of hc/e, which converges to the inverse dependence of mass with the fine structure constant alpha, as reported in the literature. Our most accurate results however display deviations from the strict integer numbers of flux quanta, which requires an explanation. The objective of the present paper is to show that such deviations can be precisely associated to the flux dependence of the phase differences of interfering currents flowing through Josephson Junctions in the DC mode. In the same way as in macroscopic Josephson Junctions between superconductors, quantum interference between the constituents of baryons takes place when constituents superpose, which gives rise to squared sinusoidal undulations observed in a plot of the flux confined for each baryon against the respective magnetic moments.
Category: High Energy Particle Physics

[997] viXra:1705.0369 [pdf] submitted on 2017-05-25 08:55:15

The Accurate Mass Formulas of Leptons, Quarks, Gauge Bosons, the Higgs Boson, and Cosmic Rays

Authors: Ding-Yu Chung
Comments: 16 Pages. Published in Journal of Modern Physics, 2016, 7, 1591-1606

One of the biggest unsolved problems in physics is the particle masses of all elementary particles which cannot be calculated accurately and predicted theoretically. In this paper, the unsolved problem of the particle masses is solved by the accurate mass formulas which calculate accurately and predict theoretically the particle masses of all leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays (the knees-ankles-toe) by using only five known constants: the number (seven) of the extra spatial dimensions in the eleven-dimensional membrane, the mass of electron, the masses of Z and W bosons, and the fine structure constant. The calculated masses are in excellent agreements with the observed masses. For examples, the calculated masses of muon, top quark, pion, neutron, and the Higgs boson are 105.55 MeV, 175.4 GeV, 139.54 MeV, 939.43 MeV, and 126 GeV, respectively, in excellent agreements with the observed 105.65 MeV, 173.3 GeV, 139.57 MeV, 939.27 MeV, and 126 GeV, respectively. The theoretical base of the accurate mass formulas is the periodic table of elementary particles. As the periodic table of elements is derived from atomic orbitals, the periodic table of elementary particles is derived from the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals. All elementary particles including leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays can be placed in the periodic table of elementary particles. The periodic table of elementary particles is based on the theory of everything as the computer simulation model of physical reality consisting of the mathematical computation, digital representation, and selective retention components. The computer simulation model of physical reality provides the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals for the periodic table of elementary particles.
Category: High Energy Particle Physics

[996] viXra:1705.0332 [pdf] submitted on 2017-05-22 04:12:29

The Scale-Symmetric Theory as the Origin of the Standard Model

Authors: Sylwester Kornowski
Comments: 6 Pages.

Here we showed that the Scale-Symmetric Theory (SST) gives rise to the Standard Model (SM) of particle physics. We calculated the SM gauge couplings - we obtained g’ = 0.3576, g = 0.6534 (these two gauge couplings lead to an illusion of electroweak unification), and g(s) = 1.2156 +- 0.0036. We as well described the mechanism that leads to the mass of muon. The other SM parameters we calculated in earlier papers. SST is based on 7 parameters only which, contrary to SM, lead also to the 3 masses of neutrinos (they are beyond SM) and to the 4 basic physical constants (i.e. to the reduced Planck constant, to gravitational constant (gravity is beyond SM), to speed of light in “vacuum” and electric charge of electron). We can see that in SST there is 2.7 times less parameters, SST leads to the 19 initial parameters in SM, and SST describes phenomena beyond SM. It leads to conclusion that SST is a more fundamental theory than SM.
Category: High Energy Particle Physics

[995] viXra:1705.0311 [pdf] submitted on 2017-05-21 06:18:46

Electro-Strong Interaction

Authors: Wan-Chung Hu
Comments: 5 Pages.

Here, I will use Higgs mechanism to unite gluons and photon to explain the origin of mass of gluons in strong interaction. This is the electro-strong unification which can explain the mass of neutron and proton.
Category: High Energy Particle Physics

[994] viXra:1705.0301 [pdf] submitted on 2017-05-20 09:03:43

New Season at the LHC

Authors: George Rajna
Comments: 12 Pages.

Last week, the detectors of the Large Hadron Collider (LHC) witnessed their first collisions of 2017. [8] As physicists were testing the repairs of LHC by zipping a few spare protons around the 17 mile loop, the CMS detector picked up something unusual. The team feverishly pored over the data, and ultimately came to an unlikely conclusion—in their tests, they had accidentally created a rainbow universe. [7] The universe may have existed forever, according to a new model that applies quantum correction terms to complement Einstein's theory of general relativity. The model may also account for dark matter and dark energy, resolving multiple problems at once. [6] This paper explains the Accelerating Universe, the Special and General Relativity from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the moving electric charges. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The Big Bang caused acceleration created the radial currents of the matter and since the matter composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces. The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.
Category: High Energy Particle Physics

[993] viXra:1705.0288 [pdf] submitted on 2017-05-19 08:21:45

Searching for WIMP Dark Matter

Authors: George Rajna
Comments: 13 Pages.

"The best result on dark matter so far—and we just got started." This is how scientists behind XENON1T, now the most sensitive dark matter experiment worldwide , commented on their first result from a short 30-day run presented today to the scientific community. [13] The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. SIMPs would resolve certain discrepancies between simulations of the distribution of dark matter, like this one, and the observed properties of the galaxies. In particle physics and astrophysics, weakly interacting massive particles, or WIMPs, are among the leading hypothetical particle physics candidates for dark matter.
Category: High Energy Particle Physics

[992] viXra:1705.0285 [pdf] submitted on 2017-05-19 09:52:25

Electromagnetism Win Over the Strong Force

Authors: George Rajna
Comments: 23 Pages.

The atomic nucleus offers a unique opportunity to study the competition between three of the four fundamental forces known to exist in nature, the strong nuclear interaction, the electromagnetic interaction and the weak nuclear interaction. [11] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. New ideas for interactions and particles: This paper examines also the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: High Energy Particle Physics

[991] viXra:1705.0272 [pdf] submitted on 2017-05-18 10:44:33

Weakly-Interacting Supersymmetric Particles

Authors: George Rajna
Comments: 21 Pages.

Weakly-interacting sparticles are produced at lower rates and lead to less striking signatures, making them more difficult to distinguish from Standard Model background processes. [18] Supersymmetry (SUSY) is one of the most attractive theories extending the Standard Model of particle physics. [17] If researchers at Florida Institute of Technology, employing pioneering new methods, are able to determine the top quark's mass at a level of precision as yet unachieved, they will move science closer to understanding whether the universe is stable, as we have long believed to be the case, or unstable. [16] Last February, scientists made the groundbreaking discovery of gravitational waves produced by two colliding black holes. Now researchers are expecting to detect similar gravitational wave signals in the near future from collisions involving neutron stars—for example, the merging of two neutron stars to form a black hole, or the merging of a neutron star and a black hole. [15] In a new study published in EPJ A, Susanna Liebig from Forschungszentrum Jülich, Germany, and colleagues propose a new approach to nuclear structure calculations. The results are freely available to the nuclear physicists' community so that other groups can perform their own nuclear structure calculations, even if they have only limited computational resources. [14] The PHENIX detector at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at Brookhaven National Laboratory uniquely capable of measuring how a proton's internal building blocks — quarks and gluons — contribute to its overall intrinsic angular momentum, or "spin." [13] More realistic versions of lattice QCD may lead to a better understanding of how quarks formed hadrons in the early Universe. The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[990] viXra:1705.0271 [pdf] submitted on 2017-05-18 11:07:11

Should Consensus Suppress the Individual ?

Authors: Frank Dodd Tony Smith Jr
Comments: 27 Pages.

Consider two cases: First Case ( pages 4-20 ): Our Universe: Is it Stable ? Consensus = NO (only metastable) Individual = YES Second Case ( pages 21-27 ): Dark Energy and Dark Matter Consensus = Unknown Individual = Known Segal Conformal Structure This paper is a brief description of interactions between Consensus and Individual in each of those two cases. Since I, the author, have been directly involved, you should read this paper bearing in mind possible bias in my point of view that might also be present in this paper. Bearing that in mind, you should decide for yourself the answer 
to the question posed in the title of this paper. In each case: Consensus = the Physics Establishment including: Fermilab, CDF, and D0 Collaborations (pages 8-14); the Cornell arXiv (pages 13; 21-22); CERN CDS (pages 14; 22); LHC, ATLAS, and CMS Collaborations (pages 15-20); the Princeton Institute for Advanced Study (page 20); and the Simons Center for Geometry and Physics (page 20) and Individual = I, a Georgia lawyer with a 1963 AB in math from Princeton and some physics study at Georgia Tech with David Finkelstein as adviser, but, having at age 50 failed the Fall 1991 Georgia Tech Comprehensive Exam ( a 3-day closed book exam ), I have no physics degree
Category: High Energy Particle Physics

[989] viXra:1705.0266 [pdf] submitted on 2017-05-17 14:58:18

Bosonization Causes Free Neutrons Halflife Capricious When Measuring by Different Methods

Authors: Yanming Wei
Comments: 7 pages, 2 figures. DOI: 10.13140/RG.2.2.26828.62084

Many country’s standards management departments have struggled for long time to accurately calibrate the halflife of free neutrons with different methods, unfortunately they are all obsessed by the mysterious unexplainable discrepancy: in-beam method longer than bottle method by 1%, so as to question whether there is undiscovered new physics therein. In this paper, I assert that nothing is new and the puzzle can be explained by the so-defined spontaneous Bosonization effect acting on dense colonized neutrons. At last, some inspired researches and possible applications are presented.
Category: High Energy Particle Physics

[988] viXra:1705.0264 [pdf] submitted on 2017-05-18 01:47:51

As Spinor χ = a| ↑> +b| ↓> is Physical in SU (2) Spin Space, Then Why is Isospinor ψ = A|p > +b|n > Unphysical in SU (2) Isospin Space?

Authors: Syed Afsar Abbas
Comments: 9 Pages.

A spin angular momentum state with a polarization orientation in any ar- bitrary direction can be constructed as a spinor in the SU(2)-spin space as χ = a| ↑> +b| ↓>. However the corresponding isospinor in the SU(2)-isospin space, ψ = a|p > +b|n > is discarded on empirical grounds. Still, we do not have any sound theoretcal understanding of this phenomenon. Here we provide a consistent explanation of this effect.
Category: High Energy Particle Physics

[987] viXra:1705.0258 [pdf] submitted on 2017-05-17 07:36:10

Access to Metaspace And The Metamorphic Ratio

Authors: Miguel A. Sanchez-Rey
Comments: 2 Pages.

Access to metaspace and the metamorphic ratio.
Category: High Energy Particle Physics

[986] viXra:1705.0255 [pdf] submitted on 2017-05-17 08:56:39

Superpartner of the Top Quark

Authors: George Rajna
Comments: 20 Pages.

Supersymmetry (SUSY) is one of the most attractive theories extending the Standard Model of particle physics. [17] If researchers at Florida Institute of Technology, employing pioneering new methods, are able to determine the top quark's mass at a level of precision as yet unachieved, they will move science closer to understanding whether the universe is stable, as we have long believed to be the case, or unstable. [16] Last February, scientists made the groundbreaking discovery of gravitational waves produced by two colliding black holes. Now researchers are expecting to detect similar gravitational wave signals in the near future from collisions involving neutron stars—for example, the merging of two neutron stars to form a black hole, or the merging of a neutron star and a black hole. [15] In a new study published in EPJ A, Susanna Liebig from Forschungszentrum Jülich, Germany, and colleagues propose a new approach to nuclear structure calculations. The results are freely available to the nuclear physicists' community so that other groups can perform their own nuclear structure calculations, even if they have only limited computational resources. [14] The PHENIX detector at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at Brookhaven National Laboratory uniquely capable of measuring how a proton's internal building blocks — quarks and gluons — contribute to its overall intrinsic angular momentum, or "spin." [13] More realistic versions of lattice QCD may lead to a better understanding of how quarks formed hadrons in the early Universe. The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[985] viXra:1705.0202 [pdf] submitted on 2017-05-13 00:34:05

The Origin of the Z and W Bosons

Authors: Sylwester Kornowski
Comments: 3 Pages.

Here, within the Scale-Symmetric Theory (SST), we showed that the Z and W bosons can be created due to two different mechanisms. One mechanism is associated with a transition from electromagnetic interactions to weak interactions of protons with electrons in the presence of dark matter (DM) while the second one concerns a transition from weak interactions of protons to weak interactions of charges of protons, which mimic behaviour of electrons in absence of DM, with muons associated with protons. In the first mechanism, calculated mass of Z is 91.181 GeV whereas of W is 80.428 GeV while in the second mechanism we obtained respectively 91.205 GeV and 80.387 GeV.
Category: High Energy Particle Physics

[984] viXra:1705.0192 [pdf] submitted on 2017-05-12 05:58:15

Collisions of Atomic Nuclei

Authors: George Rajna
Comments: 19 Pages.

At very high energies, the collision of massive atomic nuclei in an accelerator generates hundreds or even thousands of particles that undergo numerous interactions. [11] The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[983] viXra:1705.0136 [pdf] submitted on 2017-05-09 00:59:01

Singlet Higgs Spontaneity in Considered Action: the Lie-Dependent Masses

Authors: Zheng-chen Liang
Comments: 12 Pages. This paper has been published by chinaXiv:201608.00018, but somehow deleted by chinaXiv on May 9, 2017.

We derived the Lie-dependent masses of certain particles gauged as TeVeS in considered Lie groups raised from gauge couplings with constant global sections of singlet Higgs under the algorithm on mass terms which comes out naturally from the kinetic part of our considered TaLie action, and also available on the gauge fields as connections in formed Y-M actions. With the only parameters, \textit{scaled mass} $M(H^{D})\in\mathbb{R^{+}}$ of each Higgs section introduced in this mechanism, we concretely computed the masses $m_{W^{\pm}}$, $m_{Z^{0}}$, $m_{X}$ and $m_{H}$ under the gauge selection $E_{8(-24)}$ in \textit{Lie Group Cosmology} (LGC), figuring out how the masses of every different singlet Higgs bosons all equal one real number $\sqrt{2}\cdot M(H^{\Sigma})$. When comparing the results with recent experiments at LHC, we find the singlet Higgs spontaneity with algorithms derived from our considered action under the gauge selection of LGC is consistent with current data including the diphoton excess at $750$ GeV, as well as stating some important implications from the derived Lie-dependent masses and our constructions on the mechanism.
Category: High Energy Particle Physics

[982] viXra:1705.0101 [pdf] submitted on 2017-05-04 10:20:55

Key Physics Equations and Experiments: Explained and Derived by Energy Wave Equations

Authors: Jeff Yee
Comments: 30 pages

Three commonly used physics equations for energy are derived from a single equation that describes wave energy, linking the photon’s quantum energy (E=hf) with mass-energy (E=mc^2) and energy-momentum (E=pc) found in particles. Then, the energy equation for particles is further derived in this paper to describe the Coulomb force (F=kqq/r^2) and the universal gravitational force (F=Gmm/r^2). All of these equations are ultimately derived from one fundamental energy wave equation.
Category: High Energy Particle Physics

[981] viXra:1705.0090 [pdf] submitted on 2017-05-04 06:49:43

Exploring Universal Glue

Authors: George Rajna
Comments: 16 Pages.

The first experimental result has been published from the newly upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The result demonstrates the feasibility of detecting a potential new form of matter to study why quarks are never found in isolation. [10] A team of scientists currently working at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) announced that it has possibly discovered the existence of a particle integral to nature in a statement on Tuesday, Dec. 15, and again on Dec.16. [9] In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN. The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV. [8] 'In the new run, because of the highest-ever energies available at the LHC, we might finally create dark matter in the laboratory,' says Daniela. 'If dark matter is the lightest SUSY particle than we might discover many other SUSY particles, since SUSY predicts that every Standard Model particle has a SUSY counterpart.' [7] The problem is that there are several things the Standard Model is unable to explain, for example the dark matter that makes up a large part of the universe. Many particle physicists are therefore working on the development of new, more comprehensive models. [6] They might seem quite different, but both the Higgs boson and dark matter particles may have some similarities. The Higgs boson is thought to be the particle that gives matter its mass. And in the same vein, dark matter is thought to account for much of the 'missing mass' in galaxies in the universe. It may be that these mass-giving particles have more in common than was thought. [5] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.
Category: High Energy Particle Physics

[980] viXra:1705.0017 [pdf] submitted on 2017-05-01 15:21:32

Asymmetric Decays of Neutral Kaons and B Mesons as False Evidences of the Matter-Antimatter Asymmetry

Authors: Sylwester Kornowski
Comments: 2 Pages.

It is assumed that the asymmetric decays of neutral kaons and B mesons make an absolute distinction between matter and antimatter. Such asymmetric decays were observed in collisions of nucleons only. There are not experiments in which kaons and B mesons are produced in collisions of antinucleons only. Here, applying the Scale-Symmetric Theory (SST), we showed that internal helicity of created neutral kaons (according to SST, relativistic neutral kaon is a constituent of neutral B meson also) depend on internal helicity of colliding particles - nucleons are internally left-handed whereas antinucleons are right-handed. SST shows that there should not be some distinctions between decays of neutral kaons and B mesons created in collisions of matter only and in collisions of antimatter only. In reality, the matter-antimater asymmetry does not follow from different behaviour of matter and antimatter in weak interactions but from the external left-handedness of the initial inflation field. It caused that at the end of inflation there appeared more nucleons than antinucleons. Next, the return shock wave, carrying the additional nucleons, created the early Universe.
Category: High Energy Particle Physics

[979] viXra:1704.0401 [pdf] submitted on 2017-04-30 07:46:35

Performance of the ATLAS

Authors: George Rajna
Comments: 17 Pages.

A new age of exploration dawned at the start of Run 2 of the Large Hadron Collider, as protons began colliding at the unprecedented centre-of-mass energy of 13 TeV. [14] UNIST has taken a major step toward laying the technical groundwork for developing next-generation high-intensity accelerators by providing a new advanced theoretical tool for the design and analysis of complex beam lines with strong coupling. [13] A targeted way to manipulate beams of protons accelerated using ultrashort and ultraintense laser pulses has been demonstrated by a team of researchers led at the University of Strathclyde. [12] The work elucidates the interplay between collective and single-particle excitations in nuclei and proposes a quantitative theoretical explanation. It has as such great potential to advance our understanding of nuclear structure. [11] When two protons approaching each other pass close enough together, they can " feel " each other, similar to the way that two magnets can be drawn closely together without necessarily sticking together. According to the Standard Model, at this grazing distance, the protons can produce a pair of W bosons. [10] The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.
Category: High Energy Particle Physics

[978] viXra:1704.0377 [pdf] submitted on 2017-04-28 09:27:43

Electron Populations in Plasmas

Authors: George Rajna
Comments: 24 Pages.

Measuring small fast electron populations hidden in a sea of colder "thermal" electrons in tokamak plasmas is very challenging. [17] Magnetic reconnection, a universal process that triggers solar flares and northern lights and can disrupt cell phone service and fusion experiments, occurs much faster than theory says that it should. [16] A surprising new class of X-ray pulsating variable stars has been discovered by a team of American and Canadian astronomers led by Villanova University's Scott Engle and Edward Guinan. [15] Late last year, an international team including researchers from the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University announced the discovery of more than 60 extremely distant quasars, nearly doubling the number known to science-and thus providing dozens of new opportunities to look deep into our universe's history. [14] Fuzzy pulsars orbiting black holes could unmask quantum gravity. [13] Cosmologists trying to understand how to unite the two pillars of modern science – quantum physics and gravity – have found a new way to make robust predictions about the effect of quantum fluctuations on primordial density waves, ripples in the fabric of space and time. [12] Physicists have performed a test designed to investigate the effects of the expansion of the universe—hoping to answer questions such as "does the expansion of the universe affect laboratory experiments?", "might this expansion change the lengths of solid objects and the time measured by atomic clocks differently, in violation of Einstein's equivalence principle?", and "does spacetime have a foam-like structure that slightly changes the speed of photons over time?", an idea that could shed light on the connection between general relativity and quantum gravity. [11] Einstein's equivalence principle states that an object in gravitational free fall is physically equivalent to an object that is accelerating with the same amount of force in the absence of gravity. This principle lies at the heart of general relativity and has been experimentally tested many times. Now in a new paper, scientists have experimentally demonstrated a conceptually new way to test the equivalence principle that could detect the effects of a relatively new concept called spin-gravity coupling. [10] A recent peer-reviewed paper by physicist James Franson from the University of Maryland in the US has initiated a stir among physics community. Issued in the New Journal of Physics, the paper points to evidence proposing that the speed of light as defined by the theory of general relativity, is slower than originally thought. [9] Gravitational time dilation causes decoherence of composite quantum systems. Even if gravitons are there, it's probable that we would never be able to perceive them. Perhaps, assuming they continue inside a robust model of quantum gravity, there may be secondary ways of proving their actuality. [7] The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: High Energy Particle Physics

[977] viXra:1704.0374 [pdf] submitted on 2017-04-27 14:42:46

New Discoveries in Parkhomov’s 60co Astro-Catalyzed Beta Decay

Authors: Yanming Wei
Comments: Pages.

In 2011, Russian experimental physicist Parkhomov delivered a paper: “Deviations from Beta Radioactivity Exponential Drop”. It seems that his explanation on the observed phenomenon is little bit shallow. Hereby I present my new 5 discoveries based on his experiment settings and data, and try to generalize it as profound lemma. 1-Good use of neutrinos can greatly accelerate beta decay; 2-Low energy neutrinos can reflect on mirror; 3-Boson quasi-particle comprising neutrinos in even number can be formed under focusing condition; 4-Such a quasi-particle in high spin can excite nucleus to overcome high spin lock; 5-Only β- decay can be catalyzed by neutrinos, as well as only β+ or electric capture decay can be catalyzed by antineutrinos, otherwise converse will be slowed down.
Category: High Energy Particle Physics

[976] viXra:1704.0372 [pdf] submitted on 2017-04-27 14:51:46

A Bold Innovation on Artificial Neutrinos Source

Authors: Yanming Wei
Comments: 11 Pages.

It is well known that neutrinos come out of nuclear β decay, but radioactive materials do harm to human beings, and either energy spectrum or dose cannot be flexibly controlled because of the only dependence on selected nuclide and mass. This paper presents a new way to build neutrinos source by only accurately manipulating electrons motion. Because voltage supply can hardly reach MV-level, thus this method is not competent to generate high energy neutrinos, and only good for low energy, especially a convenient means for range 1eV to 100keV.
Category: High Energy Particle Physics

Replacements of recent Submissions

[790] viXra:1710.0258 [pdf] replaced on 2017-11-03 16:58:34

On the Cosmic Number

Authors: John Smith
Comments: 10 Pages.

Richard Feynman said in the 80s: "There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!". In fact, Armand Wyler had pointed out in 1969 that (9/16\[Pi]^3)(\[Pi]/5!)^1/4 is close to 1/137 (2), but failed to convince anyone that his explanation of the connection -that the number is a property of a 7-dimensional space-time- was viable. In this note, it is suggested that the reason for the closeness of another expression to 1/137 is, not a numerical curiosity, but -ironically- an indicator of the truth of a multi-dimensional physical theory.
Category: High Energy Particle Physics

[789] viXra:1710.0258 [pdf] replaced on 2017-10-29 20:59:14

On the Cosmic Number

Authors: John Smith
Comments: 10 Pages.

Richard Feynman: "There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" In this note, a "computational dance" from which this number emerges without any need to put it in secretly is identified...
Category: High Energy Particle Physics

[788] viXra:1710.0258 [pdf] replaced on 2017-10-27 20:15:41

On the Cosmic Number Continued

Authors: John Smith
Comments: 10 Pages.

Richard Feynman: "There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" In this note, a "computational dance" from which this number emerges without any need to put it in secretly is identified...
Category: High Energy Particle Physics

[787] viXra:1710.0258 [pdf] replaced on 2017-10-26 19:09:13

On the Cosmic Number

Authors: John Smith
Comments: 9 Pages.

Richard Feynman: "There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" In this note, a "computational dance" from which this number emerges without any need to put it in secretly is identified...
Category: High Energy Particle Physics

[786] viXra:1710.0258 [pdf] replaced on 2017-10-26 01:40:12

On the Cosmic Number

Authors: John Smith
Comments: 7 Pages.

Richard Feynman: "There is a most profound and beautiful question associated with the observed coupling constant, e - the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" In this note, a "computational dance" from which this number emerges without any need to put it in secretly is identified...
Category: High Energy Particle Physics

[785] viXra:1710.0234 [pdf] replaced on 2017-10-22 19:02:52

137

Authors: John Smith
Comments: 7 Pages.

"There is a most profound and beautiful question associated with the observed coupling constant, e \[Dash] the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" Not to be put too fine a point on it, I know exactly what kind of dance to do on the computer to makes this number come out, without putting it in secretly...
Category: High Energy Particle Physics

[784] viXra:1710.0234 [pdf] replaced on 2017-10-21 12:18:24

137

Authors: John Smith
Comments: 7 Pages.

"There is a most profound and beautiful question associated with the observed coupling constant, e \[Dash] the amplitude for a real electron to emit or absorb a real photon. It is a simple number that has been experimentally determined to be close to 0.08542455. (My physicist friends won't recognize this number, because they like to remember it as the inverse of its square: about 137.03597 with about an uncertainty of about 2 in the last decimal place. It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical physicists put this number up on their wall and worry about it.) Immediately you would like to know where this number for a coupling comes from: is it related to pi or perhaps to the base of natural logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the "hand of G-d" wrote that number, and "we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to measure this number very accurately, but we don't know what kind of dance to do on the computer to make this number come out, without putting it in secretly!" 
Category: High Energy Particle Physics

[783] viXra:1709.0433 [pdf] replaced on 2017-09-30 20:11:43

A Brief Critique of Vixra 1709.0386

Authors: Ervin Goldfain
Comments: 2 Pages.

Contrary to what the submission suggests, the “sum of squares” equation of viXra 1709.0386 has been recorded and analyzed in at least one previous publication. We also challenge the author’s interpretation of this equation.
Category: High Energy Particle Physics

[782] viXra:1709.0386 [pdf] replaced on 2017-09-27 18:33:11

On the Sum of the Squares of the Particle Masses

Authors: Cris A. Fitch
Comments: 2 Pages. Scooped by http://dispatchesfromturtleisland.blogspot.com/2015/03/the-latest-combined-higgs-boson-mass.html

We observe that the sum of the squares of the three known fundamental massive bosons is within 0.4% of the square of the vacuum expectation value divided by 2. It is also well known that the top quark mass squared is also slightly less than this value. We put forth the conjecture that this is not a coincidence, and that these two facts are a result of a general principle for the Standard Model that the sum of the squares of the boson masses and the sum of the squares of the fermion masses actually equals the vacuum expectation value squared divided by two. Furthermore this foreshadows a coming particle desert at TeV energies, as the available reservoir of mass couplings has already been allocated to known particles.
Category: High Energy Particle Physics

[781] viXra:1709.0385 [pdf] replaced on 2017-10-15 09:33:38

《Universal and Unified Field Theory》 3. Photon, Light and Electromagnetism

Authors: Wei Xu
Comments: 4 Pages.

For the first time, Law of Conservation of Light is uncovered that consists of the eight principles including the wave-particle duality as well as the Photon Entanglements beyond the speed at constant c. In addition, Law of Fluxion Continuities unfolds concisely the classical theory of Lorentz force and Maxwell's equations. With these applications to the classical physics, Unified Field Theory demonstrates and derives, but are not limited to, Electromagnetism given rise from the horizons of Quantum Mechanics and Thermodynamics

 


Category: High Energy Particle Physics

[780] viXra:1709.0311 [pdf] replaced on 2017-09-21 09:40:48

Standard Model from Broken Scale Invariance in the Infrared

Authors: Ervin Goldfain
Comments: 8 Pages. Under construction, first draft.

As we have recently shown, the minimal fractal manifold (MFM) describes the underlying structure of spacetime near or above the electroweak scale. Here we uncover the connection between quantum field operators and the MFM starting from the operator product expansion of high-energy Quantum Field Theory. The approach confirms that the Standard Model of particle physics (SM) stems from a symmetry breaking mechanism that turns the spacetime continuum into a MFM.
Category: High Energy Particle Physics

[779] viXra:1709.0306 [pdf] replaced on 2017-10-13 04:56:42

A $4\times 4$ Diagonal Matrix Schr{\"o}dinger Equation from Relativistic Total Energy with a $2\times 2$ Lorentz Invariant Solution.

Authors: Han Geurdes
Comments: 5 Pages.

In this paper an algebraic method is presented to derive a non-Hermitian Schr{\"o}dinger equation from $E=V+c\sqrt{m^2c^2+\left(\mathbf{p}-\frac{e}{c}\mathbf{A}\right)^2}$ with $E\rightarrow i\hbar \frac{\partial}{\partial t}$ and $\mathbf{p} \rightarrow -i\hbar \nabla$. In the derivation no use is made of Dirac's method of four vectors and the root operator isn't squared either. In this paper use is made of the algebra of operators to derive a matrix Schr{\"o}dinger equation. It is demonstrated that the obtained equation is Lorentz invariant.
Category: High Energy Particle Physics

[778] viXra:1709.0265 [pdf] replaced on 2017-09-25 08:46:25

E8 Real Forms and Evolution of our Universe

Authors: Frank Dodd Tony Smith Jr
Comments: 13 Pages.

In E8 Physics, when our Planck Scale Universe emerged from its Parent Universe by Quantum Fluctuation, it was represented by Real Form E8(-248) with SO(16) symmetry; and during Octonionic NonUnitary Inflation our Universe was represented by Real Form E8(8) with SO(8,8) symmetry; and after the end of Octonionic Inflation with 8-dim Octonionic Spacetime, during the present era of (4+4)-dim Quaternionic Kaluza-Klein Spacetime and Unitary Quaternionic Quantum Processes our Universe has been represented by Real Form E8(-24) with SO*(16) symmetry.
Category: High Energy Particle Physics

[777] viXra:1709.0103 [pdf] replaced on 2017-09-28 13:55:39

The Higgs Boson and the "Leptonic Spectrum"

Authors: John A. Gowan
Comments: new section added at bottom of page

The conservation role of the Higgs Boson is the creation of the "Leptonic Spectrum"
Category: High Energy Particle Physics

[776] viXra:1709.0103 [pdf] replaced on 2017-09-12 16:35:00

The Higgs Boson and the "Leptonic Spectrum"

Authors: John A. Gowan
Comments: 5 Pages. section added (at bottom)

The conservation role of the Higgs boson is the creation of the "Leptonic Spectrum"
Category: High Energy Particle Physics

[775] viXra:1708.0479 [pdf] replaced on 2017-09-02 16:55:18

Theory of Interactive Geometric Particles of the Field

Authors: M. D. Monsia
Comments: 2 pages

This work aims to investigate the exchange particles, photon, W and Z bosons, gluon and graviton which are responsible for fundamental interactions, and other types of elementary particles in terms of crystalline polyhedra of quantum vacuum.
Category: High Energy Particle Physics

[774] viXra:1708.0369 [pdf] replaced on 2017-10-15 00:10:14

E8 Root Vectors from 8D to 3D

Authors: Frank Dodd Tony Smith Jr
Comments: 39 Pages.

This paper is an elementary-level attempt at discussing 8D E8 Physics based on the 240 Root Vectors of an E8 lattice and how it compares with physics models based on 4D and 3D structures such as Glotzer Dimer packings in 3D, Elser-Sloane Quasicrystals in 4D, and various 3D Quasicrystals based on slices of 600-cells. Version 2 (v2) adds material about Fibonacci Chains and Cellular Automata. Version 3 (v3) adds material about H4 quasilattice. Version 4 (v4) describes a natural progression from 600-cell to Superposition of 8 E8 Lattices
Category: High Energy Particle Physics

[773] viXra:1708.0369 [pdf] replaced on 2017-09-01 13:51:21

E8 Root Vectors from 8D to 3D

Authors: Frank Dodd Tony Smith Jr
Comments: 39 Pages.

This paper is an elementary-level attempt at discussing 8D E8 Physics based on the 240 Root Vectors of an E8 lattice and how it compares with physics models based on 4D and 3D structures such as Glotzer Dimer packings in 3D, Elser-Sloane Quasicrystals in 4D, and various 3D Quasicrystals based on slices of 600-cells. Version 2 (v2) adds material about Fibonacci Chains and Cellular Automata. Version 3 (v3) adds material about H4 quasilattice. Version 4 (v4) describes a natural progression from 600-cell to Superposition of 8 E8 Lattices
Category: High Energy Particle Physics

[772] viXra:1708.0369 [pdf] replaced on 2017-08-29 03:13:38

E8 Root Vectors from 8D to 3D

Authors: Frank Dodd Tony Smith Jr
Comments: 34 Pages.

This paper is an elementary-level attempt at discussing 8D E8 Physics based on the 240 Root Vectors of an E8 lattice and how it compares with physics models based on 4D and 3D structures such as Glotzer Dimer packings in 3D, Elser-Sloane Quasicrystals in 4D, and various 3D Quasicrystals based on slices of 600-cells. Version 2 (v2) adds material about Fibonacci Chains and Cellular Automata. Version 3 (v3) adds material about H4 quasilattice.
Category: High Energy Particle Physics

[771] viXra:1708.0369 [pdf] replaced on 2017-08-26 18:31:20

E8 Root Vectors from 8D to 3D

Authors: Frank Dodd Tony Smith Jr
Comments: 34 Pages.

This paper is an elementary-level attempt at discussing 8D E8 Physics based on the 240 Root Vectors of an E8 lattice and how it compares with physics models based on 4D and 3D structures such as Glotzer Dimer packings in 3D, Elser-Sloane Quasicrystals in 4D, and various 3D Quasicrystals based on slices of 600-cells. Version 2 (v2) adds material about Fibonacci Chains and Cellular Automata.
Category: High Energy Particle Physics

[770] viXra:1708.0217 [pdf] replaced on 2017-08-23 10:11:17

Light-By-Light Scattering as a Proof of at Least Incompleteness of the Perturbative Quantum Electrodynamics

Authors: Sylwester Kornowski
Comments: 4 Pages.

Here, within the Scale-Symmetric Theory (SST), we described the mechanism of the light-by-light scattering and we calculated the cross-section: 76.5 +- 59.5 nb - it is independent of transverse momentum. This result is very close to the ATLAS data. The SST shows that in reality light is scattered on the central condensates in virtual electrons. The maximum width +-59.5 nb follows from a natural phenomenon. The ATLAS background events decrease the observed maximum width to less than +-44.4 nb (it does not concern uncertainties). On the other hand, the calculated within the Standard Model central value (too low) of the cross-section is inconsistent with the ATLAS data. We can say only that the ATLAS result is compatible with Standard-Model predictions only within experimental uncertainties. We answered as well following question: Why the perturbative Quantum Electrodynamics is at least an incomplete theory?
Category: High Energy Particle Physics

[769] viXra:1708.0211 [pdf] replaced on 2017-08-18 23:54:36

On the Evidence of the Number of Colours in Particle Physics

Authors: Syed Afsar Abbas, Sajad Ahmad Sheikh, Sheikh Salahudin, Mohsin Ilahi
Comments: 6 Pages.

It is commonly believed ( and as well reflected in current textbooks in particle physics ) that the R ratio in $e^+ e^-$ scattering and $\pi^0 \rightarrow \gamma \gamma$ decay provide strong evidences of the three colours of the Quantum Chromodynamics group ${SU(3)}_c$. This is well documented in current literature. However, here we show that with a better understanding of the structure of the electric charge in the Standard Model of particle physics at hand, one rejects the second evidence as given above but continues to accept the first one. Thus $\pi^0 \rightarrow \gamma \gamma$ decay is not a proof of three colours anymore. This fact is well known. However unfortunately some kind of inertia has prevented this being taught to the students. As such the textbooks and monographs should be corrected so that more accurate information may be transmitted to the students.
Category: High Energy Particle Physics

[768] viXra:1708.0168 [pdf] replaced on 2017-08-28 18:20:00

Conversion of Kinetic Energy Into an Electromagnetic Pulse by Means of Control of the Gravitational Mass

Authors: Fran De Aquino
Comments: 3 Pages.

It is shown a system that, if launched radially into the Earth’s gravitational field, it can acquires a ultra high amount of kinetic energy, which can generate a highly intense pulse of electromagnetic energy (EMP) with magnitude of the order of 20 Megatons or more.
Category: High Energy Particle Physics

[767] viXra:1708.0168 [pdf] replaced on 2017-08-19 18:42:22

Conversion of Kinetic Energy Into an Electromagnetic Pulse by Means of Control of the Gravitational Mass

Authors: Fran De Aquino
Comments: 3 Pages.

It is shown a system that, if launched radially into the Earth’s gravitational field, it can acquires a ultra high amount of kinetic energy, which can generate a highly intense pulse of electromagnetic energy (EMP) with magnitude of the order of 10 Megatons or more.
Category: High Energy Particle Physics

[766] viXra:1708.0115 [pdf] replaced on 2017-08-16 21:03:47

The Higgs Troika

Authors: Wei Lu
Comments: 22 Pages.

Ternary Clifford algebra is connected with three Higgs bosons and three fermion generations, whereas cube roots of time vector are associated with three quark colors and three weak gauge fields. Four-fermion condensations break chiral symmetries, induce axion-like bosons, and dictate fermion mass hierarchies.
Category: High Energy Particle Physics

[765] viXra:1708.0115 [pdf] replaced on 2017-08-12 14:09:19

The Higgs Troika

Authors: Wei Lu
Comments: 21 Pages.

There are three composite electroweak Higgs bosons stemming from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three cohorts are dictated by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the LHC, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel. Tau neutrino condensation may contribute substantially to the muon anomalous magnetic moment. On the other hand, a feeble antisymmetric condensation might be gravitationally relevant and reflected as large-scale CMB anisotropies.
Category: High Energy Particle Physics

[764] viXra:1708.0056 [pdf] replaced on 2017-08-10 09:38:40

π-Mesons and μ-Mesons

Authors: Yibing Qiu
Comments: 2 Pages.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[763] viXra:1708.0056 [pdf] replaced on 2017-08-10 04:23:45

π-Mesons and μ-Mesons

Authors: Yibing Qiu
Comments: 2 Pages.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[762] viXra:1708.0056 [pdf] replaced on 2017-08-09 08:35:29

The π-Meson and the μ-Meson

Authors: Yibing Qiu
Comments: 2 Pages.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[761] viXra:1708.0056 [pdf] replaced on 2017-08-08 04:05:17

The π-Meson and the μ-Meson

Authors: Yibing Qiu
Comments: 2 Pages.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[760] viXra:1708.0056 [pdf] replaced on 2017-08-07 00:00:01

The π-Meson and the μ-Meson

Authors: Yibing Qiu
Comments: 2 Pages.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[759] viXra:1708.0056 [pdf] replaced on 2017-08-06 11:04:47

The π-Meson and the μ-Meson

Authors: Yibing Qiu
Comments: 2 Pages.

Abstract: showing a viewpoint with regards to the relationship of the Pion and the Muon.
Category: High Energy Particle Physics

[758] viXra:1707.0385 [pdf] replaced on 2017-08-01 15:02:55

The Seven Higgs Bosons and the Heisenberg Uncertainty Principle Extended to D Dimensions

Authors: Angel Garcés Doz
Comments: 2 Pages.

The proof of the existence of seven dimensions compacted in circles: the principle of uncertainty of Heisenberg extended to d dimensions; Allows us to obtain the masses of the seven Higgs bosons, including the known empirically (125.0901 GeV = mh (1)); And theorize the calculation of the mass of the boson stop quark (745 GeV)
Category: High Energy Particle Physics

[757] viXra:1707.0367 [pdf] replaced on 2017-08-01 11:57:25

Atlas: LHC 2016: 240 Gev Higgs Mass State at 3.6 Sigma

Authors: Frank Dodd Tony Smith Jr
Comments: 8 Pages.

5 July 2017 ATLAS released ATLAS-CONF-2017-058 saying: “... A search for heavy resonances decaying into a pair of Z bosons leading to l+ l- l+ l- ... is presented. [ that includes the Higgs -> ZZ* -> 4l channel ] The search uses proton–proton collision data at 13 TeV corresponding to an integrated luminosity of 36.1 fb-1 collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider ... excess ...[is]... observed in the data for m4l around 240 ... GeV ... with a local significance of 3.6 sigma ...". E8-Cl(16) Physics Model ( viXra 1602.0319 ) has a Nambu-Jona-Lasinio (NJL) type structure for the Higgs-Tquark system resulting in 3 Higgs mass states: around 125 GeV (observed) and 200 and 250 GeV. 240 GeV is close enough to 250 GeV that the ATLAS 3.6 sigma peak should not be suppressed by LEE and does constitute significant support for the validity of the NJL sector of the model. Version 2 (v2) adds Tommaso Dorigo blog commentary.
Category: High Energy Particle Physics

[756] viXra:1707.0218 [pdf] replaced on 2017-07-16 10:13:32

The First Big Question Facing Physics and Science

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: show a viewpoint with regards to first big question facing physics and science.
Category: High Energy Particle Physics

[755] viXra:1707.0143 [pdf] replaced on 2017-07-12 04:36:18

New Physics Resulting from Far Too Large a Mass Distance Between the Doubly Charmed Baryons Xi

Authors: Sylwester Kornowski
Comments: 5 Pages.

The Standard Model (SM) and experimental data show that the change of the up quark for down quark increases the mass of nucleon by about 1 MeV. On the other hand, SM and experimental results show that the same change in the doubly charmed baryons Xi decreases the mass by about 100 MeV. Within the SM we cannot explain such two major inconsistencies (i.e. 100 MeV instead 1 MeV and the increase-decrease asymmetry) so such problems suggest new physics. To save the SM, some scientists suggest that the first doubly charmed Xi, detected by the SELEX collaboration based at Fermilab, should disappear! Here, applying the atom-like structure of baryons that follows from the Scale-Symmetric Theory (SST), we calculated masses and I, J and P of baryon Delta, of many charmed and bottom baryons and masses of the two doubly charmed baryons Xi. Calculated mass of Xi_cc+ is 3519.08 MeV whereas of Xi_cc++ is 3621.90 MeV - the results are consistent with experimental data. The other theoretical masses obtained here are very close to experimental results. We present a generalized scheme that is very helpful in calculating masses and other physical quantities that characterize baryons. Charmed baryons contain relativistic, positively charged pion in the d = 0 state which mass is 1256.6 MeV - this mass is close to the mass of the charm quark (in SST it is 1267 MeV) so the quark model can mimic presented here the atom-like theory of baryons. On the other hand, relativistic mass of charged kaon in the d = 0 state is 4444.9 MeV so it can mimic the mass of the bottom quark (in SST it is 4190 MeV).
Category: High Energy Particle Physics

[754] viXra:1707.0138 [pdf] replaced on 2017-07-11 01:18:35

Higgs Bosons and Neutrinos

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: show the viewpoint with regards to the higgs boson and neutrinos.
Category: High Energy Particle Physics

[753] viXra:1706.0517 [pdf] replaced on 2017-06-30 03:39:27

One Visible Neutrinos Aggregation Body

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: showing an image of a visible neutrinosaggregation body.
Category: High Energy Particle Physics

[752] viXra:1706.0510 [pdf] replaced on 2017-07-24 05:17:16

Preons, Gravity and Black Holes

Authors: Risto Raitio
Comments: 19 Pages. Published in Open Access Library Journal, 4: e3784. https://doi.org/10.4236/oalib.1103784

A previous preon model for the substructure of the the standard model quarks and leptons is completed to provide a model of Planck scale gravity and black holes. Gravity theory with torsion is introduced in the model. Torsion has been shown to produce an axial-vector field coupled to spinors, in the present case preons, causing an attractive preon-preon interaction. This is assumed to be the leading term of UV gravity. The boson has an estimated mass near the Planck scale. At high enough density it can materialize and become the center of a black hole. Chiral phase preons are proposed to form the horizon with thickness of order of Planck length. Using quantum information theoretic concepts this is seen to lead to an area law of black hole entropy.
Category: High Energy Particle Physics

[751] viXra:1706.0423 [pdf] replaced on 2017-07-09 05:21:56

The ElementaryParticle and Atomic Nucleus

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: showing a catalog of articlesrelated elementaryparticlesandatomic nucleus.
Category: High Energy Particle Physics

[750] viXra:1706.0423 [pdf] replaced on 2017-06-22 09:43:15

The ElementaryParticle and Atomic Nucleus

Authors: Yibing Qiu
Comments: 1 Page.

Abstract: showing a catalog of articlesrelated elementaryparticlesandatomic nucleus.
Category: High Energy Particle Physics

[749] viXra:1705.0332 [pdf] replaced on 2017-05-29 09:42:18

The Scale-Symmetric Theory as the Origin of the Standard Model

Authors: Sylwester Kornowski
Comments: 8 Pages.

Here we showed that the Scale-Symmetric Theory (SST) gives rise to the Standard Model (SM) of particle physics. We calculated the SM gauge couplings - we obtained g’ = 0.35706, g = 0.65235 (these two gauge couplings lead to an illusion of electroweak unification), and g(s) = 1.21529 +- 0.00360. We as well described the mechanism that leads to the mass of muon. Calculated here mass of muon is 105.6576 MeV. The other SM parameters we calculated in earlier papers. SST is based on 7 parameters only which, contrary to SM, lead also to the 3 masses of neutrinos (they are beyond SM) and to the 4 basic physical constants (i.e. to the reduced Planck constant, to gravitational constant (gravity is beyond SM), to speed of light in “vacuum” and electric charge of electron). We can see that in SST there is 2.7 times less parameters, SST leads to the 19 initial parameters in SM, and SST describes phenomena beyond SM. It leads to conclusion that SST is a more fundamental theory than SM.
Category: High Energy Particle Physics

[748] viXra:1705.0332 [pdf] replaced on 2017-05-28 14:19:39

The Scale-Symmetric Theory as the Origin of the Standard Model

Authors: Sylwester Kornowski
Comments: 7 Pages.

Here we showed that the Scale-Symmetric Theory (SST) gives rise to the Standard Model (SM) of particle physics. We calculated the SM gauge couplings - we obtained g’ = 0.35706, g = 0.65235 (these two gauge couplings lead to an illusion of electroweak unification), and g(s) = 1.21529 +- 0.00360. We as well described the mechanism that leads to the mass of muon. Calculated here mass of muon is 105.6576 MeV. The other SM parameters we calculated in earlier papers. SST is based on 7 parameters only which, contrary to SM, lead also to the 3 masses of neutrinos (they are beyond SM) and to the 4 basic physical constants (i.e. to the reduced Planck constant, to gravitational constant (gravity is beyond SM), to speed of light in “vacuum” and electric charge of electron). We can see that in SST there is 2.7 times less parameters, SST leads to the 19 initial parameters in SM, and SST describes phenomena beyond SM. It leads to conclusion that SST is a more fundamental theory than SM.
Category: High Energy Particle Physics

[747] viXra:1705.0332 [pdf] replaced on 2017-05-23 04:47:59

The Scale-Symmetric Theory as the Origin of the Standard Model

Authors: Sylwester Kornowski
Comments: 7 Pages.

Here we showed that the Scale-Symmetric Theory (SST) gives rise to the Standard Model (SM) of particle physics. We calculated the SM gauge couplings - we obtained g’ = 0.3576, g = 0.6534 (these two gauge couplings lead to an illusion of electroweak unification), and g(s) = 1.2156 +- 0.0036. We as well described the mechanism that leads to the mass of muon. Calculated here mass of muon is 105.6578 MeV. The other SM parameters we calculated in earlier papers. SST is based on 7 parameters only which, contrary to SM, lead also to the 3 masses of neutrinos (they are beyond SM) and to the 4 basic physical constants (i.e. to the reduced Planck constant, to gravitational constant (gravity is beyond SM), to speed of light in “vacuum” and electric charge of electron). We can see that in SST there is 2.7 times less parameters, SST leads to the 19 initial parameters in SM, and SST describes phenomena beyond SM. It leads to conclusion that SST is a more fundamental theory than SM.
Category: High Energy Particle Physics

[746] viXra:1705.0271 [pdf] replaced on 2017-07-29 23:00:25

Should Consensus Suppress the Individual ?

Authors: Frank Dodd Tony Smith Jr
Comments: 36 Pages.

Consider three cases: First Case (pages 2-4): Does E8 represent Realistic Standard Model plus Gravity ? Consensus = NO Individual = YES Second Case (pages 5-29): Our Universe: Is it Stable ? Consensus = NO (only metastable) Individual = YES Third Case ( pages 30-36 ): Dark Energy and Dark Matter Consensus = Unknown Individual = Segal Conformal Structure This paper is a brief description of interactions between Consensus and Individual in each of those cases, where: Consensus = the Physics Establishment including: Organizers of 2010 Banff Workshop on Structure and Representations of Exceptional Groups (page 3-4); Moriond 2017 (page 4); the Princeton Institute for Advanced Study (page 4); and the Simons Center for Geometry and Physics (page 4); Fermilab, CDF, and D0 Collaborations (pages 9-17); the Cornell arXiv (pages 16; 30-31); CERN CDS (pages 17; 31); LHC, ATLAS, and CMS Collaborations (pages 18-29) and Individual = I, a Georgia lawyer with a 1963 AB in math from Princeton and some physics study at Georgia Tech with David Finkelstein as adviser, but, having at age 50 failed the Fall 1991 Georgia Tech Comprehensive Exam ( a 3-day closed book exam ), I have no physics degree. Version 2 (v2) adds correct viXra number and some details about Fermilab data. Version 3 (v3) adds the First Case, more details, and gives Thanks to ATLAS for ATLAS-CONF-2017-058 stating existence of a possible 240 GeV Higgs Mass State at 3.6 sigma local significance.
Category: High Energy Particle Physics

[745] viXra:1705.0271 [pdf] replaced on 2017-05-19 09:15:59

Should Consensus Suppress the Individual ?

Authors: Frank Dodd Tony Smith Jr
Comments: 29 Pages.

Consider two cases: First Case ( pages 4-20 ): Our Universe: Is it Stable ? Consensus = NO (only metastable) Individual = YES Second Case ( pages 21-27 ): Dark Energy and Dark Matter Consensus = Unknown Individual = Known Segal Conformal Structure This paper is a brief description of interactions between Consensus and Individual in each of those two cases. Since I, the author, have been directly involved, you should read this paper bearing in mind possible bias in my point of view that might also be present in this paper. Bearing that in mind, you should decide for yourself the answer 
to the question posed in the title of this paper. In each case: Consensus = the Physics Establishment including: Fermilab, CDF, and D0 Collaborations (pages 8-14); the Cornell arXiv (pages 13; 21-22); CERN CDS (pages 14; 22); LHC, ATLAS, and CMS Collaborations (pages 15-20); the Princeton Institute for Advanced Study (page 20); and the Simons Center for Geometry and Physics (page 20) and Individual = I, a Georgia lawyer with a 1963 AB in math from Princeton and some physics study at Georgia Tech with David Finkelstein as adviser, but, having at age 50 failed the Fall 1991 Georgia Tech Comprehensive Exam ( a 3-day closed book exam ), I have no physics degree. Version 2 (v2) adds correct viXra number and 2 pages of details about Fermilab data.
Category: High Energy Particle Physics

[744] viXra:1705.0202 [pdf] replaced on 2017-06-07 08:48:04

The Origin of the Z and W Bosons

Authors: Sylwester Kornowski
Comments: 5 Pages.

Here, within the Scale-Symmetric Theory (SST), we showed that the Z and W bosons can be created due to three different mechanisms. One mechanism is associated with a transition from electromagnetic interactions to weak interactions of protons with electrons in the presence of dark matter (DM) while the second one concerns a transition from weak interactions of protons to weak interactions of charges of protons, which mimic behaviour of electrons in absence of DM, with muons associated with protons. In the first mechanism, calculated mass of Z is 91.181 GeV whereas of W is 80.427 GeV while in the second mechanism we obtained respectively 91.205 GeV and 80.385 GeV. The third mechanism leads to masses of W bosons equal to 80.473 GeV and 80.380 GeV (mean value is 80.427 GeV). We showed that the recent cosmic-ray antiproton data from AMS-02 concern transitions between different interactions also so the results do not follow from dark-matter annihilation. Emphasize that in an earlier paper, we calculated lifetimes of the Z and W bosons which are very close to experimental data.
Category: High Energy Particle Physics

[743] viXra:1705.0202 [pdf] replaced on 2017-05-14 05:25:29

The Origin of the Z and W Bosons

Authors: Sylwester Kornowski
Comments: 4 Pages.

Here, within the Scale-Symmetric Theory (SST), we showed that the Z and W bosons can be created due to two different mechanisms. One mechanism is associated with a transition from electromagnetic interactions to weak interactions of protons with electrons in the presence of dark matter (DM) while the second one concerns a transition from weak interactions of protons to weak interactions of charges of protons, which mimic behaviour of electrons in absence of DM, with muons associated with protons. In the first mechanism, calculated mass of Z is 91.181 GeV whereas of W is 80.427 GeV while in the second mechanism we obtained respectively 91.205 GeV and 80.385 GeV. We showed that the recent cosmic-ray antiproton data from AMS-02 concern transitions between different interactions also so the results do not follow from dark-matter annihilation. Emphasize that in an earlier paper, we calculated lifetimes of the Z and W bosons which are very close to experimental data.
Category: High Energy Particle Physics

[742] viXra:1705.0101 [pdf] replaced on 2017-08-14 09:56:23

Key Physics Equations and Experiments: Explained and Derived by Energy Wave Equations

Authors: Jeff Yee
Comments: 30 pages

Three commonly used physics equations for energy are derived from a single equation that describes wave energy, linking the photon’s quantum energy (E=hf) with mass-energy (E=mc^2) and energy-momentum (E=pc) found in particles. Then, the energy equation for particles is further derived in this paper to describe the Coulomb force (F=kqq/r^2) and the universal gravitational force (F=Gmm/r^2). All of these equations are ultimately derived from one fundamental energy wave equation.
Category: High Energy Particle Physics

[741] viXra:1704.0374 [pdf] replaced on 2017-05-09 12:07:41

New Discoveries in Parkhomov’s 60co Astro-Catalyzed Beta Decay

Authors: Yanming Wei
Comments: 7 pages, 1 figure. DOI: 10.13140/RG.2.2.30632.98564

In 2011, Russian experimental physicist Parkhomov delivered a paper: “Deviations from Beta Radioactivity Exponential Drop”. It seems that his explanation on the observed phenomenon is little bit shallow. Hereby I present my new 5 discoveries based on his experiment settings and data, and try to generalize it as profound lemma. 1-Good use of neutrinos can greatly accelerate beta decay; 2-Low energy neutrinos can reflect on mirror; 3-Boson quasi-particle comprising neutrinos in even number can be formed under focusing condition; 4-Such a quasi-particle in high spin can excite nucleus to overcome high spin lock; 5-Only β- decay can be catalyzed by neutrinos, as well as only β+ or electric capture decay can be catalyzed by antineutrinos, otherwise converse will be slowed down.
Category: High Energy Particle Physics

[740] viXra:1704.0372 [pdf] replaced on 2017-05-24 10:14:27

A Bold Innovation on Artificial Neutrinos Source

Authors: Yanming Wei
Comments: 11 pages, 3 figures. DOI: 10.13140/RG.2.2.34378.36804

It is well known that neutrinos come out of nuclear β decay, but radioactive materials do harm to human beings, and either energy spectrum or dose cannot be flexibly controlled because of the only dependence on selected nuclide and mass. This paper presents a new way to build neutrinos source by only accurately manipulating electrons motion. Because voltage supply can hardly reach MV-level, thus this method is not competent to generate high energy neutrinos, and only good for low energy, especially a convenient means for range 1eV to 100keV.
Category: High Energy Particle Physics

[739] viXra:1704.0372 [pdf] replaced on 2017-04-28 07:33:43

A Bold Innovation on Artificial Neutrinos Source

Authors: Yanming Wei
Comments: 11 Pages.

It is well known that neutrinos come out of nuclear β decay, but radioactive materials do harm to human beings, and either energy spectrum or dose cannot be flexibly controlled because of the only dependence on selected nuclide and mass. This paper presents a new way to build neutrinos source by only accurately manipulating electrons motion. Because voltage supply can hardly reach MV-level, thus this method is not competent to generate high energy neutrinos, and only good for low energy, especially a convenient means for range 1eV to 100keV.
Category: High Energy Particle Physics